

1

2

What is the most probable number for the sum of two dice?							
36 possibilities		1	2	3	4	5	6
6 times - for 7	1	2	3	4	5	6	7
	2	3	4	5	6	7	8
	3	4	5	6	7	8	9
	4	5		7	8	9	10
	5	6	7	8		10	11
	6				10		12

3

Deterministic vs. stochastic

Deterministic model - the output is completely determined by given conditions.

Stochastic model - randomness is imbedded when the output cannot be predicted exactly but only as a probability.
Example: thermal motions, radiative decay, ...
Monte Carlo methods can be used for solving both stochastic and (complex) deterministic problems.

Monte Carlo methods may solve previously intractable problems by providing generally approximate solutions.

MC methods can be easier to implement comparing to analytical or numerical solutions.

History - why the method is called Monte Carlo method? Stanislaw Ulam, John von Neumann, Nicholas Metropolis,

4

The Law of Large Numbers

The Law of Large Numbers is the foundation of MC methods: "The results obtained from performing a large number of trials should be close to the expected value. And it will become closer to the true expected value, the more trials you perform."

5

Application

\qquad

- Physical sciences (both classical and quantum systems)
- Engineering (complex systems) \qquad
- Risk management
- Finance and business \qquad
- Search and rescue
- Cryptography \qquad
- Optimization
- ... and many more! \qquad
\qquad
\qquad
Library of congress: search - books/printed material

"Monte Carlo method"	1691 results
"Monte Carlo simulation"	640 results
"Monte Carlo physics"	445 results

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
7

8

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
9

10

11

ropical Review	
Continuum variational and diffusion quantum Monte Carlo calculations	
	- Three-dimensional electron gas [2-5]. - Two-dimensional electron gas [$6-9]$.
	- The equation of state and other properties of liquid ${ }^{3} \mathrm{He}[10,11]$. - Structure of nuclei [12]. - Pairing in ultra-cold atomic gases [13-15]. - Reconstruction of a crystalline surface [16] and molecules on surfaces [17, 18]. - Quantum dots [19]. - Band structures of insulators [20-22]. - Transition metal oxide chemistry [23-25]. - Optical band gaps of nanocrystals [26, 27]. - Defects in semiconductors [28-30]. - Solid-state structural phase transitions [31]. - Equations of state of solids [32-35]. - Binding of molecules and their excitation energies [36-40].

13

14

Random sequences.

We define a sequence $r_{1}, r_{2} \ldots$ as random if there are no correlations among the numbers. Yet being random does not mean that all the numbers in the sequence are equally likely to occur.
If all the numbers in a sequence are equally likely to occur, then the sequence is called uniform.
Note that $1,2,3,4, \ldots$ is uniform but not random.
Furthermore, it is possible to have a sequence of numbers that, in some sense, are random but have very short-range correlations among themselves, for example, $r_{1},\left(1-r_{1}\right), r_{2},\left(1-r_{2}\right), r_{3},\left(1-r_{3}\right), \ldots$
Mathematically, the likelihood of a number occurring is described by a distribution function $P(r)$, where $P(r) d r$ is the probability of finding r in the interval $[r, r+d r]$.
A uniform distribution means that $P(r)=a$ constant.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

15

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
16

17

Hardware

Many devices based on physics
nature > scientific reports > articles > article
Open Access | Published: 04 April 2017
640-Gbit/s fast physical random number generation \qquad using a broadband chaotic semiconductor laser
Limeng Zhang, Biwei Pan, Guangcan Chen, Lu Guo, Dan Lu, Lingiuan Zhao \boxminus \& Wei Wang
Scientific Reports 7, Article number: $\mathbf{4 5 9 0 0}$ (2017) | Cite this article
36 Citations | Metrics

\qquad
\qquad
\qquad
Truvanac
\qquad
18

Software - pseudo Random Number Generators

- By their very nature, computers are deterministic devices and so cannot create a random sequence.
Computed random number sequences must contain correlations and in this way cannot be truly random.
- if we know a computed random number r_{m} and its preceding elements, then it is always possible to figure out r_{m+1} Therefore, computers are said to generate pseudorandom numbers.
- While more sophisticated generators do a better job at hiding the correlations, experience shows that if you look hard enough or use pseudorandom numbers long enough, you will notice correlations.

19

Good Random Number Generators

Two most important issues: \qquad

1. randomness
2. knowledge of the distribution.

Other (still very important) issues

1. long period
2. independent of the previous number
3. produce the same sequence if started with same initial conditions (seed value) \qquad
4. fast
\qquad

20

Basic techniques for RNG

The standard methods of generating pseudorandom numbers use \qquad modular reduction in congruential relationships.
Two basic techniques for generating uniform random numbers: \qquad

1. congruential methods
2. feedback shift register methods.

For each basic technique there are many variations. \qquad

The standard random-number generator on computers generates uniform distributions between 0 and 1 .
In other words, the standard random-number generator outputs numbers in this interval, each with an equal probability yet each independent of the previous number.
\qquad
\qquad
\qquad

\qquad
22

23

\qquad
\qquad
\qquad
\qquad
25

Other Linear Congruential Generators

- Multiple Recursive Generators \qquad many versions including "Lagged Fibonacci"
- Matrix Congruential Generators \qquad
- Add-with-Carry, Subtract-with-Borrow, and Multiply -with-Carry Generators \qquad
\qquad
\qquad
\qquad

26

\qquad
\qquad
\qquad
\qquad
\qquad
28

1. Plot it.

Plots: Your visual cortex is quite refined at recognizing patterns and will \qquad tell you immediately if there is one in your random numbers

- 2D figure, where x_{i} and y_{i} are from two random sequences \qquad (parking lot test)
- 3D figure $\left(\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}, \mathrm{z}_{\mathrm{i}}\right)$ \qquad
- 2D figure for correlation $\left(x_{i}, x_{i+k}\right)$ (sure, there is a problem here)

\qquad
\qquad
\qquad

29

2. k-th moment

k-th momentum (if the numbers are distributed uniformly) \qquad
$\left\langle x^{k}\right\rangle=\frac{1}{N} \sum_{i=1}^{N} x_{i}^{k} \simeq \int_{0}^{1} \mathrm{~d} x x^{k} P(x) \simeq \frac{1}{k+1}+O\left(\frac{1}{\sqrt{N}}\right)$ \qquad

If the formula above holds for your generator, then you know that the distribution is uniform.

If the deviation varies as $1 / \sqrt{N}$, then you also know that the distribution is random because the $1 / \sqrt{N}$ result derives from assuming randomness.
\qquad
\qquad
\qquad
\qquad

3. Near-neighbor correlation

Taking sums of products for small k :
\qquad
$C(k)=\frac{1}{N} \sum_{i=1}^{N} x_{i} x_{i+k}, \quad(k=1,2, \ldots)$
$\frac{1}{N} \sum_{i=1}^{N} x_{i} x_{i+k} \simeq \int_{0}^{1} \mathrm{~d} x \int_{0}^{1} \mathrm{~d} y x y P(x, y)=\int_{0}^{1} \mathrm{~d} y x y=\frac{1}{4}$.
If the formula above holds for your random numbers, then you know that they are uniform and independent.

If the deviation varies as $1 / \sqrt{N}$, then you also know that the distribution is random.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

31

Test Suites (most known) for RNG*
the NIST Test Suite (NIST, 2000) includes sixteen tests
\qquad http://csrc.nist.gov/groups/ST/toolkit/rng/index.html
"DIEHARD Battery of Tests of Randomness (eighteen tests) https://en.wikipedia.org/wiki/Diehard tests

TestU01: includes the tests from DIEHARD and NIST and several other tests that uncover problems in some \qquad generators that pass DIEHARD and NIST http://simul.iro.umontreal.ca/testu01/tu01.html

32

Standard RNG in C++

\#include <cstdlib>	library
srand(seed)	is used to initialize the RNG
rand()	returns a pseudo random integer in the range 0 to RAND_MAX RAND_MAX $=32767$

```
Generating integer random numbers in a range i1 - i2:
random_i = i1 + (rand()%(i2-i1+1));
a better method to do the same
random_i = i1 + int(1.0*(i2-i1+1)*rand()/(RAND_MAX-1.0));
Generating real random numbers between 0.0 and 1.0
drandom = 1.0*rand()/(RAND_MAX-1);
```

Example: srand and rand in $\mathrm{C}++$		3

34

Example: cont. for float

/* generate random numbers between 0.0 and 1.0 */
\#include <iostream>
\#include <iomanip>
\#include <iomanip>
\#include <cstdlib>
\#include <cmath>
\#include <cmath>
\#include <ctime>
using namespace std;
int main ()
int nmax $=10$; /*generate 10 random number*/
double drandom;
cout.precision(4); $\quad d=0.0357$
cout.setf(ios::fixed | ios::showpoint);
srand(4567); /* initial seed value */
for (int $i=0 ; i<n m a x ; i=i+1)$
drandom = 1.0*rand()/(RAND_MAX-1); cout << "d = " << drandom << endl;
system("pause")
return 0;
$d=0.7331$
$d=0.8495$
$d=0.8495$
$d=0.6552$
$d=0.6552$
$d=0.1480$
$d=0.1480$
$d=0.9866$
$d=0.9866$
$d=0.8528$
$d=0.3752$ $d=0.3467$ $d=0.3467$
$d=0.7425$

35

36

37

38

39

Software for RNG

C/C++, Fortran, Python, ..
provide built-in uniform random number generators (but for $\mathrm{C}++$ the period is just $2^{31}-1$)
but ... except for small studies, some of these built-in generators should be avoided.

ATTENTION!
Mersenne Twister* is, by far, today's most popular pseudorandom number generator. It is used by every widely distributed mathematical software package. USE IT!

Period of the generator is $2^{19937}-1$

* developed in 1997 by Makoto Matsumoto and Takuji Nishimura

40

Mersenne Twister - RNG in C++
Use an implementation of the Mersenne Twister 19337 algorithm built in
<random> header in C++
// Create Random Number Generator
random_device rd;
// Used for random seed to generator
mt19937_64 mt(rd());
// Initialize Mersenne twister implementation
uniform_real_distribution<double> dist($x l$, xr);
// Set a real uniform distribution over the desired range

41

Mersenne Twister - Python and MatLab

\qquad

Python
In Python, ran dom.random() the Mersenne Twister generator.
The best one you can find rather than write your own.
To initialize a random sequence, you need to plant a seed in it. In Python, the statement random.seed(None) seeds the generator with the system time.

MatLab

In MatLab, rng('default') is the Mersenne Twister generator.
To initialize a random sequence use rng('shuffle') to use seed as current time.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
43

\qquad
\qquad
\qquad

44

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Methods to generate non-uniform distributions

Principal idea: Generating non-uniform random number distributions with a uniform random number generators

Useful methods:

- The transformation method
- The rejection method
- Metropolis algorithm (importance sampling)
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
46

1. The transformation method

The method is based on fundamental property of probabilities. \qquad
Consider a collection of variables $\left\{x_{1}, x_{2}, \ldots\right\}$ that are distributed according to the function $P_{x}(x)$. Then, the probability to find a value you that lies between x and $x+d x$ is $P_{x}(x) d x$.

If y is a function of x as $y(x)$, then $\left|P_{x}(x) d x\right|=\left|P_{y}(y) d y\right|$, where $P_{y}(y)$ is the probability distribution for $\left\{y_{1}, y_{2}, \ldots\right\}$.

For $P_{x}=$ constant $=C$ we have

$$
\frac{d x}{d y}=\frac{P_{y}(y)}{C} \quad x=\int P_{y}(y) d y=F(y)
$$

Then the non-uniform distribution is the inverse function

$$
y(x)=F^{-1}(x)
$$

47

Example 1

1. The Poisson distribution

$$
P_{y}(y)=\exp (-y)
$$

Then $x=\int e^{-y} d y=e^{-y}, \quad y=-\ln x$
Thus for a uniform distribution x_{i} we have $y_{i}=-\ln x_{i}$, and the resulting sequence y_{i} should obey the Poisson distribution

Example 2

Gaussian distribution is not so easy to derive but here the answer from Box and Muller (Box-Muller method)

$$
\left.y(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-1} \frac{1\left(f^{x-\mu}\right.}{\sigma}\right)^{2}
$$

Let x_{1} and x_{2} are two independent samples chosen from the uniform distribution on the unit interval $(0,1)$ then

$$
y_{1}=\mu+\sigma \sqrt{-2 \ln x_{1}} \cos \left(2 \pi x_{2}\right) \text { or } y_{2}=\mu+\sigma \sqrt{-2 \ln x_{1}} \sin \left(2 \pi x_{2}\right)
$$

49

2. The rejection method (von Neuman rejection)

However, very often analytical solutions are not known for the transformation method.
\qquad

Such situations can be treated by using the rejection method.
Steps:

1. Generate two random numbers x_{i} on $\left[x_{a}, x_{b}\right]$ and y_{i} on $\left[y_{c}, y_{d}\right]$
2. If $y_{i} \leq w\left(x_{i}\right)$ accept y_{i} If $y_{i}>w\left(x_{i}\right)$ reject y_{i}
3. Then y_{i} so accepted will have the $w(x)$ distribution

50

Example: $w(x)=\exp \left(-x^{2}\right)$

```
double w(double);
int main ()
int nmax = 50000
    double xmin=0.0, xmax=2.0, ymin, ymax;
    double x, y;
    ymax = w(xmin);
    ymin = w(xmax);
    srand(time(NULL)); 
    { x = xmin + (xmax-xmin)*rand()/(RAND_MAX+1);
        y = ymin + (ymax-ymin)*rand()/(RAND_MAX+1)
        if (y > w(x)) continue;
        file_3 << " " << x << endl; /* output to a file */
    }
return
}/* Probability distribution w(x) */
    double w(double x)
{ return exp(0 0-1 0***x);
```

51

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
52

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
53

\qquad
\qquad

3. The Metropolis method

The Metropolis method is a special case of an importance sampling.
Assume that we want to generate random variables $\left\{x_{1}, x_{2}, \ldots\right\}$
according to $p(x)$. The Metropolis algorithm produces a random walk of points $\left\{x_{i}\right\}$ whose asymptotic probability distribution approaches $p(x)$.
$P(x)$
M-new random

if $\mu \leqslant r$ scapt
if $\mu>r$ seject
$x_{t}=x_{i}+\delta(2 \cdot$ rand -1$)$
rand $=$ uniform in $[0,1]$
$(2$. rand -1$)=$ uniform in $[-1,1]$

55

The algorithm

1. Choose a trial position $x_{\text {trial }}=x_{i}+\delta_{i}$ where
$\delta_{i}=\delta(2 * r n g-1)$ is a random number in the interval $[-\delta,+\delta]$.
2. Calculate $r=p\left(x_{\text {trial }}\right) / p\left(x_{i}\right)$
a) If $r \geq 1$ accept the step and let $x_{i+1}=x_{\text {trial }}$
b) If $r<1$ generate a random number μ between 0 and 1

If $\mu \leq r$ accept the step and $x_{i+1}=x_{\text {trial }}$
ii. If $\mu>r$ reject the step

How do we choose a good step size δ ?

- If δ is too large, only a small fraction of trail steps will be accepted. If δ is too small, a large fraction of trail steps will it be accepted, but the sampling of the function will be inefficient.
A rough orientation for the magnitude of δ - about a half steps should be accepted.

Also - how to chose x_{1} ? Start at x where $p(x)$ is a maximum.
56

