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Monte Carlo method II
A. Godunov

1. Monte Carlo integration
2. Random walks
3. Stochastic search and optimization
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Part 1: 

Monte Carlo integration

2

Integration

• There are very many sophisticated methods for numerical integration

• Can Monte Carlo approach compete with traditional numerical 
methods? 

• What can we gain, if anything, by applying “gambling” to integration?

3
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There is clearly a problem with nD integration

Example: Integration for a system with 12 electrons.

• 3 ∗ 12 = 36 dimensional integral

• If 64 points for each integration then =64!" points to evaluate

• For 1 Tera Flop computer =  10#! seconds

• That is … 3 times more then the age of the universe!

4
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Two methods for MC integration

1. Monte Carlo Integration by “Stone Throwing” 
or “hit and miss” method.

2. Mean Value Integration (with many variations).

5
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Calculating an area as hit and miss

Imagine that we need to evaluate the area of a circle (or any other 
shape)

Let the circle has a radius 𝑅

We draw a square box 𝑅×𝑅 that completely encloses 
the circle (thus the area of the box if 𝑅$ )

Then we set a counter n=0 and do a loop over N trials

1. We generate two random numbers 𝑥% and 𝑦%

2. If 𝑥%$ + 𝑦%
$ < 𝑅$ then the point is inside the circle and 𝑛 = 𝑛 + 1

Since ⁄𝐴&%'&() 𝐴_(𝑠𝑞𝑢𝑎𝑟𝑒) ~ ⁄𝑛 𝑁 for large enough 𝑁 we have

𝐴&%'&() ≈
𝑛
𝑁
𝐴*+,-') ≈

𝑛
𝑁
4𝑅$

Note: we can even find 𝜋 this way

𝜋 ≈ ⁄4𝑛 𝑁 6

R
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Example (MatLab): Calculating 𝜋
rng('default')  % initilize RNG (default = "Mersenne Twister")
rng('shuffle')  % seed using current time
N = 10;
M = 10000000000;
while N < M
k = 0;
for j=1:N

x = (2.0*rand-1.0);
y = (2.0*rand-1.0);
if sqrt(x*x+y*y) < 1.0

k=k+1;
end

end
MCpi = (k*4.0)/N;
fprintf(' N = %10i   MCpi = %8.6f \n',N,MCpi)
N=N*10;
end

N =         10   MCpi = 3.600000 
N =        100   MCpi = 3.240000 
N =       1000   MCpi = 3.164000 
N =      10000   MCpi = 3.136800 
N =     100000   MCpi = 3.141080 
N =    1000000   MCpi = 3.140732 
N =   10000000   MCpi = 3.140873 
N =  100000000   MCpi = 3.141517 
N = 1000000000   MCpi = 3.141654 7

7

1. Integration by rejection or hit and miss

Integral – area under a curve

Compute 𝑁 pairs of random numbers
𝑥% and 𝑦% within the box, namely 
as 0.0 ≤ 𝑥% ≤ 2.0, −1.5 ≤ 𝑦% ≤ 1.5
for the area 𝐴 = 2 ∗ 3.

If a point (𝑥% , 𝑦%) is in the blue area
then 𝑛. = 𝑛. + 1
In in the grey area
then 𝑛/ = 𝑛/ + 1

Integral 

𝐼 = 𝐴 ∗
𝑛. − 𝑛/

𝑁

8
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2. Mean value integration (cont.)

The standard Monte Carlo technique for integration is based on the 
mean value theorem

𝐼 = E
-

0

𝑓 𝑥 𝑑𝑥 = 𝑏 − 𝑎 < 𝑓 >

The Monte Carlo integration algorithm uses random points to evaluate 
the mean in the integral above.

𝐼 = E
-

0

𝑓 𝑥 𝑑𝑥 ≈ (𝑏 − 𝑎)
1
𝑁
J
%12

3

𝑓 𝑥%

where 𝑥% are uniform random numbers (random sampling) between 𝑎
and 𝑏 (unlike traditional numerical methods where 𝑥% are chosen)

The laws of statistics ensure us that as 𝑁 → ∞, will approach the 
correct answer, at least if there were no round-off errors. 9
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2. Mean value integration

We can estimate the accuracy of Monte Carlo integration as

𝐼 = E
-

0

𝑓 𝑥 𝑑𝑥 ≈ (𝑏 − 𝑎)
1
𝑁
J
%12

3

𝑓 𝑥% ± Δ𝑆

where

Δ𝑆 = (𝑏 − 𝑎)
𝑓$ − 𝑓 $

𝑁

𝑓 =
1
𝑁
J
%12

3

𝑓 𝑥% , 𝑓$ =
1
𝑁
J
%12

3

𝑓$ 𝑥% ,

Error in Monte Carlo integration ~ 2

3
, while Simpson ~ 2

34

10
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Example (MatLab)
rng('default')      % reset RNG
rng('shuffle')      % use seed as current time
Nmax = 10000;
a = 0.0;
b = pi;
Sint = 0.0;
fav1 = 0.0;
fav2 = 0.0;
for it=1:Nmax

x = a+(b-a)*rand;
Sint = Sint + fint(x);

fav1 = fav1 + fint(x);
fav2 = fav2 + (fint(x))^2;

end
Sint = Sint*(b-a)/double(Nmax);
fprintf('Nmax = %9i \n', Nmax)

fav1 = fav1/double(Nmax);
fav2 = fav2/double(Nmax);
Serr = (b-a)*sqrt((fav2 - fav1^2)/Nmax);
fprintf('Sint = %9.6f ± %8.6f \n',Sint,Serr)

===
function F = fint(x)

F = sin(x);
end 11

Nmax =     10000 
Sint =  2.004742 ± 0.009631

E
5

6

sin(𝑥)𝑑𝑥 = 2.0

11

Example: Comparing to other methods

n   Trapez.  Simpson  Monte Carlo
2  1.570796  2.094395  2.483686
4  1.896119  2.004560  2.570860
8  1.974232  2.000269  2.140117
16  1.993570  2.000017  1.994455
32  1.998393  2.000001  2.005999
64  1.999598  2.000000  2.089970
128  1.999900  2.000000  2.000751
256  1.999975  2.000000  2.065036
512  1.999994  2.000000  2.037365
1024  1.999998  2.000000  1.988752
2048  2.000000  2.000000  1.989458
4096  2.000000  2.000000  1.991806
8192  2.000000  2.000000  2.000583
16384  2.000000  2.000000  1.987582
32768  2.000000  2.000000  1.991398
65536  2.000000  2.000000  1.997360

12

E
5

6

sin(𝑥)𝑑𝑥 = 2.0

Error in Monte Carlo integration ~ 2

3
, while Simpson ~ 2

34

Is there advantage to use Monte Carlo method?

12
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Example: Comparing to other methods

n  Trapez.   Simpson   Monte Carlo
64  0.004360 -0.013151  0.081207
128  0.001183 -0.001110  0.155946
256  0.000526 -0.000311  0.071404
512  0.000368  0.000006  0.002110
1024  0.000329  0.000161 -0.004525
2048  0.000319  0.000238 -0.010671
4096  0.000316  0.000277  0.000671
8192  0.000316  0.000296 -0.009300
16384  0.000316  0.000306 -0.009500
32768  0.000316  0.000311 -0.005308
65536  0.000316  0.000313 -0.000414
131072  0.000316  0.000314  0.001100
262144  0.000316  0.000315  0.001933
524288  0.000316  0.000315  0.000606
1048576  0.000316  0.000315 -0.000369
2097152  0.000316  0.000316  0.000866
4194304  0.000316  0.000316  0.000330

13

E
5

6
𝑥

𝑥$ +1cos 10𝑥
$ 𝑑𝑥 = 0.0003156

Very slow convergence for the MC method

13

Methods to increase accuracy of MC integration

Accuracy of the method can be improved either by increasing the 
number of samples (more points) OR by reducing the variance
Four most common methods for reducing the variance
1. Variance reduction by subtraction

2. Antithetic variates
3. Importance sampling (most efficient method!)

4. Stratified sampling

14

14

1. Variance reduction by subtraction

If the function being integrated never differs much from its average 
value, then the standard Monte Carlo mean value method should work 
well with a manageable number of points. 

For a function with a large variance (i.e., one that is not “flat”), many of 
the evaluations of the function may occur for x values at which the 
function is very small - basically, a waste of time. 

A variance reduction or subtraction technique - we devise a flatter 
function on which to apply the Monte Carlo technique. 

Let construct a function 𝑔(𝑥) with the following properties on [𝑎, 𝑏]:

1. The function can be evaluated analytically ∫-
0 𝑔 𝑥 𝑑𝑥 = 𝐽

2. And 𝑔(𝑥) is close to 𝑓(𝑥). 𝑓 𝑥 − 𝑔 𝑥 < 𝛿

Then ∫-
0 𝑓 𝑥 𝑑𝑥 = ∫-

0 𝑓 𝑥 − 𝑔 𝑥 𝑑𝑥 + 𝐽

If the variance of 𝑓(𝑥) − 𝑔(𝑥) less than that of 𝑓 (𝑥), then we can obtain 
even more accurate answers in less time. 

15

15
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2. Antithetic variates

The antithetic variates is based on the concept that 𝑢% and {1 − 𝑢%} are 
negatively correlated. (Note that 𝑢% belongs to a uniform random 
number distribution between 0 and 1.)

Thus for 𝑥% = 𝑎 + 𝑏 − 𝑎 𝑢% , 𝑥%- = 𝑎 + (𝑏 − 𝑎)(1 − 𝑢%) and the integral

𝐼 = E
-

0

𝑓 𝑥 𝑑𝑥 =
1
2𝑁

J
%12

3

𝑓(𝑥% + 𝑓( 𝑥%-))

The advantage of this technique is twofold: 

1. It reduces the number of normal samples to be taken

2. It reduces the variance of the sample paths, improving the 
precision

16

16

3. Importance sampling

The objective of the  importance sampling is to sample the integrand in 
the most important regions. It based on the identity 

𝐼 = E
-

0

𝑓 𝑥 𝑑𝑥 = E
-

0
𝑓 𝑥
𝑝 𝑥

𝑝(𝑥)𝑑𝑥 .

The integral can be approximated as 

𝐼 =
1
𝑁
J
%12

3
𝑓 𝑥%
𝑝(𝑥%)

where 𝑝(𝑥) is a normalized probability distribution of 𝑥% in [𝑎, 𝑏] interval

E
-

0

𝑝 𝑥 𝑑𝑥 = 1

Note that in the uniform case 𝑝 𝑥 = ⁄1 (𝑏 − 𝑎) .
17

17

Importance sampling (cont.)

For a given integrand 𝑓(𝑥), we should choose 𝑝(𝑥), such that the 
modified integrand ⁄𝑓(𝑥) 𝑝(𝑥) becomes as smooth as possible. The 
importance sampling can considerably improve the accuracy.

Example:

E
5

7

𝑥 𝑒/8𝑑𝑥 = 1

Most contributions comes from the origin area (defined by 𝑒/8 ). Thus,

𝐼 =
1
𝑁
J
%12

3

𝑥%

with 𝑥% from a non-uniform distribution 𝑝 𝑥 = 𝑒/8 (that is already 
normalized)  

18

18
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On the practical side (steps)

1. Choose a function 𝑝(𝑥) so that ⁄𝑓(𝑥) 𝑝(𝑥) is as smooth as possible

2. Normalize 𝑝(𝑥) so that ∫-
0 𝑝 𝑥 = 1

3. Generate a non-uniform distribution of random numbers 𝑥2 , 𝑥$ , …
based on 𝑝 𝑥 distribution/function
You can use libraries, or one of methods: transformation, rejection, 
or Metropolis method*

4. ATTENTION!
The generated non-uniform distribution of 𝑥2 , 𝑥$ , … must be within 
the [𝑎, 𝑏] interval (this is the tricky part!)

5. And now you can compute

𝐼 =
1
𝑁
J
%12

3
𝑓 𝑥%
𝑝(𝑥%)

19

19

Example: ∫̀a𝑒bc! 𝑑𝑥 = 0.746824

1. Sure, it’s natural to sample the integral with 𝑝 𝑥 = 𝑒/89, however 
we try to sample with 𝑝 𝑥 = 𝑒/8 .

2. Normalization: ∫5
2 𝑒/8 𝑑𝑥 = 0.63212056, or 𝑝 𝑥 = 1.582𝑒/8

3. We can generate the distribution using the transform method as
𝑥 = − log rand

however in this case we will get 𝑥 between 0 and ∞!

4. Scaling the distribution from 0 and ∞ to [𝑎, 𝑏] where 𝑎 = 0, 𝑏 = 1
using 𝑎 = − log 𝑒/-

𝑥 = − log 𝑒/- + 𝑒/0 − 𝑒/- ∗ 𝑟𝑎𝑛𝑑

5. And finally

𝐼 =
1
𝑁
J
%12

3
𝑒/8:

9

𝑒/8:

20

20

Calculations

E
5

2

𝑒/89 𝑑𝑥 = 0.746824

For two 𝑝 𝑥 = 1 and 𝑝 𝑥 = 1.582𝑒/8 with N=100,000 points

𝑝 𝑥 = 1:  Integral=0.746699, Error=0.000636 

𝑝 𝑥 = 1.582𝑒/8 Integral=0.746758, Error=0.000174 (using transform)

𝑝 𝑥 = 1.582𝑒/8 Integral=0.747806, Error=0.000176 (using Metropolis)

21

21
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Importance sampling and Metropolis algorithm

While the transform method for generating a non-uniform distribution is superior to 
Metropolis method, we often use the later when we don’t have the inverse function

However, in estimating integrals the estimated error using the Metropolis method 
is much smaller than the actual error!

The reason is that the {𝑥%} are not statistically independent. The Metropolis 
algorithm produces a random walk whose points are correlated with each other 
over short times (measured-by the number of steps of the random walker). 

The correlation of the points decays exponentially with time. If 𝜏 is the 
characteristic time for this decay, then only points separated by approximately 2 to 
3𝜏 can be considered statistically independent. 

Calculate autocorrelation function 𝐶 𝑗 to see the period

𝐶 𝑗 =
𝑥%.;𝑥% − 𝑥% $

𝑥%$ − 𝑥% $

see more in Gould et al (2006), page 437.
22

22

4. Stratified sampling

Divide the domain of integration into smaller parts.

23

23

Multidimensional integration

The mean value integration

E
-

0

E
&

<

𝑓 𝑥, 𝑦 𝑑𝑦𝑑𝑥 ≅ 𝑏 − 𝑎 𝑑 − 𝑐
1
𝑁
J
%12

3

𝑓(𝑥% , 𝑦%)

Errors in integration

Monte Carlo 1D integration ~ 2

3

Monte Carlo nD integration ~ 2

3
(the same as 1D case!)

Simpson 1D ~ 2

34

Simpson nD ~ 2

34

⁄2 >

Thus at at 𝑛~8, the error in Monte Carlo integration is similar to that of 
conventional scheme! 

Monte Carlo integration is efficient for multidimensional integration! 24

24
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Example: 

N   7D Integral
8   11.478669
16   12.632578
32   13.520213
64   13.542921
128   13.263171
256   13.178140
512   12.850561
1024   12.747383
2048   12.745207
4096   12.836080
8192   12.819113
16384   12.790508
32768   12.765735
65536   12.812653
131072   12.809303
262144   12.831216
524288   12.832844

25

312.8333333)( 7
2

72

1

0

1

0

1

0
1

1

0
6

1

0
5

1

0
432

1

0
1 =+++ò ò òòòòò dxxxxdxdxdxdxdxdx !

25

Part : 2

Random Walk

26

What is a random walk?

The original statement of a random walk was formulated in the context 
of a drunken sailor. If drunkard begins at the lamp post and takes 𝑁
steps of equal length in random directions, how far will the drunkard be 
from the lamp post? The result is related to the diffusion!

There are very many versions of random walks

Random walks have multiple applications in

• Science: physics, chemistry, biology, … 

• Medicine (in particular, spread of inflectional diseases and effects of 
immunization)

• Engineering

• Economics

• Sociology

• … 27
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Books …

So many!

28

28

29

29

Some of random walks

We will consider some of random walks (in one and/or two dimensions) 
with multiple applications

1) A simple random walk (all directions are equal)

2) A persistent random walk (probability depends on the previous step)

3) A self-avoiding random walk (the same site cannot be occupied twice)

4) A restricted random walk (walls or traps)

5) Correlated random walks (a connection between walkers)

30

30



2/10/22

11

1) A Simple random walk

A simple random walk is a sequence of unit steps where each step is 
taken in the direction of one of the coordinate axis, and each possible 
direction has equal probability of being chosen. 

In one dimension 1D random walk there are two possible directions (left 
and right)

In two dimensions 2D there are four possible directions, e.g., a single 
step starting at the point with integer coordinates (𝑥, 𝑦) would be 
equally likely to move to any of one of the four neighbors
(𝑥 + 1, 𝑦), (𝑥 − 1, 𝑦), (𝑥, 𝑦 + 1) or (𝑥, 𝑦 − 1).

31

31

1D Random simple walk

A particle (the walker) starts at the origin (𝑥 = 0), and then steps (same 
length) are chosen randomly left or right with the same probability. 

After 𝑁 steps a position can be recorded as a function of 𝑁. 

Evaluating the average distance form the starting after many trials would 
give (the result can easily be derived using that each step is random and 
it is independent from a previous step)

< 𝑥 >≈ 0 and < 𝑥$ > ~𝑁.

In many physical processes (such as the motion of a molecule in 
solution), the time between steps is approximately a constant, so that  
number of steps is roughly a proportional to time, then we can write 

< 𝑥$ > ~𝐷𝑡,

where the factor 𝐷 is the diffusion constant.

32

32

1D Random simple walk and diffusion
The one-dimensional diffusion equation can be written as

𝜕𝑝(𝑥, 𝑡)
𝜕𝑡

= 𝐷
𝜕$𝑝(𝑥, 𝑡)
𝜕𝑥$

where 𝐷 is the self-diffusion coefficient, and 𝑝 𝑥, 𝑡 𝑑𝑥 is the probability of 
a particle being in the interval between 𝑥 and 𝑥 + 𝑑𝑥 at time 𝑡.

The solution gives

𝑥$(𝑡) = 2𝐷𝑡

We can see that the random walk method gives the same time 
dependence.

While the diffusion equation can be solved numerically (e.g. Crank-
Nicholson method), it can be very challenging to treat complicated 
boundary conditions. 

Formulating the diffusion problem as a random walk is straightforward to 
incorporate various boundary conditions. 33
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2D Random walks

a) Type1: Simple random walk on a lattice: 
Four directions are possible left, right, up and down with equal 
probability 1/4. 
Same step-size (one random number is needed)

b) Type 2: Random directions but fixed step-size
Choose a random angle 𝜃 in 0.2𝜋 , and set 

𝑥 = ℎ cos 𝜃 , 𝑦 = ℎ sin 𝜃
where ℎ is a fixed step size and 𝜃 is a variable 
angle (one random number is needed 𝜃%

c) Type 3: Random 𝑥% and random 𝑦% : Random step-size 𝑥%
$ + 𝑦%

$ and 

random direction (two random numbers are needed)

34

34

2D Random walk on a lattice (C++)

35

// very simple code
integer*4 iu, it, is, itests, isteps, iway, x, y
real*4 rand, d, dav
read  (*,*) itests, isteps
dav=0.0
do it=1,itests

x=0
y=0
do is=1,isteps

iway= int(0.0+4.0*rand())
if(iway.eq.0) x = x+1
if(iway.eq.1) x = x-1
if(iway.eq.2) y = y+1
if(iway.eq.3) y = y-1

c        write(7,101) x,y
end do
d = sqrt((float(x))**2+(float(y))**2)
dav = dav + d

end do
dav = dav/float(itests)
write(*,100) itests, isteps, dav

35

2D simple random walk

36
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2D simple random walk

37
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Average distance traveled 

The means square distance traveled from the starting point after 𝑁 steps
(averaged over K trials)

< 𝑅$ 𝑁 >=
1
𝐾
J
?12

@

𝑅?$(𝑁)

where 𝑁 is a number of steps.

Root-mean-square distance for a constant step size

𝑅'A* = 𝑅$ 𝑁 ≈ 𝑁

Root-mean-square distance for a variable step size 𝑟%$ = 𝑥%
$ + 𝑦%

$

𝑅'A* ≈ 𝑁𝑟'A*

where 𝑟'A* = 𝑟$ is the root-mean-square step size

38

38

2) Persistent random walk

In a persistent random walk, the transition probability depends on the 
previous step.

One of the earliest applications of a persistent random walk what to the 
study of diffusion in chromatographic  column.

Example for a walk on a lattice:  
A persistent random walk in 2 dimensions in a city with 𝑛×𝑛 blocks. 
Condition: the walker can not step back
Goal: find average number of steps to get out the city. Is it different from 
a simple random walk?

39
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example

40
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3) Self avoiding random walk

Example: using random walk for studying protein growth

Note: A protein is a large biological molecule made up of molecular 
chains (the residues of amino acids). These chains are formed from 
monomers, that is, molecules that bind chemically with other molecules. 

Random walk is perfectly suited for modelling protein grows. 

However, the walk is restricted such that the only positions available 
after each step are the three neighboring sites (if random walk on a 
lattice), with the already-occupied sites excluded 

This is why this technique is known as a self-avoiding random walk.

Attention:  the walk stops when there are no empty neighboring sites 
available. 

41

41

Examples for self avoiding RW on lattice
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Self avoiding random walk

Example: a polymer growth
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Practical application to protein grows

Protein chains consist of (H) and (P) monomers. The actual structure of 
a protein results from a folding process in which random coils of chains 
rearrange themselves into a configuration of minimum energy. 

Simulation: At each step, you randomly choose an H or a P monomer 
and drop it on the lattice, with your choice weighted such that H 
monomers are more likely than P ones. 

The goal of the simulation is to find the lowest energy state of an HP 
sequence of various lengths. 

The energy of a chain is defined as 

𝐸 = −𝜖𝑘

where 𝜖 is a positive constant and 𝑘 is the number of H–H neighbor not 
connected directly (P–P and H–P bonds do not count at lowering the 
energy). 

44
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4) Restricted random walk

Consider a one-dimensional ladies with traps sires at 𝑥 = 0 and 𝑥 =
𝐿 (𝐿 > 0). A walker begins at a site 𝑥5 and takes unit steps to the left and 
right with equal probability. 

When the walker arrives at the trap side, it can no longer move. 

Do a Monte Carlo simulation and verify that the mean number of steps 𝜏
for the particle to be trapped is given by 

𝜏 = 2𝐷 /2𝑥5(𝐿 − 𝑥5)

where 𝐷 is the self-diffusion coefficient in the absence of the traps, and 
the average is over all possible walks.

The problem is relevant to condense-matter physics (energy transport in 
solids)

45
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4) Restricted random walk (more)

Suppose that the trap sites are distributed it random on one dimensional 
lattice with density 𝜌. For example, if 𝜌 = 0.01, the probability that a site is 
a trap site is 1%. 

This site is a trap site if 𝑟 < 𝜌 where, as usual, 𝑟 is uniformly distributed in 
the interval 0 ≤ 𝑟 ≤ 1.

If a walker is placed at random at any non-trapping site, determine its 
mean survival time 𝜏, that is, the mean number of steps before a trap site 
is reached.

Of the major complication is that it is necessary to perform three averages: 
the distribution of traps, the origin of the walker, and the different walks for 
a given trap distribution and origin.

46
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5) Synchronized random walk

Randomly please two walkers on a one-dimensional lattice of 𝐿 site, so 
that both walkers are not at the same site. 

It each time step randomly choose whether the walkers move to the left 
or to the right. Both walkers move in the same direction. 

If a walker cannot move into choosing direction because it is at the 
boundary, then this walker remains at the same side for this time step.

The trail ends when both walkers are the same site. Find the mean time 
for two walkers to reach the same side. 

This model is relevant to a method of doing cryptography using neural 
networks.

47
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Part 3: 

Monte Carlo Optimization

48
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Areas

• Stochastic optimization 
or the problem of local minima.

• Swarm intelligence
or the ant colony optimization

• Genetic algorithms
Use Darwinian evolution of a gene pool 
to find the fittest genes

• Simulated annealing

• and many more …

49

49

Example of  Problems Using Stochastic Search 
and Optimization 

• Minimize the costs of shipping from production facilities to warehouses

• Maximize the probability of detecting an incoming warhead (vs. decoy) 
in a missile defense system

• Place sensors in manner to maximize useful information

• Determine the times to administer a sequence of drugs for maximum 
therapeutic effect

• Find the best red-yellow-green signal timings in an urban traffic network

• Determine the best schedule for use of laboratory facilities to serve an 
organization’s overall interests

50
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Example 1

Find a configuration of 7 particles (interacting by Lenard-Jones potential) 
that has the lowest energy

Initial (random) configuration.                 Final configuration
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Example 1

Find a configuration of 10 particles (interacting by Lenard-Jones potential) 
that has the lowest energy

Initial (random) configuration.                 Final configuration
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Example 1

Find a configuration of 19 particles (interacting by Lenard-Jones potential) 
that has the lowest energy

Initial (random) configuration.                 Final configuration
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Example 2

Solving 1D Schrodinger equation for harmonic oscillator potential
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Example 2

Solving 1D Schrodinger equation for harmonic oscillator potential
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Example 2

Solving 1D Schrodinger equation for Lennard-Jones potential
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Part : 4

Problems for a curious student
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1. Buffon’s needle

The French naturalist and mathematician Comte de Buffon showed that 
the probability that a needle of length L thrown randomly onto a grid of 
parallel lines with distance 𝐷 > 𝐿 apart intersects a line is ⁄2𝐿 (𝐷 ∗ 𝜋)

A part of a code …

58

c*** loop over trials
hit = 0
do it=1,itests
x0 = float(N)*D*rand()   
k = int(x0/D)
x1 = x0 - D*float(k)
x2 = D - x1 
x = min(x1,x2) 
dx = 0.5*abs(L*cos(1.0*pi*rand()))
if(dx.ge.x) hit = hit + 1

end do
c*** average number of hits

ahit = float(hit)/float(itests)
buffon = (2*L)/(pi*D)

58

2. Conditional probability

Suppose that many people in the community tested at random for Covid. 
The accuracy of the test is 87%, and the incidence of the disease in the 
general population, independent of any test, is 1%.

Are you a person test positive for Covid, what is the probability that this 
person really has Covid? 

Comment: the answer is much less than 87%.

59

59

3. The gambler's ruin problem.

Suppose that a person decides to try to increase the amount of money in 
his/her pocket by participating in some gambling. Initially, the gambler 
begin with $m in capital. The gambler decides that he/she will gamble 
until a certain goal, $n (n>m), is achieved or there is no money left 
(credit is not allowed). On each throw of a coin (roll of the dice, etc.) the 
gambler either win $1 or lose $1. If the gambler achieves the goal he/she 
will stop playing. If the gambler ends up with no money he/she is ruined. 

What are chances for the gambler to achieve the goal as a function of k, 
where k=n/m? 

How long on average will it take to play to achieve the goal or to be 
ruined? 

60
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61

write (*,*)'enter numbers of tests, money and goal'
read  (*,*) itests, money1, money2

c*** loop over trials
total = 0
wins = 0
do it=1,itests
x=money1
games=0
do while(x.gt.0.and.x.lt.money2)

games = games + 1
luck = 1
if(rand().le.0.5) luck=-1
x = x+luck

end do
total = total+games
if(x.gt.0) wins = wins+1

end do
c*** average number of games and wins

agames = float(total)/float(itests)
awins = float(wins)/float(itests)
aloose = 1.0-awins

write (*,100) itests, money1, money2
write (*,101) awins, aloose, agames

61
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If a chance to win in each bet 50/50

The gambler`s ruin problem.
Chances to reach certain goal
enter numbers of tests, money and goal
10000
10
100

tests:     10000
initial:      10
goal:        100
win   =   1.026E-01         chance to win is about 10% 
loose =   8.974E-01
games =   9.019E+02
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If a chance to win in each bet 49/51

The gambler`s ruin problem.
Chances to reach certain goal
enter numbers of tests, money and goal
10000
10
100

tests:    100000
initial:      10
goal:        100
win   = 9.44000E-03          chance to win is about 0.9% 
loose = 9.90560E-01
games = 4.51806E+02
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4. Cooking burgers

An industrious physics major finds a job at a local fast food restaurant to help 
him pay his way through college. His task is to cook 20 hamburgers on a grill at 
any one time. When a hamburger is cooked, he is supposed to replace it with 
uncooked hamburger. However, our physics major does not pay attention to 
whether the hamburger is cooked or not. His method is to choose a hamburger 
at random and replace it by an uncooked one. He does not check if the 
hamburger that he removes from the grill is ready. 

What is the distribution of cooking times of the hamburgers that he removes? 

What is a chance for a customer to get a well cooked hamburger if it takes 5 
minutes to cook a hamburger. 

Does the answers to the first two questions change if he cooks 40 hamburgers at 
any one time? 

Comment: For simplicity, assume that he replaces a hamburger at a regular 
interval of 30 seconds and there is an indefinite supply of uncooked hamburgers.

64
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Example

for 100,000 burgers

20 burgers on the grill
max cooking time =   237
undercooked = 0.39941001
well cooked = 0.25903001
over cooked = 0.34156001

40 burgers on the grill
max cooking time =   463
undercooked = 0.22596000
well cooked = 0.18769000
over cooked = 0.58635002
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5. Let’s make a deal

Investigate a simple problem that generated much attention several years ago 
and for which many mathematicians obtained an incorrect solution. The problem 
was the analysis of the optimal strategy in a television game show popular at the 
time. The show was Let’s Make a Deal with host Monty Hall. At some point in the 
show, a contestant was given a choice of selecting one of three possible items, 
each concealed behind one of three closed doors. The items varied considerably 
in value. After the contestant made a choice but before the chosen door was 
opened, the host, who knew where the most valuable item was, would open one 
of the doors not selected and reveal a worthless item. The host would then offer 
to let the contestant select a different door from what was originally selected. 
The question, of course, is should the contestant switch? A popular magazine 
writer Marilyn vos Savant concluded that the optimal strategy is to switch. This 
strategy is counterintuitive to many mathematicians, who would say that there is 
nothing to be gained by switching; that is, that the probability of improving the 
selection is 0.5. Study this problem by Monte Carlo methods. What is the 
probability of improving the selection by switching? Be careful to understand all 
of the assumptions, and then work the problem analytically also. (A Monte Carlo 
study is no substitute for analytic study.) 
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c*** loop over trials
win1 = 0
win2 = 0

do it=1,itests
a(1) = rand()
a(2) = rand()

a(3) = rand()
choice = 1 + int(3.0*rand())
b(1) = a(choice)
if(choice.eq.1) b(2) = max(a(2),a(3))
if(choice.eq.2) b(2) = max(a(1),a(3))
if(choice.eq.3) b(2) = max(a(1),a(2))

if(b(1).ge.b(2)) then
win1 = win1 + 1
else
win2 = win2 + 1

end if
end do

c*** average number of games and wins
awin1 = float(win1)/float(itests)
awin2 = float(win2)/float(itests)
write (*,101) awin1, awin2

Lets make a deal
enter numbers of tests
10000
win1 =   3.359E-01
win2 =   6.641E-01
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