Graduate Quantum Mechanics - Problem Set 8

Problem 1)

Consider a harmonic oscillator which is in an initial state $a|n>+b| n+1>$ at $t=0$, where a, b are real numbers with $a^{2}+b^{2}=1$. Calculate the expectation values of $\langle X\rangle(t)$ and $\langle P\rangle(t)$ as a function of time. Compare your results to the "classical motion" $x(t)$ of a harmonic oscillator with the same physical parameters (ω, m) and the same (average) energy $E \approx(n+1) \hbar \omega$.

Problem 2)

A particle of mass m is in a one-dimensional potential of form $V(x)=\frac{1}{2} m \omega^{2} x^{2}+m g x$ with some real number g. (Think of this as an oscillator potential plus a constant force $m g$ in -x direction acting on the particle). Without doing much "heavy math", can you write down the lowest energy eigenstate of this potential? (Think about the classical analog - a weight hanging on a vertical spring. How does gravity affect the equations and solution for the harmonic spring potential energy?)
XC : What is the probability that a particle starting out in the ground state of the harmonic oscillator potential only (first part of $V(x)$) ends up in the new ground state once the force is "switched on"?

Problem 3)

Find the eigenvalues and eigenstates of the one-dimensional Hamiltonian with potential $V(x)=\left\{\begin{array}{c}\frac{1}{2} m \omega^{2} \mathbf{X}^{2}, x<0 \\ \infty, x \geq 0\end{array}\right.$
Again, nearly no math is needed - only some clever argument.

