Graduate Quantum Mechanics - Problem Set 10

Problem 1)

Using the matrix elements of the operator \mathbf{L}_{x} in the subspace for $l=1$ (see Shankar p. 327-328, in particular the $3^{\text {rd }}$ block in the matrix 12.5 .23), show that the matrix for arbitrary rotations around the x axis (in the basis consisting of eigenstates $l l=1, m>(m=+1,0,-1)$ of $\left.\mathbf{L}_{z}\right)$ is given by

$$
D_{m m^{\prime}}(\theta)=\exp \left(-i \theta \frac{\mathbf{L}_{x}}{\hbar}\right)=\left(\begin{array}{ccc}
\frac{1}{2} \cos \theta+\frac{1}{2} & -\frac{i}{\sqrt{2}} \sin \theta & \frac{1}{2} \cos \theta-\frac{1}{2} \\
-\frac{i}{\sqrt{2}} \sin \theta & \cos \theta & -\frac{i}{\sqrt{2}} \sin \theta \\
\frac{1}{2} \cos \theta-\frac{1}{2} & -\frac{i}{\sqrt{2}} \sin \theta & \frac{1}{2} \cos \theta+\frac{1}{2}
\end{array}\right)
$$

Show that applying this matrix for the case $\theta=180^{\circ}$ on the eigenfunction $l l=1, m=1>$ of \mathbf{L}_{z} gives the same result as rotating explicitly the function $Y_{1}^{1}(\theta, \varphi)=-\sqrt{\frac{3}{8 \pi}} \sin \theta e^{i \varphi}$ by 180° around the x-axis.

Hint: Rotating by 180° around the x -axis is the same as replacing θ by $180^{\circ}-\theta$ and ϕ by $-\phi$. Also, note that $Y_{1}^{-1}(\theta, \varphi)=\sqrt{\frac{3}{8 \pi}} \sin \theta e^{-i \varphi}$.

Problem 2)

A particle in 3 dimensions is described by a wave function $\Psi(x, y, z)$. We can make a variable substitution to spherical variables $(x, y, z) \rightarrow(r, \theta, \varphi)$ by defining an alternative wave function in terms of the new variables which describes the exact same state:
$\Phi(r, \theta, \varphi)=\Psi(x, y, z)=\Psi(r \sin \theta \cos \varphi, r \sin \theta \sin \varphi, r \cos \theta)$.
Using the definition of \mathbf{L}_{x} in position ($\mathrm{x}, \mathrm{y}, \mathrm{z}$) space, show that its representation in terms of these new variables is

$$
\mathbf{L}_{x}=-\frac{\hbar}{i}\left(\sin \varphi \frac{\partial}{\partial \theta}+\cos \varphi \cot \theta \frac{\partial}{\partial \varphi}\right)
$$

Hint: Simply apply this form of \mathbf{L}_{x} to $\Phi(r, \theta, \varphi)$ and show that you get the same answer as applying \mathbf{L}_{x} in Cartesian coordinates to $\Psi(x, y, z)$.

Problem 3)

Using tbe result for \mathbf{L}_{x} above and the similar result for \mathbf{L}_{y} (see Exercise 12.5.8 p. 334 in Shankar - you don't have to prove that):

$$
\mathbf{L}_{y}=\frac{\hbar}{i}\left(\cos \varphi \frac{\partial}{\partial \theta}-\sin \varphi \cot \theta \frac{\partial}{\partial \varphi}\right)
$$

show that Eq. 12.5 .27 is true, i.e.
$\mathbf{L}_{ \pm}= \pm \hbar e^{ \pm i \varphi}\left(\frac{\partial}{\partial \theta} \pm i \cot \theta \frac{\partial}{\partial \varphi}\right)$
for at least one of the two (you can then assume the other one is correct, as well).

Problem 4)

Using the results from Problem 3 and the fact that
$\mathbf{L}_{-} \mathbf{L}_{+}=\mathbf{L}_{x}^{2}+\mathbf{L}_{y}^{2}-\hbar \mathbf{L}_{z}$
calculate the form of the total squared angular momentum operator $\mathbf{L}^{2}=\mathbf{L}_{x}^{2}+\mathbf{L}_{y}^{2}+\mathbf{L}_{z}^{2}$ in spherical coordinates and show that the result agrees with Shankar's Eq. 12.5.36, p. 335

