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Analytical results for the velocity distribution, mass flow
rate, pressure gradient, wall shear stress, and vorticity
in mixed electroosmotic/pressure driven flows are pre-
sented for two-dimensional straight channel geometry. We
particularly analyze the electric double-layer (EDL) region
near the walls and define three new concepts based on
the electroosmotic potential distribution. These are the
effective EDL thickness, the EDL displacement thickness,
and the EDL vorticity thickness. We show that imposing
Helmholtz-Smoluchowski velocity at the edge of the EDL
as the velocity matching condition between the EDL and
the bulk flow region is incomplete under spatial bulk flow
variations across the finite EDL. However, the Helmholtz-
Smoluchowski velocity can be used as the appropriate slip
velocity on the wall. We discuss the limitations of this
approach in satisfying the global conservation laws.

Recent developments in microfabrication technologies have
enabled a variety of miniaturized fluidic systems, which can be
utilized for medical, pharmaceutical, defense, and environmental
monitoring applications. Examples of such applications are drug
delivery,1 DNA analysis/sequencing systems,2 and biological/
chemical agent detection sensors on microchips. Along with the
necessary sensors and electronic units, these devices include
various fluid handling components such as microchannels, pumps,3

and valves. Utilization of electrokinetic body forces in microfluidic
design can revolutionize various fluid handling applications, since
it will be possible to build flow control elements with nonmoving
components.

The electrokinetic effects were first discovered by Reuss4 in
1809 from an experimental investigation on porous clay, which
was followed by experiments of Wiedmann.5 In 1879, Helmholtz
developed the electric double-layer (EDL) theory, relating the
electric and flow parameters for electrokinetic transport. The case
of EDL thickness being much smaller than the channel dimen-

sions was analyzed by von Smoluchowski, who also derived a
velocity slip condition for electroosmotically driven flows.6 Elec-
troosmotic flows in thin two-dimensional slits and thin cylindrical
capillaries were analyzed by Burgreen and Nakache7 and Rice and
Whitehead,8 respectively. In 1952, Overbeek proposed the irro-
tationality condition of internal electrosomotic flows for arbitrarily
shaped geometry.9 This was followed by the ideal electroosmosis
concept of Cummings et al., who showed similarity between the
electric and the velocity fields under some specific outer field
boundary conditions.10,11 In the past decade, there have been
numerous theoretical,12,13 numerical,14-17 and experimental18,19

studies on electrokinetic microflows.
Microchannels are one of the primary components of microf-

luidic systems. Motivated by the development of fluid handling
devices with nonmoving components, in this paper, we study the
combined electroosmotic/pressure driven flows in straight two-
dimensional channels. Our analysis is particularly important for
small, yet finite electric double-layer applications, where the distance
between the two walls of a microfluidic device is about 1-3 orders
of magnitude larger than the electric double layer. This is
commonly observed in channel dimensions of 10 µm or less,
depending on the ionic concentration. Currently, it is possible to
build microchannels with 1 µm or smaller dimensions. For
example, Chen et al.20 recently built an electrokinetic pump with
dimensions of 40 mm × 1 mm × 1 µm. Although it may be very
difficult to perform pointwise measurements in micrometer and
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submicrometer scales, the drive for further miniaturization
requires study of finite Debye layer effects.

This paper is organized as follows: We first present an analytic
solution for the electroosmotic potential distribution and describe
an effective EDL thickness by concentrating on the near-wall
region. We then present the governing equations for fluid flow
and obtain analytic solutions for the fluid velocity, pressure, and
shear stress from the streamwise momentum equation. This is
followed by a discussion of the limitations of the appropriate
velocity slip boundary conditions for simplified engineering
analysis. Finally, we present our conclusions.

ELECTRIC DOUBLE LAYER
The electric double layer is formed due to the interaction of

ionized solution with static charges on dielectric surfaces.21 For
example, a glass surface immersed in water undergoes a chemical
reaction in which a fraction of the surface silanol group SiOH are
changed to SiO- or SiOH2

+, resulting in a net negative or positive
surface potential depending on PH of the electrolyte. This influ-
ences distribution of the ions in the buffer solution, as shown in
Figure 1. The ions of opposite charge cluster immediately near
the wall forming the Stern layer, a layer of typical thickness of
one ionic diameter. The ions within the Stern layer are attracted
to the wall with very strong electrostatic forces, as recently shown
by molecular dynamics studies.22 Immediately after the Stern layer
there forms the electric double layer, where the ion density
variation obeys the Boltzmann distribution, consistent with the
derivation based on statistical mechanical considerations.23 For a
symmetric electrolyte, the electric potential distribution due to
the presence of the EDL is described by the Poisson-Boltzmann
equation21

where the ψ* () ψ/ú) is the electroosmotic potential normalized
with the zeta potential ú, Fe is the net electric charge density, D
is the dielectric constant, and R is the ionic energy parameter
given as

where e is the electron charge, z is the valence, kb is the Boltzmann
constant, and T is the temperature. The variable â relates the ionic
energy parameter R and the characteristic length h to the Debye-
Hückel parameter ω as

where

The Debye length (λ) is a function of the ion density no as given
by eq 4. For aqueous solutions at 25 °C, the ion densities of 1
and 100 mol/m3 correspond to the Debye lengths of λ ) 10 nm,
and λ ) 1 nm, respectively.

For our analysis, we consider a two-dimensional channel as
shown in Figure 2. We assume that the zeta potential ú is known,
and it remains constant along the channel. Under these conditions,
eq 1 is simplified in the following form:

where η ) y/h and h is the half channel height. Multiplying both
sides of this equation by 2(dψ*/dη), and integrating with respect
to η, the following relation is obtained:7

where both the electric potential and its spatial gradient at point
η are represented as a function of the electric potential at the
channel center (i.e., ψc

/ ) ψη)0
/ ).

An analytical solution of eq 5 was obtained by Burgreen and
Nakache7 in terms of a first-kind elliptic integral for finite EDL
thickness, where the two channel walls may interact with each
other. Their work presents the potential distribution as a function
of the Debye length λ and the ionic energy parameter R. In ref
24, we have shown with extensive numerical simulations that for
R g 1 and λ , h the electric potential in the middle of the channel
is practically zero. When ψc

/ ) 0, the last term in eq 6 is
simplified. Hence, using the identity cosh(p) ) 2 sinh2(p/2) + 1,
eq 6 can be integrated once more. This results in the following

(21) Probstein, R. F. Physiochemical Hydrodynamics: An Introduction; Wiley and
Sons: New York, 1994.

(22) Lyklema, J.; Rovillard, S.; Coninck, J. D. J. Surf. Colloids 1994, 14 (20),
5659-5663.

(23) Feynman, R. P.; Leighton, R. B.; Sands, M. The Feynman Lectures on Physics;
Addison-Wesley: Reading, MA, 1977.

(24) Dutta, P.; Warburton, T. C.; Beskok, A. Proc. ASME 1999, MEMS 1, 467-
474.

Figure 1. Schematic diagram of the electric double layer (EDL) next
to a negatively charged solid surface. Here ψ is the electric potential,
ψo is the surface electric potential, ú is the zeta potential, and y′ is
the distance measured from the wall.
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form, as shown earlier by Hunter:25

where η* is the normalized distance from the wall (i.e., η* ) 1 -
|η|).

NEAR-WALL POTENTIAL DISTRIBUTION
In this section, we present the potential distribution as a

function of the near-wall parameter ø ) y′ω, where y′ ) h - y is
the distance from the wall and ω is the Debye-Hückel parameter
given by eq 4. Since ωh ) (Râ)1/2, the near-wall scaling parameter
(ø) and the nondimensional distance from the wall (η*) can be
represented in terms of each other (i.e., ø ) (Râ)1/2η*). On the
basis of this, eq 7 can be simplified as

It is clear that the inner layer scaling of the potential distribution
is independent of â for λ , h. In Figure 3 we present the near-
wall potential distribution ψ* as a function of ø for several R values.
We observe that the electroosmotic potential decays to zero with
increased ø for all these cases. We quantify this decay by
presenting a logarithmic plot of the electroosmotic potential in

the near-wall region as a function of ø in Figure 4. A careful
examination of Figure 4 shows exponential decay of the electroos-
motic potential with slope -1 for ø > 2. This result can be easily
verified by expanding eq 8 for ø > 2, where tanh(R/4) e 1, and
exp(-ø) , 1. Under these conditions

which was also shown earlier by Hunter.25

GOVERNING EQUATIONS FOR FLUID FLOW
The electroosmotic flow is generated when an external electric

field (EB ) - ∇φ) is applied in the presence of the EDL. This
external electric field interacts with the electric double layer and
creates the electrokinetic body force on the bulk fluid. The motion
of ionized, incompressible fluid with electroosmotic body forces
is governed by the incompressible Navier-Stokes equations:

where P is the pressure, VB ) (u, v) is a divergence free velocity
field (∇‚VB ) 0) subject to no-slip boundary conditions on the walls,
and Ff is the fluid density. Here Fe is determined from eq 1. The
externally imposed electric potential (φ) is governed by

where σ is the conductivity and the electric potential is subject to
the insulating boundary conditions (∇φ‚nb ) 0) on the walls. The
ú is assumed to be uniform on all surfaces, and Newtonian fluid
with uniform properties is assumed throughout the flow.

ANALYSIS FOR CHANNEL FLOWS
In this section, we analyze the mixed electroosmotic/pressure

driven flows in straight microchannels. We assume that the
channel height h is much smaller than the channel width W (i.e.,

(25) Hunter, R. J. Zeta Potential in Colloid Science: Principles and Applications;
Academic Press: New York, 1981.

Figure 2. Schematic view of the elecroosmotic flow between two
parallel plates. The external electric field is indicated by EB.

Figure 3. Electrosmotic potential distribution within the electric
double layer as a function of the inner-layer scale ø ) ωy′.

ψ*(η*) ) 4
R

tanh-1[tanh(R
4) exp(- xRâη*)] (7)

ψ* ) 4
R

tanh-1[tanh(R
4) exp(-ø)] (8)

Figure 4. Logarithmic scaling of ψ* variation as a function of the
inner-layer scale ø.

ψ*(ø) =
4
R

tanh(R
4) exp(-ø) (9)
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∇‚(σ∇φ) ) 0 (11)
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h , W). Hence, the flow can be treated as two-dimensional as
shown in Figure 2. We also assume fully developed, steady flow
with no-slip boundary conditions.

The streamwise momentum equation is given by

where u is the streamwise velocity and Ex ) -dφ/dx. Using eq 1
for Fe, we obtain

This equation is “linear”, and hence we can decompose the
velocity field into two parts:

where uPois corresponds to the pressure driven channel flow
velocity (i.e., plane Poiseuille flow) and uelec is the electroosmotic
flow velocity. Analysis of eq 13 in the absence of the pressure
gradients results in balance between the viscous diffusion terms
and the electroosmotic forces, which leads to the Helmholtz-
Smoluchowski electroosmotic velocity uHS:21

where M is the mobility (M ) úD/4πµ).
We nondimensionalize eq 13 and present the nondimensional

streamwise momentum equation:

where U ) u/uHS, P* ) P/(µuHS/h), and ê ) x/h. Here pressure
is normalized by the viscous forces, rather than the dynamic head,
consistent with the Stokes flow formulation.

In the case of zero net pressure gradient, one can easily
integrate eq 15 to obtain,

which was shown earlier by Burgreen and Nakache.7

In the limit of small, yet finite Debye layers the electroosmotic
potential ψ* decays very fast within the thin electric double layer
and a uniform “pluglike” velocity profile is obtained in most of
the channel. The plug flow behavior has been observed in various
experiments.26-28

For the mixed electroosmotic/pressure driven flows, we use
the superposition principle for linear equations and obtain the
following nondimensional velocity profile.

where dP*/dê corresponds to the pressure gradient in the mixed
electroosmotic/pressure driven flow regime. We can substitute
the solution for ψ* from eq 7 to obtain an analytical formula for
the velocity distribution. In Figure 5 we show velocity profiles for
various pressure gradients. The case for dP*/dê ) 0 corresponds
to a pure “pluglike flow”, and the cases dP*/dê < 0 and dP*/dê
> 0 correspond to flows with favorable and adverse pressure
gradients, respectively.

The velocity profiles shown in Figure 5 correspond to R ) 1
and â ) 10 000. This is an example of 0.1 mM aqueous solution
in glass channel with ú of 25.4 mV. The Debye length estimated
by eq 4 is 30 nm, and hence, the channel height is ∼6.0 µm.
Alternatively, for 1 mM concentration, the Debye length becomes
10 nm, which corresponds to a 2-µm channel height. In the
dimensional examples given above, as well as from the normalized
solution shown in Figure 5, it is apparent that the Debye layer effects
in such small dimensions are finite. Hence, the presence of the
EDL cannot be totally neglected. For example, the velocity
distribution within the EDL will result in a flow rate defect, if the
bulk flow is assumed to extend up to the wall. This flow rate defect
is analogous to the boundary layer displacement thickness in fluid
mechanics.

To obtain the mass flow rate, we must integrate the velocity
and, hence, the electroosmotic potential distribution across the
channel (See eq 17). This can be cumbersome in the η-coordinate
system, where ψ* is a function of both R and â. However, in the
ø-coordinate system, ψ* is only a function of R. Hence, we define
the electric double-layer displacement thickness δ* in analogy to the

(26) Molho, J. M.; Herr, A. E.; Desphande, M.; Gilbert, J. R.; Garguilo, M. G.;
Paul, P. H.; John, P. M.; Woudenberg, T. M.; Connel, C. Proc. ASME
(MEMS) 1998, 66, 69-76.

(27) Paul, P. H.; Garguilo, M. G.; Rakestraw, D. J. Anal. Chem. 1998, 70, 2459-
2467.

(28) Herr, A. E.; Molho, J. I.; Santiago, J. G.; Mungal, M. G.; Kenny, T. W.;
Garguilo, M. G. Anal. Chem. 2000, 72, 1053-1057.
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d2ψ
dy2 (13)
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uHS ) -MEx ) -úDEx/4πµ ) -
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µ
(14)

∂P*
∂ê

) ∂
2U

∂η2 + d2ψ*
dη2 (15)

U(η) ) 1 - ψ*(η) (16)

Figure 5. Velocity distribution in mixed electroosmotic/pressure
driven flows under various values of the streamwise pressure gradient
dP*/dê. The dP*/dê ) 0 corresponds to a “pluglike flow”. The results
are plotted for R ) 1 and â ) 10 000 using eq 17.

U(η) ) - 1
2

dP*
dê

(1 - η2) + 1 - ψ*(η) (17)
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boundary layer displacement thickness in fluid mechanics in the
following form:

where ø̂ is a large enough distance that includes variations of ψ*
as observed from Figure 3. For example, ø̂ = 10 is sufficient to
accurately define the δ*. Typical values of δ* as a function of R
are presented in Table 1. The physical meaning of δ* is the
volumetric flow rate defect due to the velocity distribution within
the EDL.

Integration of the ψ* term in eq 17 is performed by using eq
18, where

The resulting volumetric flow rate per channel width, normalized
by uHSh becomes

Since most of the microfluidic experiments are performed by
imposing a certain amount of pressure drop along the microchan-
nel, one can use eq 19 to correlate the volumetric flow rate with
the imposed pressure drop. Also, for applications with specified
volumetric flow rate, one can obtain the resulting pressure
variation along the channel.

We find the shear stress on the wall for the mixed pressure/
electroosmotically driven flow region by differentiating eq 17 with
respect to η and utilizing eq 6. This results in

where the shear stress is normalized with µuHS/h. This is an
implicit exact relation under the assumptions of our analysis, which
require ψc

/. Assuming that ψc
/ ) 0 (valid for R g 1 and λ , h), we

find an approximate relation for the normalized shear stress:

The first term on the right-hand side is due to the variation of
velocity within the EDL, and the second term is due to the
parabolic velocity profile of the bulk flow.

For infinitesimally small EDL, Overbeek9 and Cummings et
al.11 have independently shown the similarity between the exter-
nally applied electric field and the bulk flow field, under certain
conditions. According to this similarity, the bulk flow is a potential
flow. Since the potential flows are irrotational, the bulk flow
vorticity is zero. The vorticity (Ω ) ∇ × VB) shows fluid rotation,
and it is twice the local angular velocity. In “pure electroosmotic
flows”, the matching condition between the bulk flow region and
the EDL region is usually modeled by the Helmholtz-Smolu-
chowski electroosmotic velocity (eq 14).

For finite EDL, we would like to quantify the penetration of
EDL vorticity to the bulk flow region. This is important to
characterize the interface and the matching conditions between
the EDL and the bulk flow region. A relationship for fluid vorticity
can be obtained by differentiating U with respect to η, since the
cross-flow velocity component V ) 0, everywhere in the channel

Vorticity due to the pressure driven flow, given by the first term,
is trivial. However, the vorticity component due to the electroos-
motic “plug flow” is present within the EDL, and its value needs
to be quantified. For this purpose, we concentrate only on the
electroosmotic vorticity (assuming dP*/dê ) 0) and utilize eq 6
in the ø-coordinate system

Using the identity cosh(p) ) 2 sinh2(p/2) + 1, we simplify the
above equation as

The variation of dψ*/dø as a function of ø is shown in Figure 6
for various R values. Exponential decay of the electroosmotic flow
vorticity with slope of -1 is observed for ø > 2. This can be
verified analytically. Since for ø g 2, ψ* , 1, and sinh(Rψ*/2) =

Rψ*/2. Hence, we get

This is a very interesting result, as both the electroosmotic
potential and its derivative decays exponentially for ø g 2. A close
observation of Figure 6 for ø < 0.5 shows that the rate of decay
of dψ*/dø is faster than exponential for R > 1.

Besides the EDL displacement thickness δ*, we define two
additional parameters, in analogy to the boundary layer theory.
The first one is the effective EDL thickness (δ99), defined as the
distance from the wall in terms of λ, where the electroosmotic
potential decays to 1% of its original value. For pure electroosmotic
flows, the velocity reaches 99% of its pure plug flow value at this

Table 1. Variation of the EDL Displacement Thickness
δ*, the Effective EDL Thickness δ99, and the EDL
Vorticity Thickness Ω99 as a Function of the Ionic
Energy Parameter ra

R

1 3 5 7 10

δ* 0.98635 0.89156 0.75670 0.62702 0.47731
δ99 4.5846 4.4390 4.2175 3.9852 3.6756

Ω99 4.5846 4.439 4.2176 3.9854 3.6760

a The values of δ*, δ99, and Ω99 are given in terms of the Debye
length λ.

δ* ) ∫0

ø̂
ψ* dø (18)

∫-1

1
ψ* dη ) 2∫0

1
ψ* dη ) 2

xRâ
∫0

ø̂
ψ* dø ) 2δ*

xRâ

Q̇ ) - 2
3

dP*
dê

+ 2(1 - δ*
xRâ) (19)

τw
/ ) xâ

Rx2 cosh(R) - 2 cosh(Rψc) - dP*
dê

(20)

τw
/ ) xâ

Rx2 cosh(R) - 2 - dP*
dê

(21)

Ω ) - dU
dη

) - dP*
dê

η + dψ*
dη

(22)

dψ*
dø

) (1
R) [2 cosh(Rψ*) - 2]1/2 (23)

dψ*
dø

) 2
R

sinh(Rψ*
2 ) (24)

dψ*
dø

= ψ* (25)
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point. Another implication of the effective EDL thickness is
discussed in the EDL/Bulk Flow Interface Velocity Condition
section. The values of δ99 are presented as a function of the ionic
energy parameter R in Table 1. One can calculate the value of δ99

in terms of the η* coordinates by dividing the value of δ99 given
in Table 1 by (Râ)1/2. Finally, the dimensional value of the effective
EDL thickness can be found by multiplying δ99 with the Debye
length (λ). For R ) 1 and â ) 10 000, using the earlier dimensional
examples of 6-µm channel height with 0.1 mM concentration
corresponds to δ99 ) 137 nm. Hence, δ99 is 4.5% of the channel
half-height, a portion significantly large, yet too small to be
resolved by the current experimental techniques.

We also define an electric double-layer vorticity thickness Ω99 as
the distance from the wall (in terms of λ) when the nondimen-
sional vorticity is reduced to Ω ) 0.01. Such a definition may
become useful in identifying the boundary between the finite EDL
and the bulk flow region, based on vorticity. Here, using the Ω99

concept, we define the distance from the wall, where the irrota-
tionality condition can be (approximately) imposed. Typical values
of Ω99 as a function of R are given in Table 1 in terms of λ.
Comparing the values of Ω99 and δ99 in Table 1, we notice that
these two quantities are approximately the same.

Since both the vorticity and the electroosmotic potential decay
exponentially with ø (for ø g 2), we could have used alternative
cutoff distances (beyond 1% variation) in definition of the effective
EDL and EDL vorticity thickness. Especially, the irrotational flow
conditions will be satisfied better for smaller vorticity magnitudes
than 1% of the EDL maximum vorticity. More restrictive definitions
can be produced by using δ99 and Ω99 values given in Table 1
and adding loge(10) = 2.3 to δ99 and Ω99 values for every additional
10-fold decrease. This is due to the exponential decay of both ψ*
and dψ*/dø shown in Figures 4 and 6.

EDL/BULK FLOW INTERFACE VELOCITY
CONDITION

In this section, we present the velocity matching condition
between the EDL and the bulk flow regions for mixed electroos-
motic/pressure driven flows. The interface velocity condition is

important in order to assess the interaction of high-vorticity fluid
in the EDL with vorticity of the bulk flow under various conditions.
The commonly accepted interface matching condition described
by the Helmholtz-Smoluchowski velocity (eq 14) will not be
adequate to describe this interaction properly for small yet finite
EDL thickness. A similar situation also exists in the regions of
complex geometries, where the EDL thickness is comparable to
the radius of curvature of the domain.

Our analysis assumes that the velocity near the surface can
be decomposed into two components: one due to the electroos-
motic effects, and the other due to the pressure driven bulk flow.
Utilization of the Helmholtz-Smoluchowski velocity (eq 14) as
the “matching condition” at one Debye length (λ) away from the
wall is incomplete for the following two reasons. First, such a
matching condition should be implemented at the effective EDL
thickness (δ99λ), which is considerably larger than the Debye
length predicted by the inverse Debye-Hückel parameter. The
second limitation arises due to the variation of bulk velocity across
the small yet finite EDL.

If we examine the velocity distribution at the edge of the EDL
in Figure 7, it is clear that the matching velocity changes with
the velocity gradient of the bulk flow region. Hence, the appropri-
ate velocity matching condition (umatch) at the edge of the EDL (y
) δ99λ) should become

where ∂u/∂y|w corresponds to the bulk flow gradient obtained on
the wall. The appropriate matching distance is taken to be the
effective EDL thickness (δ99λ). Equation 26 in normalized form
becomes

Figure 6. Variation of dψ*/dø as a function of the inner-layer scale
ø for various R values. This also corresponds to the vorticity variation
within the electric double layer for “pure electroosmotic” flows.

Figure 7. Magnified view of the velocity distribution in a mixed
electroosmotic/pressure driven flow near a wall for R ) 1 and â )
10 000. Extrapolation of the velocity using a parabolic velocity profile
with constant slip value UHS on the wall are shown by the dashed
lines. The analytical solution is shown by the solid lines. If one
chooses to implement a matching condition at the edge of the EDL
(δ99λ), the appropriate slip condition is given by eq 27.

umatch ) λδ99
∂u
∂y

|w + uHS (26)
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Here, the first term in eq 27 corresponds to a Taylor series
expansion of bulk flow velocity at the edge of the EDL from the
wall. Equation 27 is analogous to slip velocity in rarefied gas
flows.29 The analytical results in Figure 7 are for R ) 1 and â )
10 000, which corresponds to 0.1 mM buffer solution in a 6-µm
glass channel, with δ99 ) 4.58λ ) 0.137 µm. It is noteworthy to
mention that, for finite Debye layers with large bulk flow gradients,
the velocity matching conditions using eq 27 will give considerable
deviations from the Helmholtz-Smoluchowski prediction.

ELECTROOSMOTIC SLIP CONDITION
The electroosmotic forces are concentrated within the EDL,

which has an effective thickness in the order of 100-1 nm. On
the other hand, the microchannels utilized for many laboratory
on a chip applications have a typical height of 100-1 µm. This
2-5 orders of magnitude difference in the EDL and the channel
length scales is a great challenge in numerical simulation of
electroosmotically driven microflows. Therefore, it is desired to
develop a unified slip condition, which incorporates the EDL effects
by specifying an appropriate velocity slip condition on the wall.
Examining Figure 7 and eq 27, it is seen that the bulk velocity
field extended onto the wall has a constant slip value equivalent
to uHS. Hence, the appropriate slip condition on the wall is the
Helmholtz-Smoluchowski velocity uHS, even for finite EDL
thickness conditions.

For a general numerical algorithm, implementation of slip
velocity uHS on the walls overpredicts the volumetric flow rate, since
the velocity distribution within the EDL is neglected. This flow
rate error can be corrected by subtracting 2δ*/(Râ)1/2 (in
nondimensional form) using the EDL displacement thickness δ*
given in Table 1. For engineering applications with R ) 1 and â
) 10 000, corresponding to 0.1 mM buffer solution in a 6-µm glass
channel, the error in the conservation of mass equation due to
this slip condition is ∼4.5%.

In regard to the errors in the momentum equation, neglecting
shear stresses due to the velocity distribution within the EDL,
given by eq 21, will be in gross error. However for steady Stokes
flows, the total drag force can be predicted using a control volume
analysis and imposing Newton’s second law within the entire
control volume. This requires proper inclusion of the electrokinetic
body forces. For example, the drag force can be predicted in
numerical simulations at the postprocessing stage, by first solving
the flow system with the slip condition and then calculating the
over all drag by approximating the electroosmotic body forces
concentrated on the domain boundaries.

Approximate Evaluation of Drag Force due to the Elec-
trokinetic Effects. The drag force acting on a control volume
due to the electrokinetic effects can be expressed as

Substituting Fe from the Poisson-Boltzmann equation and EB )

-∇φ we obtain

where n, l, and s are the normal, streamwise, and spanwise
coordinates, respectively, and dV ) dn ds dl. This volume integral
is complicated to evaluate in general. However, some simplifica-
tions can be made when λ/h , 1. Also, for a general complex
geometry, we further assume that the radius of curvature R is
much larger than the Debye length λ. The latter condition is
required to exclude application of the forthcoming procedure in
the vicinity of sharp corners. On the basis of these assumptions,
∇2ψ can be approximated to be d2ψ/dn2. Also, ∂φ/∂n = 0 across
the entire EDL, which is approximately valid due to the small EDL
thickness and the no-penetration boundary condition of the
externally applied electric field on the surfaces. This enables us
to separate the volume integral in eq 29 into the following two
components

where L and W are the streamwise and spanwise length of the
domain, respectively. Also, for a general geometry, we assumed
the separation distance between the two surfaces to be 2h. The
second integral in the above equation can be obtained in the
postprocessing stage, by solving the electrostatic problem. Nu-
merical solution for the first integral requires resolution of the
EDL region, which requires enhanced near-wall resolution and
results in the numerical stiffness. However, this integral can be
evaluated analytically in the following form:

Hence, the entire drag force can be evaluated as

Finally, our approach is acceptable, since the velocity profiles are
approximated reasonably well using the slip condition. Since the
EDL and corresponding electroosmotic body forces are not
resolved in solution of the momentum equation, the numerical
stiffness of the problem is reduced. The pressure drop in the
system is imposed by either the inlet and outlet pressure
conditions or the specified flow rate. The drag force due to the
electrokinetic effects can be calculated in the postprocessing stage,
under the approximation of decoupling the directions of the
electroosmotic and externally applied electric field potentials. This
approach is valid for λ/h , 1 and λ/R , 1.

CONCLUSIONS
Motivated by the development of microscale fluid handling

mechanisms with nonmoving components, we analyzed mixed
(29) Beskok, A.; Karniadakis, G. E. Microscale Thermophys. Eng. 1999, 3 (1),

43-77.

Umatch ) ( δ99

xRâ) ∂U
∂η

|w + UHS (27)

FBB ) ∫CV
FeEB dV (28)

FBB ) ∫CV
ε∇2ψ[∂φ∂n

ebn + ∂φ

∂l
ebl + ∂φ

∂s
ebs] dV (29)

FBB ) ε[∫0

2h d2ψ
dn2 dn] ∫0

W∫0

L[∂φ∂l
ebl + ∂φ

∂s
ebs] dl ds (30)

∫0

2h d2ψ
dn2 dn ) ∫0

2h
ddψ

dn
) ú

h[dψ*
dη ]-1

1
)

2ú
hxâ

Rx2 cosh(R) - 2 (31)

2ε
ú
hxâ

Rx2 cosh(R) - 2 ∫0

W∫0

L[∂φ∂l
ebl + ∂φ

∂s
ebs] dl ds (32)
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electroosmotic/pressure driven flows in two-dimensional straight
channels, by assuming constant ú, constant buffer concentration,
and steady Newtonian flow. Our analysis have resulted in the
following:

1. The electroosmotic potential distribution ψ* is a function
of the ionic energy parameter R only, when represented in terms
of the near wall coordinate ø ) ωy′.

2. We defined an effective EDL thickness (δ99) as a function of
the ionic energy parameter R and have shown that the effects of
the EDL are mainly confined to a zone ø e δ99.

3. We defined an EDL vorticity thickness (Ω99) as a function of
the ionic energy parameter R and have shown that the vorticity
of the fluid within the EDL is confined (mostly) to a zone ø e

Ω99.
4. For ø g 2, both the electroosmotic potential (ψ*) and its

first space derivative (dψ*/dη) decay exponentially with slope of
-1 as a function of ø.

5. There is a mass flow rate defect due to the velocity distribution
within the EDL. We quantified this defect as the EDL displacement
thickness δ*, in analogy to the boundary layer displacement
thickness in fluid mechanics.

6. Analytical solutions for the mass flow rate, pressure gradient,
wall shear stress, and vorticity in mixed electroosmotic/pressure

driven flows are presented.
7. We have shown that utilization of the Helmholtz-Smolu-

chowski velocity (eq 14) as the matching condition between the
bulk flow and EDL is incomplete for mixed electroosmotic/
pressure driven flows.

8. Helmholtz-Smoluchowski velocity becomes the appropriate
slip condition, if it is imposed on the wall. However, this creates
a difficulty in obtaining the drag force due to the electroosmotic
body forces. We have shown that the drag force can be obtained
in the postprocessing stage in an arbitrary complex geometry as
along as λ , h and λ , R.
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