
8/8/24

1

Monte Carlo method II
A. Godunov

1. Monte Carlo integration

1

Part 1:

Monte Carlo integration

2

Integration

• There are very many sophisticated methods for numerical integration

• Can Monte Carlo approach compete with traditional numerical
methods?

• What can we gain, if anything, by applying “gambling” to integration?

3

There is clearly a problem with nD integration

Example: Integration for a system with 12 electrons.

• 3 ∗ 12 = 36 dimensional integral

• If 64 points for each integration then =64!" points to evaluate

• For 1 Tera Flop computer = 10#! seconds

• That is … 3 times more then the age of the universe!

4

Two methods for MC integration

1. Monte Carlo Integration by “Stone Throwing”
or “hit and miss” method.

2. Mean Value Integration (with many variations).

5

Calculating an area as hit and miss

Imagine that we need to evaluate the area of a circle (or any other
shape)

Let the circle has a radius 𝑅

We draw a square box 2𝑅×2𝑅 that completely encloses
the circle (thus the area of the box if 4𝑅$)

Then we set a counter n=0 and do a loop over N trials

1. We generate two random numbers 𝑥% and 𝑦%

2. If 𝑥%$ + 𝑦%
$ < 𝑅$ then the point is inside the circle and 𝑛 = 𝑛 + 1

Since ⁄𝐴&%'&() 𝐴_(𝑠𝑞𝑢𝑎𝑟𝑒) ~ ⁄𝑛 𝑁 for large enough 𝑁 we have

𝐴&%'&() ≈
𝑛
𝑁
𝐴*+,-') ≈

𝑛
𝑁
4𝑅$

Note: we can even find 𝜋 this way

𝜋 ≈ ⁄4𝑛 𝑁

R

6

8/8/24

2

Example (MatLab): Calculating 𝜋
rng('default') % initilize RNG (default = "Mersenne Twister")
rng('shuffle') % seed using current time
N = 10;
M = 10000000000;
while N < M
k = 0;
for j=1:N
 x = (2.0*rand-1.0);
 y = (2.0*rand-1.0);
 if sqrt(x*x+y*y) < 1.0
 k=k+1;
 end
end
MCpi = (k*4.0)/N;
fprintf(' N = %10i MCpi = %8.6f \n',N,MCpi)
N=N*10;
end

 N = 10 MCpi = 3.600000
 N = 100 MCpi = 3.240000
 N = 1000 MCpi = 3.164000
 N = 10000 MCpi = 3.136800
 N = 100000 MCpi = 3.141080
 N = 1000000 MCpi = 3.140732
 N = 10000000 MCpi = 3.140873
 N = 100000000 MCpi = 3.141517
 N = 1000000000 MCpi = 3.141654

7

1. Integration by rejection or hit and miss

Integral – area under a curve

Compute 𝑁 pairs of random numbers
𝑥% and 𝑦% within the box, namely
as 0.0 ≤ 𝑥% ≤ 2.0, 	 −1.5 ≤ 𝑦% ≤ 1.5
for the area 𝐴 = 2 ∗ 3.

If a point (𝑥% , 𝑦%) is in the blue area
then 𝑛. = 𝑛. + 1
In in the grey area
then 𝑛/ = 𝑛/ + 1

Integral

𝐼 = 𝐴 ∗
𝑛. − 𝑛/

𝑁

8

2. Mean value integration (cont.)

The standard Monte Carlo technique for integration is based on the
mean value theorem

𝐼 = F
-

0

𝑓 𝑥 𝑑𝑥 = 𝑏 − 𝑎 < 𝑓 >

The Monte Carlo integration algorithm uses random points to evaluate
the mean in the integral above.

𝐼 = F
-

0

𝑓 𝑥 𝑑𝑥 ≈ (𝑏 − 𝑎)
1
𝑁
K
%12

3

𝑓 𝑥%

where 𝑥% are uniform random numbers (random sampling) between 𝑎
and 𝑏 (unlike traditional numerical methods where 𝑥% are chosen)

The laws of statistics ensure us that as 𝑁 → ∞, will approach the
correct answer, at least if there were no round-off errors.

9

2. Mean value integration

We can estimate the accuracy of Monte Carlo integration as

𝐼 = F
-

0

𝑓 𝑥 𝑑𝑥 ≈ (𝑏 − 𝑎)
1
𝑁
K
%12

3

𝑓 𝑥% ± Δ𝑆

where

Δ𝑆 = (𝑏 − 𝑎)
𝑓$ − 𝑓 $

𝑁

𝑓 =
1
𝑁
K
%12

3

𝑓 𝑥% , 	 𝑓$ =
1
𝑁
K
%12

3

𝑓$ 𝑥% ,

Error in Monte Carlo integration ~ 2

3

10

Example (MatLab)
rng('default') % reset RNG
rng('shuffle') % use seed as current time
Nmax = 10000;
a = 0.0;
b = pi;
Sint = 0.0;
fav1 = 0.0;
fav2 = 0.0;
for it=1:Nmax
 x = a+(b-a)*rand;
 Sint = Sint + fint(x);

 fav1 = fav1 + fint(x);
 fav2 = fav2 + (fint(x))^2;
end
Sint = Sint*(b-a)/double(Nmax);
fprintf('Nmax = %9i \n', Nmax)

fav1 = fav1/double(Nmax);
fav2 = fav2/double(Nmax);
Serr = (b-a)*sqrt((fav2 - fav1^2)/Nmax);
fprintf('Sint = %9.6f ± %8.6f \n',Sint,Serr)

===
function F = fint(x)
 F = sin(x);
end

Nmax = 10000
Sint = 2.004742 ± 0.009631

F
4

5

sin(𝑥)𝑑𝑥 = 2.0

11

Example: Comparing to other methods

n Trapez. Simpson Monte Carlo
 2 1.570796 2.094395 2.483686
 4 1.896119 2.004560 2.570860
 8 1.974232 2.000269 2.140117
 16 1.993570 2.000017 1.994455
 32 1.998393 2.000001 2.005999
 64 1.999598 2.000000 2.089970
 128 1.999900 2.000000 2.000751
 256 1.999975 2.000000 2.065036
 512 1.999994 2.000000 2.037365
 1024 1.999998 2.000000 1.988752
 2048 2.000000 2.000000 1.989458
 4096 2.000000 2.000000 1.991806
 8192 2.000000 2.000000 2.000583
 16384 2.000000 2.000000 1.987582
 32768 2.000000 2.000000 1.991398
 65536 2.000000 2.000000 1.997360

F
4

5

sin(𝑥)𝑑𝑥 = 2.0

Error in Monte Carlo integration ~ 2

3
, while Simpson ~ 2

36

Is there advantage to use Monte Carlo method?

0 0.5 1 1.5 2 2.5 3 3.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

12

8/8/24

3

Example: Comparing to other methods

n Trapez. Simpson Monte Carlo
 64 0.004360 -0.013151 0.081207
 128 0.001183 -0.001110 0.155946
 256 0.000526 -0.000311 0.071404
 512 0.000368 0.000006 0.002110
 1024 0.000329 0.000161 -0.004525
 2048 0.000319 0.000238 -0.010671
 4096 0.000316 0.000277 0.000671
 8192 0.000316 0.000296 -0.009300
 16384 0.000316 0.000306 -0.009500
 32768 0.000316 0.000311 -0.005308
 65536 0.000316 0.000313 -0.000414
 131072 0.000316 0.000314 0.001100
 262144 0.000316 0.000315 0.001933
 524288 0.000316 0.000315 0.000606
 1048576 0.000316 0.000315 -0.000369
 2097152 0.000316 0.000316 0.000866
 4194304 0.000316 0.000316 0.000330

F
4

5
𝑥

𝑥$ +1cos 10𝑥
$ 𝑑𝑥 = 0.0003156

Very slow convergence for the MC method

0 0.5 1 1.5 2 2.5 3 3.5
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

13

Methods to increase accuracy of MC integration

Accuracy of the method can be improved either by increasing the
number of samples (more points) OR by reducing the variance
Four most common methods for reducing the variance
1. Variance reduction by subtraction

2. Antithetic variates
3. Importance sampling (most efficient method!)

4. Stratified sampling

14

1. Variance reduction by subtraction

If the function being integrated never differs much from its average
value, then the standard Monte Carlo mean value method should work
well with a manageable number of points.

For a function with a large variance (i.e., one that is not “flat”), many of
the evaluations of the function may occur for x values at which the
function is very small - basically, a waste of time.

A variance reduction or subtraction technique - we devise a flatter
function on which to apply the Monte Carlo technique.

Let construct a function 𝑔(𝑥)	with the following properties on [𝑎, 𝑏]:	

1. The function can be evaluated analytically ∫-
0 𝑔 𝑥 𝑑𝑥 = 𝐽

2. And 𝑔(𝑥) is close to 𝑓(𝑥). 𝑓 𝑥 − 𝑔 𝑥 < 𝛿

Then ∫-
0 𝑓 𝑥 𝑑𝑥 = ∫-

0 𝑓 𝑥 − 𝑔 𝑥 𝑑𝑥 + 𝐽

If the variance of 𝑓(𝑥) − 𝑔(𝑥)	less than that of 𝑓	(𝑥),	 then we can obtain
even more accurate answers in less time.

15

2. Antithetic variates

The antithetic variates is based on the concept that 𝑢% and {1 − 𝑢%} are
negatively correlated. (Note that 𝑢% belongs to a uniform random
number distribution between 0 and 1.)

Thus for 𝑥% = 𝑎 + 𝑏 − 𝑎 𝑢% , 𝑥%- = 𝑎 + (𝑏 − 𝑎)(1 − 𝑢%) and the integral

𝐼 = F
-

0

𝑓 𝑥 𝑑𝑥 =
1
2𝑁

K
%12

3

𝑓(𝑥% + 𝑓(𝑥%-))

The advantage of this technique is twofold:

1. It reduces the number of normal samples to be taken

2. It reduces the variance of the sample paths, improving the
precision

16

3. Importance sampling

The objective of the importance sampling is to sample the integrand in
the most important regions. It based on the identity

𝐼 = F
-

0

𝑓 𝑥 𝑑𝑥 = F
-

0
𝑓 𝑥
𝑝 𝑥

𝑝(𝑥)𝑑𝑥 .

The integral can be approximated as

𝐼 =
1
𝑁
K
%12

3
𝑓 𝑥%
𝑝(𝑥%)

where 𝑝(𝑥) is a normalized probability distribution of 𝑥% in [𝑎, 𝑏] interval

F
-

0

𝑝 𝑥 𝑑𝑥 = 1

Note that in the uniform case 𝑝 𝑥 = ⁄1 (𝑏 − 𝑎) .

17

Importance sampling (cont.)

For a given integrand 𝑓(𝑥), we should choose 𝑝(𝑥), such that the
modified integrand ⁄𝑓(𝑥) 𝑝(𝑥) becomes as smooth as possible. The
importance sampling can considerably improve the accuracy.

Example:

F
4

7

𝑥 𝑒/8𝑑𝑥 = 1

Most contributions comes from the origin area (defined by 𝑒/8). Thus,

F
4

7

𝑥 𝑒/8𝑑𝑥 = F
4

7 𝑥𝑒/8

𝑒/8
𝑒/8𝑑𝑥

𝐼 =
1
𝑁
K
%12

3

𝑥%

with 𝑥% from a non-uniform distribution 𝑝 𝑥 = 𝑒/8 (that is already
normalized)

18

8/8/24

4

On the practical side (steps)

1. Choose a function 𝑝(𝑥) so that ⁄𝑓(𝑥) 𝑝(𝑥) is as smooth as possible

2. Normalize 𝑝(𝑥) so that ∫-
0 𝑝 𝑥 = 1

3. Generate a non-uniform distribution of random numbers 𝑥2 , 𝑥$, …
based on 𝑝 𝑥 distribution/function
You can use libraries, or one of methods: transformation, rejection,
or Metropolis method*

4. ATTENTION!
The generated non-uniform distribution of 𝑥2 , 𝑥$, … must be within
the [𝑎, 𝑏] interval (this is the tricky part!)

5. And now you can compute

𝐼 =
1
𝑁
K
%12

3
𝑓 𝑥%
𝑝(𝑥%)

19

Example: ∫a
b𝑒cd! 𝑑𝑥 = 0.746824

1. Sure, it’s natural to sample the integral with 𝑝 𝑥 = 𝑒/8
9
, however

we try to sample with 𝑝 𝑥 = 𝑒/8 .

2. Normalization: ∫4
2 𝑒/8 𝑑𝑥 = 0.63212056, or 𝑝 𝑥 = 1.582𝑒/8

3. We can generate the distribution using the transform method as
𝑥 = − log rand

however in this case we will get 𝑥 between 0 and ∞!

4. Scaling the distribution from 0 and ∞ to [𝑎, 𝑏] where 𝑎 = 0, 𝑏 = 1
using 𝑎 = − log 𝑒/-

𝑥 = − log 𝑒/- + 𝑒/0 − 𝑒/- ∗ 𝑟𝑎𝑛𝑑

5. And finally

𝐼 =
1
𝑁
K
%12

3
𝑒/8:

9

𝑒/8:

20

Calculations

F
4

2

𝑒/8
9
𝑑𝑥 = 0.746824

For two 𝑝 𝑥 = 1 and 𝑝 𝑥 = 1.582𝑒/8 with N=100,000 points

𝑝 𝑥 = 1: Integral=0.746699, Error=0.000636

𝑝 𝑥 = 1.582𝑒/8 Integral=0.746758, Error=0.000174 (using transform)

𝑝 𝑥 = 1.582𝑒/8 Integral=0.747806, Error=0.000176 (using Metropolis)

21

Importance sampling and Metropolis algorithm

While the transform method for generating a non-uniform distribution is superior to
Metropolis method, we often use the later when we don’t have the inverse function

However, in estimating integrals the estimated error using the Metropolis method
is much smaller than the actual error!

The reason is that the {𝑥%} are not statistically independent. The Metropolis
algorithm produces a random walk whose points are correlated with each other
over short times (measured-by the number of steps of the random walker).

The correlation of the points decays exponentially with time. If 𝜏 is the
characteristic time for this decay, then only points separated by approximately 2 to
3𝜏 can be considered statistically independent.

Calculate autocorrelation function 𝐶 𝑗 to see the period

𝐶 𝑗 =
𝑥%.;𝑥% − 𝑥% $

𝑥%$ − 𝑥% $

see more in Gould et al (2006), page 437.

22

4. Stratified sampling

Divide the domain of integration into smaller parts.

23

Multidimensional integration

The mean value integration

F
-

0

F
&

<

𝑓 𝑥, 𝑦 𝑑𝑦𝑑𝑥 ≅ 𝑏 − 𝑎 𝑑 − 𝑐
1
𝑁
K
%12

3

𝑓(𝑥% , 𝑦%)

Errors in integration

Monte Carlo 1D integration ~ 2

3

Monte Carlo nD integration ~ 2

3
 (the same as 1D case!)

Simpson 1D ~ 2

36

Simpson nD ~ 2

36

⁄2 >

Thus at at 𝑛~8, the error in Monte Carlo integration is similar to that of
conventional scheme!

Monte Carlo integration is efficient for multidimensional integration!

24

8/8/24

5

Example:

 N 7D Integral
 8 11.478669
 16 12.632578
 32 13.520213
 64 13.542921
 128 13.263171
 256 13.178140
 512 12.850561
 1024 12.747383
 2048 12.745207
 4096 12.836080
 8192 12.819113
 16384 12.790508
 32768 12.765735
 65536 12.812653
 131072 12.809303
 262144 12.831216
 524288 12.832844

312.8333333)(7
2

72

1

0

1

0

1

0
1

1

0
6

1

0
5

1

0
432

1

0
1 =+++ò ò òòòòò dxxxxdxdxdxdxdxdx 

25

