
Spherical Bessel Functions

Spherical Bessel functions, j`(x) and n`(x), are solutions to the differential equation
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Also useful are the combinations h
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For ` = 0, the solutions are
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From the series solution, with the conventional normalization [see George Arfken, Mathe-

matical Methods for Physicists (1985)], it can be shown that
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where f` can be any of j`, nl, h
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` . These two recurrence relations in turn lead back to

the differential equation. Induction on ` leads to the Rayleigh formulas,
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Applied for ` = 1 and ` = 2, these give
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From the Rayleigh expressions it is easy to extract limiting behaviors: For x � l, the

solutions behave as
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Plots of j0 through j4 and n0 through n4 appear on the following page.
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Spherical Bessel functions j`(x)

Spherical Neumann functions n`(x)


