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Monte Carlo method I
A. Godunov

1. What is Monte Carlo method?
2. Uniform random number generators (RNG)
3. Non-uniform random number generators 
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Part 1: 

What is Monte Carlo method?
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What is the most probable number 
for the sum of  two dice?

36 possibilities

6 times – for 7

31211109876
111098765
10987654
9876543
8765432
7654321
654321
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Deterministic vs. stochastic 

Deterministic model – the output is completely determined by given 
conditions. 

Stochastic model – randomness is imbedded when the output cannot 
be predicted exactly but only as a probability. 
Example: thermal motions, radiative decay, …

Monte Carlo methods can be used for solving both stochastic and 
(complex) deterministic problems. 

Monte Carlo methods may solve previously intractable problems by 
providing generally approximate solutions.

MC methods can be easier to implement comparing to analytical or 
numerical solutions.

History – why the method is called Monte Carlo method?
Stanislaw Ulam, John von Neumann, Nicholas Metropolis, … 4
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The Law of Large Numbers

The Law of Large Numbers is the foundation of MC methods: “The 
results obtained from performing a large number of trials should be 
close to the expected value. And it will become closer to 
the true expected value, the more trials you perform.”
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Application

• Physical sciences (both classical and quantum systems)

• Engineering (complex systems)

• Risk management

• Finance and business

• Search and rescue 

• Cryptography

• Optimization

• … and many more!
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Enormous number of applications

Library of congress: search - books/printed material

“Monte Carlo method”  1691 results

“Monte Carlo simulation”  640 results

“Monte Carlo physics”   445 results
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Just … quantum Monte Carlo calculations

Review paper …
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Part : 2

Random Number Generators (RNG)
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Random sequences.

We define a sequence 𝑟!,𝑟# …	 as random if there are no correlations 
among the numbers. Yet being random does not mean that all the 
numbers in the sequence are equally likely to occur. 

If all the numbers in a sequence are equally likely to occur, then the 
sequence is called uniform. 
Note that 1,2,3,4,… is uniform but not random.

Furthermore, it is possible to have a sequence of numbers that, in 
some sense, are random but have very short-range correlations among 
themselves, for example, 𝑟! , 1 − 𝑟! , 𝑟# , 1 − 𝑟# , 𝑟$ , 1 − 𝑟$ , …

Mathematically, the likelihood of a number occurring is described by a 
distribution function 𝑃(𝑟), where 𝑃(𝑟)𝑑𝑟 is the probability of finding 𝑟 in 
the interval [𝑟, 𝑟 + 𝑑𝑟]. 

A uniform distribution means that 𝑃(𝑟) 	= 	𝑎	constant. 
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Sources of Random Numbers

• Tables (in the past)

• Hardware (external sources of random numbers – generates 
random numbers from a physics process).

• Software (source of pseudorandom numbers)
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Tables …

A Million Random Digits with 
100,000 Normal Deviates 
by RAND  
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00000   10097 32533  76520 13586  34673 54876  80959 09117  39292 74945
00001   37542 04805  64894 74296  24805 24037  20636 10402  00822 91665

00002   08422 68953  19645 09303  23209 02560  15953 34764  35080 33606
00003   99019 02529  09376 70715  38311 31165  88676 74397  04436 27659
00004   12807 99970  80157 36147  64032 36653  98951 16877  12171 76833

00005   66065 74717  34072 76850  36697 36170  65813 39885  11199 29170
00006   31060 10805  45571 82406  35303 42614  86799 07439  23403 09732

00007   85269 77602  02051 65692  68665 74818  73053 85247  18623 88579
00008   63573 32135  05325 47048  90553 57548  28468 28709  83491 25624
00009   73796 45753  03529 64778  35808 34282  60935 20344  35273 88435

00010   98520 17767  14905 68607  22109 40558  60970 93433  50500 73998
00011   11805 05431  39808 27732  50725 68248  29405 24201  52775 67851
00012   83452 99634  06288 98083  13746 70078  18475 40610  68711 77817

00013   88685 40200  86507 58401  36766 67951  90364 76493  29609 11062
00014   99594 67348  87517 64969  91826 08928  93785 61368  23478 34113
.....

17

Hardware

Many devices based on physics …
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Software – pseudo Random Number Generators

• By their very nature, computers are deterministic devices and so 
cannot create a random sequence. 
Computed random number sequences must contain correlations and 
in this way cannot be truly random. 

• if we know a computed random number 𝑟%  and its preceding 
elements, then it is always possible to figure out 𝑟%&! . 
Therefore, computers are said to generate pseudorandom numbers. 

• While more sophisticated generators do a better job at hiding the 
correlations, experience shows that if you look hard enough or use 
pseudorandom numbers long enough, you will notice correlations. 
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Good  Random Number Generators

Other (still very important) issues

1. long period

2. independent of the previous number

3. produce the same sequence if started with same initial conditions 
(seed value)

4. fast

Two most important issues:
1. randomness
2. knowledge of the distribution.
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Basic techniques for RNG

The standard methods of generating pseudorandom numbers use 
modular reduction in congruential relationships. 

Two basic techniques for generating uniform random numbers: 
1.    congruential methods
2.    feedback shift register methods. 
For each basic technique there are many variations.

The standard random-number generator on computers generates 
uniform distributions between 0 and 1. 
In other words, the standard random-number generator outputs 
numbers in this interval, each with an equal probability yet each 
independent of the previous number. 
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Linear Congruent Method for a uniform RNG

The linear congruent or power residue method is the common way 
of generating a pseudorandom sequence of numbers
 0 ≤ 	 𝑟' ≤ 	𝑀	 − 1	over the interval [0, 𝑀 − 1]. 

starting value x0 is called “seed”

coefficients  a and c should be chosen very carefully
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the method was suggested by D. H. Lehmer in 1948
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Example:

a=4, c=1, M=9, x1=3 
x2 = 4
x3 = 8
x4 = 6
x5-10 = 7, 2, 0, 1, 5, 3

MMbbMb
Mcaxx ii

*)/int(),mod(
),mod( 1

-=
+= -

interval: 0-8, i.e. [0,M-1]
period:   9 i.e. M numbers  (then repeat)

23

24

Magic numbers for Linear Congruent Method

M (length of the sequence) must be quite large

However there must be no overflow
(therefore for 32 bit machines M=231 » 2*109)

Good “magic” number for linear congruent method 
(for 32 bit machine):

a = 16,807, c = 0, M = 2,147,483,647
for c = 0 “multiplicative congruential generator”:

),mod( 1 Mcaxx ii += -

24
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Random Numbers on interval [A,B]

Scale results from xi on [0,M-1] to yi on [0,1]

Scale results from xi on [0,1] to yi on [A,B]

ii xABAy )( -+=

)1/( -= Mxy ii
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Other Linear Congruential Generators

• Multiple Recursive Generators
many versions including “Lagged Fibonacci”

• Matrix Congruential Generators

• Add-with-Carry, Subtract-with-Borrow, and Multiply -with-Carry 
Generators
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Other Generators

• Nonlinear Congruential Generators

• Feedback Shift Register Generators

• Generators Based on Cellular Automata

• Generators Based on Chaotic Systems

• …

James E. Gentle – “Random Number Generation and Monte 
Carlo Methods

Second edition - 2004
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Attention!

Before using a random-number generator in your programs, you 
should check its range and that it produces numbers that “look” 
random. 

Assessing Randomness and Uniformity 

1. plots

2. k-th moment of a distribution

3. near-neighbor correlation 
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1. Plot it.

Plots: Your visual cortex is quite refined at recognizing patterns and will 
tell you immediately if there is one in your random numbers 

§ 2D figure, where xi and yi are from two random sequences 
(parking lot test)

§ 3D figure (xi, yi, zi)

§ 2D figure for correlation (xi, xi+k) (sure, there is a problem here)
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2. k-th moment

k-th momentum (if the numbers are distributed uniformly)

If the formula above holds for your generator, then you know that the 

distribution is uniform. 

If the deviation varies as ⁄1 𝑁, then you also know that the distribution 

is random because the ⁄1 𝑁	 result derives from assuming 

randomness.

30
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3. Near-neighbor correlation

Taking sums of products for small k: 

If the formula above holds for your random numbers, then you know that 
they are uniform and independent. 

If the deviation varies as ⁄1 𝑁, then you also know that the distribution 

is random. 
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Test Suites (most known) for RNG*

the NIST Test Suite (NIST, 2000) includes sixteen tests
http://csrc.nist.gov/groups/ST/toolkit/rng/index.html

“DIEHARD Battery of Tests of Randomness (eighteen tests)
https://en.wikipedia.org/wiki/Diehard_tests

TestU01: includes the tests from DIEHARD and NIST and 
several other tests that uncover problems in some 
generators that pass DIEHARD and NIST
http://simul.iro.umontreal.ca/testu01/tu01.html
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Standard RNG in C++

#include <cstdlib> library

srand(seed)               is used to initialize the RNG

rand()   returns a pseudo random integer in
                the range 0 to RAND_MAX.
                 RAND_MAX = 32767

Generating integer random numbers in a range i1 – i2:

random_i = i1 + (rand()%(i2-i1+1));

a better method to do the same

random_i = i1 + int(1.0*(i2-i1+1)*rand()/(RAND_MAX-1.0));

Generating real random numbers between 0.0 and 1.0

drandom = 1.0*rand()/(RAND_MAX-1);
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// generate integer random numbers between i1 and i2
#include <iostream>
#include <cstdlib>
#include <cmath>
#include <ctime>
using namespace std;

int main ()
{
  int nmax=10;          /* generate 10 random numbers*/
  int i1=1, i2=6, irandom;
  srand (123);          /* initial seed */
//srand(time(NULL)); // better to "randomize" seed values 

  for (int i=0; i < nmax; i=i+1)
  {
   irandom = i1+rand()%(i2-i1+1);number between i1 & i2*/
   cout << " " << irandom << endl;
  }
  system("pause");
  return 0;
}

Example: srand and rand in C++
3

 4
 6
 1
 6
 2
 6
 3
 5
 3
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/* generate random numbers between 0.0 and 1.0 */
#include <iostream>
#include <iomanip>
#include <cstdlib>
#include <cmath>
#include <ctime>
using namespace std;
int main ()
{
  int nmax = 10;    /*generate 10 random number*/
  double drandom;
  cout.precision(4);
  cout.setf(ios::fixed | ios::showpoint); 

  srand(4567); /* initial seed value */
  for (int i=0; i < nmax; i=i+1)
  {
      drandom = 1.0*rand()/(RAND_MAX-1); 
      cout << "d = " << drandom << endl;
  }
  system("pause");
  return 0;
}

Example: cont. for float

d = 0.0357
d = 0.7331
d = 0.8495
d = 0.6552
d = 0.1480
d = 0.9866
d = 0.8528
d = 0.3752
d = 0.3467
d = 0.7425
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Example
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Example
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Example:

2D distribution for two 
random sequences xi 
and yi 

k-th moment of the 
random number 
distribution

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

two random sequences (parking lot test)

5000 points, 
k-th momentum <x4>=0.1991
near-neighbor correlation = 0.2507 

y(
i)

x(i)

38

39

Example:

2D distribution for 
correlation (xi, xi+5)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

5000 points, 
k-th momentum <x4>=0.1991
near-neighbor correlation = 0.2507 

correlation test

x(
i+

5)

x(i)
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Software for RNG

C/C++, Fortran, Python, … 
provide built-in uniform random number generators (but for C++ the period 
is just 231-1)

but … except for small studies, some of these built-in generators should 
be avoided.

ATTENTION!
Mersenne Twister* is, by far, today's most popular pseudorandom number 
generator. It is used by every widely distributed mathematical software 
package. USE IT!

Period of the generator is 219937−1

* developed in 1997 by Makoto Matsumoto and Takuji Nishimura 
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Mersenne Twister -  RNG in C++

Use an implementation of the Mersenne Twister 19337 algorithm built in 
<random> header in C++
// Create Random Number Generator
random_device rd;    
// Used for random seed to generator

mt19937_64 mt(rd()); 
// Initialize Mersenne twister implementation

uniform_real_distribution<double> dist(xl, xr); 
// Set a real uniform distribution over the desired range
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Mersenne Twister -  Python and MatLab

Python

In Python, ran dom.random() the Mersenne Twister generator. 
The best one you can find rather than write your own. 

To initialize a random sequence, you need to plant a seed in it. 
In Python, the statement random.seed(None) seeds the generator with the 
system time.

MatLab

In MatLab, rng('default’) is the Mersenne Twister generator. 

To initialize a random sequence use rng('shuffle’)  to use seed as current 
time.

42
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*Random number generator attacks and defenses

Modern cryptography requires high quality RNG. 

Cryptographic attacks that exploit weaknesses in RNGs are known 
as random number generator attacks.
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Part : 3

Non-uniform Random Number Generators
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Non-uniform distributions

Most situations in science and engineering demand using random 
numbers with non-uniform distributions

Examples:

• Radioactive decay (characterized by a Poisson distribution)

• Gauss distribution

• experiments with different types of distributions

• And many more …

45

46

Methods to generate non-uniform distributions

Principal idea: Generating non-uniform random number distributions 
with a uniform random number generators

Useful methods:

• The transformation method

• The rejection method

• Metropolis algorithm (importance sampling)
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1. The transformation method

The method is based on fundamental property of probabilities.

Consider a collection of variables {𝑥! , 𝑥# , … } that are distributed 
according to the function 𝑃((𝑥). Then, the probability to find a value you 
that lies between 𝑥 and 𝑥 + 𝑑𝑥 is 𝑃( 𝑥 𝑑𝑥.

If 𝑦 is a function of 𝑥 as 𝑦(𝑥), then 𝑃( 𝑥 𝑑𝑥 = 𝑃) 𝑦 𝑑𝑦 , where 𝑃) 𝑦  is 
the probability distribution for {𝑦! , 𝑦# , … }.

For 𝑃( = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 = 𝐶 we have

𝑑𝑥
𝑑𝑦

=
𝑃) 𝑦
𝐶

, 	 𝑥 = B 𝑃) 𝑦 𝑑𝑦 = 𝐹 𝑦

Then the non-uniform distribution is the inverse function

𝑦 𝑥 = 𝐹*!(𝑥)
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Example 1
1. The Poisson distribution

𝑃) 𝑦 = exp(−𝑦)

Then 𝑥 = ∫ 𝑒*)𝑑𝑦 = 𝑒*) , 	 𝑦 = − ln 𝑥

Thus for a uniform distribution 𝑥'  we have 𝑦' = − ln 𝑥' ,	and the resulting 
sequence 𝑦'  should obey the Poisson distribution
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Example 2
Gaussian distribution is not so easy to derive but here the answer from 
Box and Muller (Box-Muller method)

𝑦 𝑥 =
1

𝜎 2𝜋
𝑒*

!
#
(*+
,

-

Let 𝑥!  and 𝑥#  are two independent samples chosen from the uniform 
distribution on the unit interval 0, 1  then

	 𝑦!= 𝜇 + 𝜎 −2 ln 𝑥! cos(2𝜋𝑥#) 	or	 𝑦# = 𝜇 + 𝜎 −2 ln 𝑥! sin(2𝜋𝑥#)
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2. The rejection method (von Neuman rejection)

However, very often analytical solutions are not known for the 
transformation method. 

Such situations can be treated by using the rejection method.

Steps: 

1. Generate two random numbers
𝑥'  on [𝑥. , 𝑥/ ] and 𝑦'  on 𝑦0 , 𝑦1

2. If 𝑦' ≤ 𝑤 𝑥'  accept 𝑦'  
If 𝑦' > 𝑤 𝑥'  reject 𝑦'  

3. Then 𝑦'  so accepted will have 
the 𝑤 𝑥  distribution
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double w(double);
int main ()
{
 int nmax = 50000; 
 double xmin=0.0, xmax=2.0, ymin, ymax;
 double x, y;
 ymax = w(xmin);
 ymin = w(xmax);
 srand(time(NULL)); 
 for (double i=1; i <= nmax; i=i+1)
  {
      x = xmin + (xmax-xmin)*rand()/(RAND_MAX+1);  
      y = ymin + (ymax-ymin)*rand()/(RAND_MAX+1); 
      if (y > w(x)) continue;
      file_3  << " " << x << endl;   /* output to a file */
  }
return 0;
}
/* Probability distribution w(x) */
    double w(double x)
{
    return exp(0.0-1.0*x*x);
} 

Example: w(x)=exp(-x2)
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calculations
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calculations
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3. The Metropolis method 

The Metropolis method is a special case of an importance sampling.

Assume that we want to generate random variables {𝑥! , 𝑥# , … } 
according to 𝑝 𝑥 . The Metropolis algorithm produces a random walk of 
points {𝑥'} whose asymptotic probability distribution approaches 𝑝 𝑥 .

55
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The algorithm

1. Choose a trial position 𝑥23'.4 = 𝑥' + 𝛿'  where
𝛿' = 𝛿(2 ∗ 𝑟𝑛𝑔 − 1) is a random number in the interval −𝛿, +𝛿 .	

2. Calculate ⁄	𝑟 = 𝑝(𝑥23'.4) 𝑝(𝑥')

a) If 𝑟 ≥ 1 accept the step and let 𝑥'&! = 𝑥23'.4
b) If 𝑟 < 1 generate a random number 𝜇 between 0 and 1
i. If 𝜇 ≤ 𝑟 accept the step and 𝑥'&! = 𝑥23'.4
ii. If 𝜇 > 𝑟 reject the step

How do we choose a good step size 𝛿? 

• If 𝛿 is too large, only a small fraction of trail steps will be accepted.
If 𝛿 is too small, a large fraction of trail steps will it be accepted, but 
the sampling of the function will be inefficient.

A rough orientation for the magnitude of 𝛿 – about a half steps should 
be accepted. 

Also – how to chose 𝑥!? Start at 𝑥 where 𝑝(𝑥) is a maximum.
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Compare the rejection and the Metropolis
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