Spherical Bessel Functions

Spherical Bessel functions, $j_{\ell}(x)$ and $n_{\ell}(x)$, are solutions to the differential equation

$$
\frac{d^{2} f_{\ell}}{d x^{2}}+\frac{2}{x} \frac{d f_{\ell}}{d x}+\left[1-\frac{\ell(\ell+1)}{x^{2}}\right] f_{\ell}=0
$$

Also useful are the combinations $h_{\ell}^{(1)}(x)=j_{\ell}(x)+i n_{\ell}(x)$ and $h_{\ell}^{(2)}(x)=j_{\ell}(x)-i n_{\ell}(x)=$ $\left[h_{\ell}^{(1)}(x)\right]^{*}$ and the modified spherical Bessel functions $i_{\ell}(x)=i^{\ell} j_{\ell}(i x)$ and $k_{\ell}(x)=-i^{\ell} h_{\ell}^{(1)}(i x)$. For $\ell=0$, the solutions are

$$
j_{0}(x)=\frac{\sin x}{x}, \quad n_{0}(x)=-\frac{\cos x}{x} .
$$

From the series solution, with the conventional normalization [see George Arfken, Mathematical Methods for Physicists (1985)], it can be shown that

$$
f_{\ell-1}+f_{\ell+1}=\frac{2 \ell+1}{x} f_{\ell}(x), \quad \ell f_{\ell-1}-(\ell+1) f_{\ell+1}=(2 \ell+1) \frac{d f_{\ell}}{d x},
$$

or

$$
\frac{d}{d x}\left[x^{\ell+1} f_{\ell}(x)\right]=x^{\ell+1} f_{\ell-1}(x), \quad \frac{d}{d x}\left[x^{-\ell} f_{\ell}(x)\right]=x^{-\ell} f_{\ell+1}(x)
$$

where f_{ℓ} can be any of $j_{\ell}, n_{l}, h_{\ell}^{(1)}, h_{\ell}^{(2)}$. These two recurrence relations in turn lead back to the differential equation. Induction on ℓ leads to the Rayleigh formulas,

$$
j_{\ell}(x)=(-1)^{\ell} x^{\ell}\left(\frac{1}{x} \frac{d}{d x}\right)^{\ell} j_{0}(x), \quad n_{\ell}(x)=(-1)^{\ell} x^{\ell}\left(\frac{1}{x} \frac{d}{d x}\right)^{\ell} n_{0}(x)
$$

Applied for $\ell=1$ and $\ell=2$, these give

$$
\begin{aligned}
j_{1}(x)=\frac{\sin x}{x^{2}}-\frac{\cos x}{x}, & n_{1}(x)=-\frac{\cos x}{x^{2}}-\frac{\sin x}{x} \\
j_{2}(x)=\left(\frac{3}{x^{3}}-\frac{1}{x}\right) \sin x-\frac{3}{x^{2}} \cos x, & n_{2}(x)=-\left(\frac{3}{x^{3}}-\frac{1}{x}\right) \cos x-\frac{3}{x^{2}} \sin x .
\end{aligned}
$$

From the Rayleigh expressions it is easy to extract limiting behaviors: For $x \ll l$, the solutions behave as

$$
j_{\ell} \approx \frac{2^{\ell} \ell!}{(2 \ell+1)!} x^{\ell}=\frac{x^{\ell}}{(2 \ell+1)!!}, \quad n_{\ell} \approx-\frac{(2 \ell)!}{2^{l} \ell!} x^{-(\ell+1)}=-\frac{(2 \ell-1)!!}{x^{\ell+1}}
$$

and for $x \gg \ell$,

$$
j_{\ell} \sim \frac{1}{x} \sin \left(x-\frac{\ell \pi}{2}\right), \quad n_{\ell} \sim-\frac{1}{x} \cos \left(x-\frac{\ell \pi}{2}\right), \quad h_{\ell}^{(1)} \sim(-i)^{\ell+1} \frac{e^{i x}}{x}
$$

Plots of j_{0} through j_{4} and n_{0} through n_{4} appear on the following page.

Spherical Bessel functions $j_{\ell}(x)$

Spherical Neumann functions $n_{\ell}(x)$

