
\qquad
\qquad
\qquad
\qquad
\qquad
1

\qquad
\qquad
\qquad

2

Data types

\qquad
Data types:

- Continuous data: analytic functions (e.g. $f(x)=\sin x$)
\qquad
- In many problems in engineering and science, the data being considered are known only at a set of discrete points, not as a \qquad continuous function, $f_{i}=f\left(x_{i}\right)(i=1,2, \ldots)$.
Discrete data: data tables (e.g. observations, results of calculations)
Attention:
Computers have limited memory for working with numbers.
Thus, computers operate with discrete sets of data
\qquad
\qquad
\qquad
\qquad

4

\qquad
\qquad

5
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

7

Equally or unequally spaced data points
A set of discrete data may be equally spaced or unequally spaced in the independent variable x.

- Unequally spaced data - several procedures can be used:
(a) direct fit polynomials, (b) Lagrange polynomials, and (c) divided difference polynomials.
Methods such as these require a considerable amount of effort.
- Equally spaced data - procedures based on differences can be used, for example, Newton divided difference methods.
These methods are quite easy to apply.

8

Interpolation is a two step procedure

1. Selects an approximating function $g(x)$
2. Find proper coefficients*.
*Attention! Normally we don't use all available N points to produce a single set of coefficients for the whole interval ("global" interpolation), instead you choose a group of points $(\mathrm{n}<\mathrm{N})$ to interpolate $\mathrm{n}-1$ intervals "locally", i.e. each group has it's own set of coefficient for $g(x)$

Step 1: Selecting $g(x)$

\qquad
How to choose $g(x)$?

- $g(x)$ may have some standard form (e.g. a polynomial function)
\qquad Most interpolation methods are grounded on 'smoothness' of interpolated functions. (However, it does not work well all the time) \qquad
- or be specific for the problem (then we need some ideas about data)

Approximating functions should have the following properties:

1. The approximating function should be easy to determine. \qquad
2. It should be easy to evaluate.
3. It should be easy to differentiate. \qquad
4. It should be easy to integrate
\qquad
10

Linear combination

Linear combination of functions (often elementary functions) is the most common form of $g(x)$ \qquad

$$
g(x)=a_{1} h_{1}(x)+a_{2} h_{2}(x)+\cdots+a_{k} h_{k}(x)
$$

where $h_{i}(x)$ are known functions. \qquad
\qquad
\qquad
\qquad
\qquad
11

12

2.1 Direct-fit polynomial interpolation

The general form of n th-degree polynomial is

$$
P_{n}(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{k} x^{n}
$$

where a_{i} are constant coefficients
The property of polynomials that makes them suitable as approximating functions is stated by the Weierstrass approximation theorem: If $f(x)$ is a continuous function in the closed interval $a \leq x \leq b$, then for every $\varepsilon>0$ there exists a polynomial $P_{n}(x)$, where the the value of n depends on the value of ε, such that for all x

$$
\left|P_{n}(x)-f(x)\right|<\varepsilon
$$

\qquad
\qquad
\qquad
\qquad
13
\qquad
\qquad
\qquad
\qquad
\qquad

14
\qquad
\qquad
\qquad
\qquad

Differentiation and integration of polynomials

Differentiation and integration of polynomials is straightforward.

$$
\begin{gathered}
\frac{d}{d x}\left(a_{k} x^{k}\right)=k a_{k} x^{k-1} \\
\int a_{k} x^{k} d x=\frac{a_{k}}{k+1} x^{k+1}+\text { constant }
\end{gathered}
$$

15
Orders of polynomial interpolation
$n^{\text {th }}$ order interpolation

$$
P_{n}(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{k} x^{n}
$$

Second-order (quadratic interpolation)

$$
P_{2}(x)=a_{0}+a_{1} x+a_{2} x^{2}
$$

Third-order (cubic interpolation)

$$
P_{3}(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}
$$

\qquad
\qquad
\qquad
\qquad
16

Linear interpolation

Two coefficients

The idea of linear interpolation is to approximate data at point x by ${ }^{\times}$a straight line passing through two data points x_{j} and x_{j+1} closest to x. The \qquad coefficients a_{0} and a_{1} can be found from the system of equations

$$
\begin{gathered}
g\left(x_{j}\right)=f_{j}=a_{0}+a_{1} x_{j} \\
g\left(x_{j+1}\right)=f_{j+1}=a_{0}+a_{1} x_{j+1}
\end{gathered}
$$

Solving for a_{0} and a_{1} gives the function $g(x)$ on $\left[x_{j}, x_{j+1}\right]$ as

$$
g(x)=f_{j}+\frac{x-x_{j}}{x_{j+1}-x_{j}}\left(f_{j+1}-f_{j}\right)
$$

$$
g(x)=f_{j} \frac{x-x_{j+1}}{x_{j}-x_{j+1}}+f_{j+1} \frac{x-x_{j}}{x_{j+1}-x_{j}} \quad \text { or as symmetric form }
$$

\qquad

17

Example: C++

double int1(double x, double xi[], double yi[], int imax)
double y;
int j;
// if x is ouside the xi[] interval
if ($x<=x i[0]$) return $y=y i[0]$;
if ($x>=x i[i m a x-1])$ return $y=y i[i m a x-1]$
// loop to find j so that $x[j-1]<x<x[j]$
$j=0$;
while ($j<=$ imax-1)
\{ ${ }_{\text {if }}$
if $(x i[j]>=x)$ break;
$j=j+1$;
$j=j+1 ;$
$y=y i[j-1]+(y i[j]-y i[j-1]) *(x-x i[j-1]) /(x i[j]-x i[j-1])$; return y;
\}
Note that a bisectional approach is more efficient to search an array.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad

19

Linear interpolation: summary

The linear interpolation may work well for very smooth functions when the second and higher derivatives are small.

It is worthwhile to note that for each data interval one has a different set of coefficients a_{0} and a_{1}. This is the principal difference from data fitting \qquad where the same function, with the same coefficients, is used to fit the data points on the whole interval $\left[x_{1}, x_{n}\right]$
We may improve quality of linear interpolation by increasing number of data points x_{i} on the interval.

HOWEVER!!! It is much better to use higher-order interpolations.
example from F. S. Acton "Numerical methods that work"
"A table of $\sin (x)$ covering the first quadrant, for example, requires 541 pages if it is to be linearly interpolable to eight decimal places. If quadratic interpolation is used, the same table takes only one page."

20

Quadratic interpolation as direct fit

We need three points for the second order interpolation.
What points?
The system of equations

$$
\begin{gathered}
f_{j}=a_{0}+a_{1} x_{j}+a_{2} x_{j}^{2} \\
f_{j+1}=a_{0}+a_{1} x_{j+1}+a_{2} x_{j+1}^{2} \\
f_{j+2}=a_{0}+a_{1} x_{j+2}+a_{2} x_{j+2}^{2}
\end{gathered}
$$

This system can be solved analytically

$$
\begin{align*}
g(x)= & f_{j} \frac{\left(x-x_{j+1}\right)\left(x-x_{j+2}\right)}{\left(x_{j}-x_{j+1}\right)\left(x_{j}-x_{j+2}\right)}+f_{j+1} \frac{\left(x-x_{j}\right)\left(x-x_{j+2}\right)}{\left(x_{j+1}-x_{j}\right)\left(x_{j+1}-x_{j+2}\right)}+ \\
& f_{j+2} \frac{\left(x-x_{j}\right)\left(x-x_{j+1}\right)}{\left(x_{j+2}-x_{j}\right)\left(x_{j+2}-x_{j+1}\right)} \tag{4.9}
\end{align*}
$$

22

23

Lagrange Polynomials

There is a simpler procedure comparing to the direct fit polynomials
Using Lagrange polynomial, which can be fit to unequally spaced data or equally spaced data.

$$
g(x)=f_{1} \lambda_{1}(x)+f_{2} \lambda_{2}(x)+\cdots+f_{n} \lambda_{n}(x)
$$

$$
\lambda_{n}(x)=\prod_{j(\neq i)=1}^{n} \frac{x-x_{j}}{x_{i}-x_{j}}
$$

No system of equations must be solved to evaluate the polynomial.
\qquad

Example: C++

double polint(double x, double xi[], double yi[],

$$
\begin{aligned}
& \text { (double } x \text {, double xi[], } \\
& \text { int isize, int npoints) }
\end{aligned}
$$

\{ double lambda[isize]; double y;
// check order of interpolation
if (npoints $>$ isize) npoints $=$ isize;
// if x is ouside the xi[] interval
$\begin{array}{ll}\text { if }(x<=x i[0]) & \text { return } y=y i[0] ; \\ \text { if }(x>=x i[i s i z e-1]) & \text { return } y=y i[i s i z e-1] ;\end{array}$
// loop to find j so that $x[j-1]<x<x[j]$
while ($j<=$ isize-1)
if (xi[j] >= x) break;
$j=j+1$;
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
25

Example: C++

```
// shift j to correspond to (npoint-1)th interpolation
j = j - npoints/2
// if j is ouside of the range [0, ... isize-1]
    if ( }j<0) j=0
    if (j+npoints-1 > isize-1) j=isize-npoints;
    y = 0.0;
    for (is = j; is <= j+npoints-1; is = is+1)
        lambda[is] = 1.0;
        for (il = j; il <= j+ npoints-1; il = il + 1
            if(il != is) lambda[is] = lambda[is]*
                (x-xi[il])/(xi[is]-xi[il])
        y = y + yi[is]*lambda[is];
    }
}
```

26

Example:

Summary

- Moving from the first -order to the third and 5 th order improves interpolated values to the original function.
- However, the 7th order interpolation instead being closer to the function $f(x)$ produces wild oscillations known as Runge phenomenon - extreme "polynomial wiggle" associated with highdegree polynomial interpolation at evenly-spaced points.
- Rule of thumb: do not use high order interpolation. Fifth order may be considered as a practical limit.
- If you believe that the accuracy of the 5 th order interpolation is not sufficient for you, then you should rather consider some other method of interpolation.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
28

Advantages and disadvantages

\qquad
The main advantage of the Lagrange polynomial is that the data may be unequally spaced. \qquad
There are several disadvantages.

1. All of the work must be redone for each degree polynomial. \qquad
2. All the work must be redone for each value of x.

The first disadvantage is eliminated by Neville's algorithm (which has some computational advantages over the Lagrange polynomials) \qquad
Both disadvantages are eliminated by using divided differences.
\qquad

29

Divided difference coefficients

A divided difference is defined as the ratio of the difference in the function values at two points divided by the difference in the values of the corresponding independent variable.

Thus, the first divided difference at point i is defined as

$$
f\left[x_{i}, x_{i+1}\right]=f_{i}^{(1)}=\frac{f_{i+1}-f_{i}}{x_{i+1}-x_{i}}
$$

\qquad

The second divided difference is defined as

$$
f\left[x_{i}, x_{i+1}, x_{i+2}\right]=f_{i}^{(2)}=\frac{f\left[x_{i+1}, x_{i+2}\right]-f\left[x_{i}, x_{i+1}\right]}{x_{i+2}-x_{i}}
$$

Similar expressions can be obtained for divided differences of any order.

Approximating polynomials for nonequally spaced data can be constructed using divided differences.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
31

Tables of divided differences

Example:

x_{i}	$f_{i}^{(0)}$	$f_{i}^{(1)}$	$f_{i}^{(2)}$	$f_{i}^{(3)}$
x_{1}	$f_{1}^{(0)}$	$f_{1}^{(1)}$		
x_{2}	$f_{2}^{(0)}$	$f_{2}^{(2)}$	$f_{1}^{(2)}$	$f_{1}^{(3)}$
x_{3}	$f_{3}^{(0)}$	$f_{3}^{(1)}$	$f_{2}^{(2)}$	
x_{4}	$f_{4}^{(0)}$			

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

32

Example: Fortran

\qquad
integer i,j
d = o. 0
! initialization of $d(n, 1)$
do $i=1, n$
$d(i, 1)=f(i)$
end do
! calculations
do $j=2, n$
do $i=1, n-j+1$
$\begin{aligned} d(i, j) & =(d(i+1, j-1)-d(i, j-1)) /(x(i+1+j-2)-x(i))\end{aligned}$
end do
end do
! print results
do $i=1, n$
write $\left.{ }^{*}, 200\right)(d(i, j), j=1, n-i+1)$
end do
200 format (5f10.6)
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
34

Divided difference polynomials

Let's define a power series for $P_{n}(x)$ such that the coefficients are identical to the divided differences $f_{i}^{(n)}$.

$$
\begin{aligned}
& P_{n}(x)=f_{i}^{(0)}+\left(x-x_{0}\right) f_{i}^{(1)}+\left(x-x_{0}\right)\left(x-x_{1}\right) f_{i}^{(2)}+\cdots \\
& +\left(x-x_{0}\right)\left(x-x_{1}\right) \ldots\left(x-x_{n-1}\right) f_{i}^{(n)}
\end{aligned}
$$

$P_{n}(x)$ is clearly a polynomial of degree n.
We can easily demonstrate that that $P_{n}(x)$ passes exactly through the data points x_{0}, x_{1}, \ldots

Since $P_{n}(x)$ is a polynomial of degree n and passes exactly through the $n+1$ data points, it is obviously one form of the unique polynomial passing through the data points.
\qquad

35

Divided difference polynomials

Let's define a power series for $P_{n}(x)$ such that the coefficients are identical to the divided differences $f_{i}^{(n)}$.

$$
\begin{aligned}
& P_{n}(x)=f_{i}^{(0)}+\left(x-x_{0}\right) f_{i}^{(1)}+\left(x-x_{0}\right)\left(x-x_{1}\right) f_{i}^{(2)}+\cdot \cdot \\
& +\left(x-x_{0}\right)\left(x-x_{1}\right) \ldots\left(x-x_{n-1}\right) f_{i}^{(n)} .
\end{aligned}
$$

\qquad
$P_{n}(x)$ is clearly a polynomial of degree n.
We can easily demonstrate that that $P_{n}(x)$ passes exactly through the
\qquad data points x_{0}, x_{1}, \ldots

Since $P_{n}(x)$ is a polynomial of degree n and passes exactly through the
\qquad $n+1$ data points, it is obviously one form of the unique polynomial passing through the data points. \qquad ${ }^{36}$ \qquad

Three forms of polynomials (to compare)

\qquad

1. Direct-fit polynomials

$$
P_{n}(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{k} x^{n}
$$

\qquad
2. Lagrange polynomials

$$
g(x)=f_{1} \lambda_{1}(x)+f_{2} \lambda_{2}(x)+\cdots+f_{n} \lambda_{n}(x)
$$

$$
\lambda_{n}(x)=\prod_{j(\neq i)=1}^{n} \frac{x-x_{j}}{x_{i}-x_{j}}
$$

3. Divided difference polynomials

$$
\begin{aligned}
& P_{n}(x)=f_{i}^{(0)}+\left(x-x_{0}\right) f_{i}^{(1)}+\left(x-x_{0}\right)\left(x-x_{1}\right) f_{i}^{(2)}+\cdots \\
& +\left(x-x_{0}\right)\left(x-x_{1}\right) \ldots\left(x-x_{n-1}\right) f_{i}^{(n)} .
\end{aligned}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
37

Divided differences - equally spaced points

\qquad
Fitting approximating polynomials to tabular data is considerably simpler when the values of the independent variable are equally \qquad spaced.

Implementation of polynomial fitting for equally spaced data is best \qquad accomplished in terms of differences

x	$f(x)$			
x_{0}	f_{0}	$f_{1}-f_{0}$		
x_{1}	f_{1}	$f_{2}-2 f_{1}+f_{0}$	$f_{3}-3 f_{2}+3 f_{1}-f_{0}$	
x_{2}	f_{2}	$f_{2}-f_{1}$	$f_{3}-2 f_{2}+f_{1}$	
x_{3}	f_{3}	$f_{2}-f_{2}$		

\qquad
\qquad
\qquad
\qquad

38

Three interpretations

\qquad
The numbers appearing in a difference table are unique.
However, three different interpretations can be assigned to these \qquad numbers, each with its unique notation.

The forward difference relative to point i is \qquad

$$
\Delta f_{i}=\left(f_{i+1}-f_{i}\right)
$$

2. the backward difference relative to point $i+1$ is

$$
\nabla f_{i+1}=\left(f_{i}-f_{i+1}\right)=-\left(f_{i+1}-f_{i}\right)
$$

3. The centered difference relative to point $i+1 / 2$ is

$$
\delta f_{i+i_{2}^{1}}=\left(f_{i+1}-f_{i}\right)
$$

\qquad
\qquad
\qquad ${ }^{39}$ \qquad

Example		$f(x)=\frac{1}{x}$ for $3.1<x<3.9$				
x	$f(x)$	$\Delta f(x)$	$\Delta^{2} f(x)$	$\Delta^{3} f(x)$	$\Delta^{4} f(x)$	$\Delta^{s} f(x)$
3.1	0.322581					
3.2	0.312500	-0.010081	0.000611			
3.3	0.303030	-0.009470	0.000558	-0.000053	0.000003	
3.4	0.294118	-0.008912	0.000508	-0.000050	0.000010	
3.5	0.285714	-0.008404	0.000468	-0.000040	0.000000	-0.000010
3.6	0.277778	-0.007936	0.000428	-0.000040	0.000008	0.000008
3.7	0.270270	-0.007508	0.000396	-0.000032	0.000000	-0.000008
3.8	0.263158	-0.007112	0.000364	-0.000032		
3.9	0.256410	-0.006748				

observations: the first and second differences are quite smooth. The third differences, while monotonic, are not very smooth. The fourth differences are not monotonic, and the fifth differences are extremely ragged. The magnitudes of the higher-order differences decrease rapidly. If the differences are not smooth and not decreasing, several possible explanations exist: 1. The original data set has errors. 2. The increment Δx may be too large. 3. There may be a singularity in $f(x)$ or its derivatives in the range of the table
Difference tables are useful for evaluating the quality of a set of tabular data.
40

The Newton Forward-Difference Polynomial

Given $n+1$ data points, then one form of the unique nth-degree polynomial that passes through the $\mathrm{n}+1$ points (separated by $\Delta x=h$) \qquad is given by

$$
\begin{aligned}
& P_{n}(x)=f_{0}+s \Delta f_{0}+\frac{s(s-1)}{2!} \Delta^{2} f_{0}+\frac{s(s-1)(s-2)}{3!} \Delta^{3} f_{0}+ \\
& +\cdots+\frac{s(s-1)(s-2) \ldots(s-(n-1))}{n!} \Delta^{n} f_{0}
\end{aligned}
$$

\qquad
where

$$
s=\frac{x-x_{0}}{\Delta x}=\frac{x-x_{0}}{h} \quad x=x_{0}+\operatorname{sh}
$$

Equation does not look anything like the direct fit polynomial, the Lagrange polynomial, or the divided difference polynomial. However, if it is a polynomial of degree n and passes exactly through the $\mathrm{n}+\mathrm{I}$ data points, it must be one form of the unique polynomial that passes through this set of data.

41

Comparing Lagrange and divided differences

Quality of Lagrange interpolation:
average difference from $f(x)$

average difference from	$f(x)$		
1st	3rd	5th	7 th
0.1410	0.0848	0.1434	0.2808

Quality of interpolation: average difference from $f(x)$ Orders of divided difference interpolation

1	2	3	4	5
0.1410	0.1484	0.0848	0.1091	0.1433
6	7	8	9	
0.2022	0.2808	0.3753	0.4526	

\qquad
\qquad
\qquad

The Newton Backward-Difference Polynomial

The Newton forward-difference polynomial, can be applied at the top or in the middle of a set of tabular data, where the downward-sloping forward differences exist. However, at the bottom of a set of tabular data, the required forward differences do not exist, and we need to used the Newton backward-difference polynomial.

$$
\begin{aligned}
& P_{n}(x)=f_{0}+s \nabla f_{0}+\frac{s(s-1)}{2!} \nabla^{2} f_{0}+\frac{s(s-1)(s-2)}{3!} \nabla^{3} f_{0}+ \\
& +\cdots+\frac{s(s-1)(s-2) \ldots(s-(n-1))}{n!} \nabla^{n} f_{0}
\end{aligned}
$$

\qquad
\qquad
\qquad
\qquad
\qquad where

$$
s=\frac{x-x_{0}}{\Delta x}=\frac{x-x_{0}}{h} \quad x=x_{0}+s h
$$

\qquad
\qquad
43

Summary

\qquad
A major advantage of the Newton forward and backward difference polynomials is that each higher order polynomial is obtained from the \qquad previous lower-degree polynomials simply by adding the new term

However, both polynomial, Lagrange and divided difference \qquad polynomials share the same problem called Runge phenomenon extreme "polynomial wiggle" associated with high-degree polynomial interpolation at evenly-spaced points.

Other difference polynomials

- Stirling centered-difference polynomials
- Bessel centered-difference polynomials

44

45

Problems with polynomial approximation

1. Problems can arise when a single high-degree polynomial is fit to a large number of points.
High-degree polynomials would obviously pass through all the data points themselves, but they can oscillate wildly between data points due to round-off errors and overshoot.
2. In such cases, lower-degree polynomials can be fit to subsets of the data points.
If the lower-degree polynomials are independent of each other, a piecewise approximation is obtained.
3. One of the principal drawbacks of the polynomial interpolation is related to discontinuity of derivatives at connecting data points x_{j}.
\qquad
46

Spline

An alternate approach is to fit a lower-degree polynomial to connect
each pair of data points, i.e., $P_{n}(x)$ for every interval
and to require the set of lower-degree polynomials to be consistent with each other in some sense.

This type of polynomial is called a spline function, or simply a spline.
The procedure for deriving coefficients of spline interpolations uses information from all data points, i.e. nonlocal information to guarantee global smoothness in the interpolated function up to some order of derivatives.
\qquad
\qquad
\qquad
\qquad $\rightarrow \overbrace{i}^{\text {interval } 1} \rightarrow \overbrace{i=1}^{\text {interval } i}$

47

Degrees of splines

\qquad
Linear splines are not really splines since points are connected by straight line segments (aka linear interpolation). \qquad
Quadratic splines - second-order approximating polynomials for every interval $f_{i}(x)=a_{i}+b_{i} x+c x_{i}^{2}(i=1,2, \ldots, n)$. The slopes of the \qquad quadratic splines can be forced to be continuous at each data point, but the curvatures (i.e., the second derivatives) are still discontinuous.

A cubic spline yields a third-degree polynomial connecting each pair of data points.

$$
f_{i}(x)=a_{i}+b_{i} x+c x_{i}^{2}+d_{i} x_{i}^{3} \quad(i=1,2, \ldots, n)
$$

The slopes and curvatures of the cubic splines can be forced to be continuous at each data point. Looks very promising, no need to go to higher degrees of splines!

\qquad
\qquad
49

Definitions

$n+1$ total points, $x_{i}(i=1,2, \ldots, n+1)$,
n intervals
$n-1$ interior grid points, $x_{i}(i=2,3, \ldots, n)$.
A cubic spline is to be fit to each interval, i.e. n cubic splines

Since each cubic spline has four coefficients and there are n cubic \qquad splines, there are $4 n$ coefficients to be determined.

Thus, 4 n boundary conditions, or constraints, must be available.
\qquad
50

Finding coefficients

\qquad

1. The function values, $f\left(x_{i}\right)=f_{i}(i=2,3, \ldots, n)$, must be the same in the two splines on either side of x_{i} at all of the $n-1$ interior points. This constraint yields $2(n-1)$ conditions.
2. The first and last spline must pass through the first x_{1} and last x_{n+1} points. That is, $f_{1}\left(x_{1}\right)=f_{1}, f_{n+1}\left(x_{n+1}\right)=f_{n+1}$ This constraint yields 2 conditions. \qquad
3. The first derivative of the two splines on either side of point x_{i} must be equal at all of the $n-1$ interior points. This constraint yields $(n-1)$ conditions.
4. The second derivative of the two splines on either side of point x_{i} must be equal at all of the $n-1$ interior points. Another $(n-1)$ conditions.

TOTAL $=2(n-1)+2+(n-1)+(n-1)=4 n-2$ conditions. We need $4 n$. \qquad

How to set two additional conditions? \qquad
\qquad

The last two conditions (many possibilities)

\qquad

1. Natural spline - the second order derivatives are zero on boundaries $f_{1}^{\prime \prime}=0$ and $f^{\prime \prime}{ }_{n+1}=0$
2. Curvature-adjusted cubic spline.

Input some values for the second order derivatives $f_{1}{ }^{\prime \prime}$ and $f^{\prime \prime}{ }_{n+1}$ at boundaries.
3. Clamped cubic spline

Input values for the first order $f_{1}{ }^{\prime}$ and $f^{\prime}{ }_{n+1}$ derivates at boundaries
4. Parabolically terminated cubic spline

Specifying $d_{1}=d_{n}=0$ that is the same as $c_{1}=c_{2}, c_{n-1}=c_{n}$
5. Not-a-knot cubic spline. \qquad

$$
d_{1}=d_{2}, d_{n-1}=d_{n}
$$

6. And many more

Note that MATLAB's default spline command constructs a not-a-knot spline when given four or more points.
\qquad
\qquad
\qquad
\qquad
\qquad
52
a little math ...
$s_{i}(x)=a_{i}+b_{i}\left(x-x_{i}\right)+\frac{c_{i}}{2}\left(x-x_{i}\right)^{2}+\frac{d_{i}}{6}\left(x-x_{i}\right)^{3}$
$x_{i-1} \leq x \leq x_{i} \quad i=1,2, \ldots N$.
Need to find $a_{i}, b_{i}, c_{i}, d_{i}$.
$s_{i}{ }^{\prime}(x)=b_{i}+c_{i}\left(x-x_{i}\right)+\frac{d_{i}}{2}\left(x-x_{i}\right)^{2}$
$s_{i}{ }^{\prime \prime}(x)=c_{i}+d_{i}\left(x-x_{i}\right)$
$s_{i}{ }^{\prime \prime \prime}(x)=d_{i}$
by the definition (interpolation) $a_{i}=f\left(x_{i}\right)$

1) $s(x)$ must be continuous at $x_{i} \quad s_{i}\left(x_{i}\right)=s_{i+1}\left(x_{i}\right)$
$a_{i}=a_{i+1}+b_{i+1}\left(x_{i}-x_{i+1}\right)+\frac{c_{i+1}}{2}\left(x_{i}-x_{i+1}\right)^{2}+\frac{d_{i+1}}{6}\left(x_{i}-x_{i+1}\right)^{3}$

53
using $h_{i}=x_{i}-x_{i-1}$
$h_{i} b_{i}-\frac{h_{i}^{2}}{2} c_{i}+\frac{h_{i}^{3}}{6} d_{i}=f_{i}-f_{i-1}$
2) $s_{i}{ }^{\prime}\left(x_{i}\right)=s_{i+1}{ }^{\prime}\left(x_{i}\right) \quad i=1,2, \ldots N-1$
$c_{i} h_{i}-\frac{d_{i}}{2} h_{i}^{2}=b_{i}-b_{i-1} \quad i=2,3, \ldots N$
3) $s_{i}{ }^{\prime \prime}\left(x_{i}\right)=s_{i+1}{ }^{\prime \prime}\left(x_{i}\right)$
$d_{i} h_{i}=c_{i}-c_{i-1} \quad i=2,3, \ldots N$
additional equations (conditions at the ends)
$s^{\prime \prime}(a)=s^{\prime \prime}(b)=0$

$$
s_{1}{ }^{\prime \prime}\left(x_{0}\right)=0, \quad s_{N}{ }^{\prime \prime}\left(x_{N}\right)=0 \quad c_{1}-d_{1} h_{1}=0, \quad c_{N}=0
$$

\qquad
\qquad

The system of equations to find coefficients \qquad

$$
\begin{array}{ll}
h_{i} d_{i}=c_{i}-c_{i-1} & i=1,2, \ldots N \quad c_{0}=c_{N}=0 \\
h_{i} c_{i}-\frac{h_{i}^{2}}{2} d_{i}=b_{i}-b_{i-1} & i=2,3, \ldots N \\
h_{i} b_{i}-\frac{h_{i}^{2}}{2} c_{i}+\frac{h_{i}^{3}}{6} d_{i}=f_{i}-f_{i-1} & i=1,2, \ldots N \tag{7}
\end{array}
$$

\qquad
Solve the system for $c_{i} \quad i=1,2, \ldots N-1$
Consider two equations (7) for points i and $i-1$ \qquad
$b_{i}=\frac{h_{i}}{2} c_{i}+\frac{h_{i}^{2}}{6} d_{i}=\frac{f_{i}-f_{i-1}}{h_{i}}$
$b_{i-1}=\frac{h_{i-1}}{2} c_{i-1}+\frac{h_{i-1}^{2}}{6} d_{i-1}=\frac{f_{i-1}-f_{i-2}}{h_{i-1}}$
and sustract the second equation from the first
$b_{i}-b_{i-1}=\frac{1}{2}\left(h_{i} c_{i}-h_{i-1} c_{i-1}\right)-\frac{1}{6}\left(h_{i}^{2} d_{i}-h_{i-1}^{2} d_{i-1}\right)+\frac{f_{i}-f_{i-1}}{h_{i}}-\frac{f_{i-1}-f_{i-2}}{h_{i-1}}$
\qquad

55

Use the difference $b_{i}-b_{i-1}$ in the right side of (6)
$h_{i} c_{i}+h_{i-1} c_{i-1}-\frac{h_{i-1}^{2}}{2} d_{i-1}-\frac{2 h_{i}^{2}}{3} d_{i}=2\left(\frac{f_{i}-f_{i-1}}{h_{i}}-\frac{f_{i-1}-f_{i-2}}{h_{i-1}}\right)$
Then from (5)
$h_{i}^{2} d_{i}=h_{i}\left(c_{i}-c_{i-1}\right)$,
$h_{i-1}^{2} d_{i-1}=h_{i-1}\left(c_{i-1}-c_{i-2}\right)$
Substitute in (8)
$h_{i-1} c_{i-2}+2\left(h_{i-1}+h_{i}\right) c_{i-1}+h_{i} c_{i}=6\left(\frac{f_{i+1}-f_{i}}{h_{i+1}}-\frac{f_{i}-f_{i-1}}{h_{i}}\right)$
for $i=1,2, \ldots N-1, \quad c_{0}=c_{N}=0$
This is a tridiagonal system of equations (use Thomas method)
then $d_{i}=\frac{c_{i}-c_{i-1}}{h_{i}}, \quad b_{i}=\frac{h_{i}}{2} c_{i}-\frac{h_{i}^{2}}{6} d_{i}+\frac{f_{i}-f_{i-1}}{h_{i}}$ for $i=1,2, \ldots N$,

56

Implementations

Many numerical libraries have spline interpolation programs
Both C++ and Fortran versions can be found at \qquad https://ww2.odu.edu/~aqodunov/book/programs.html
and
https://ww2.odu.edu/~agodunov/computing/programs/index.html

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
58

Comments

\qquad
Generally, spline does not have advantages over polynomial
interpolation when used for smooth, well-behaved data, or when data \qquad points are close on x scale.

The advantage of spline comes into the picture when dealing with \qquad "sparse" data, when
\qquad

- or when the number of points is close to the number of expected maximums. \qquad
\qquad
\qquad
59

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

61

Bézier curves

Bézier curves are splines that allow the user to control the slopes at the knots. In return for the extra freedom, the smoothness of the first and second derivatives across the knot, which are automatic features of the cubic splines of the previous section, are no longer guaranteed.

Bézier splines are appropriate for cases where corners (discontinuous first derivatives) and abrupt changes in curvature (discontinuous second derivatives) are occasionally needed.

Bézier curves are named after French engineer Pierre Bézier, who used it in the 1960s for designing curves for the bodywork of Renault cars.

Bézier curves - enormous number of applications (computer fonts, computer-aided design, animation, user interfaces, robotics, ...)

Bézier curves (history)

Bézier popularized but did not actually create the Bézier curve. He using such curves to design automobile bodies for Renault (French car manufacturer).
The curves were first developed in 1959 by Paul de Casteljau using de Casteljau's algorithm (that time he work for Citroën - a rival French car
\qquad manufacturer).

There are comments that the method was developed independently by \qquad Bézier and Casteljau but Renault and Citroën companies wanted to keep it secret. \qquad
\qquad
\qquad

\qquad

64

65

Chebyshev's interpolation

\qquad
It turns out that the choice of base point spacing can have a significant effect on the interpolation error. \qquad
Chebyshev interpolation refers to a particular optimal way of spacing the points.
Chebyshev's polynomials (defined on $[-1,+1]$)
$T_{n}(x)=\cos (n \arccos x)$ \qquad
$T_{1}(x)=x$
$T_{2}(x)=2 x^{2}-1$
$T_{3}(x)=4 x^{3}-3 x$
\qquad
\qquad ${ }^{66}$ \qquad

67

Rational function interpolation

Rational functions may well interpolate functions with poles

$$
f(x)=\frac{a_{0}+a_{1} x+a_{2} x^{2}+\cdots a_{n} x^{n}}{b_{0}+b_{1} x+b_{2} x^{2}+\cdots b_{m} x^{m}}
$$

that is with zeros of the denominator

$$
b_{0}+b_{1} x+b_{2} x^{2}+\cdots b_{m} x^{m}=0
$$

68
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
70

Extrapolation

If you are interested in function values outside the range $x_{1}, \ldots x_{n}$ then the problem is called extrapolation.
Generally, this procedure is much less accurate than interpolation.
You know how it is difficult to extrapolate (foresee) the future, for example, for the stock market.

71

Data fitting

\qquad
If data values $f_{i}\left(x_{i}\right)$ are a result of experimental observation with some errors, then data fitting may be a better way to proceed. \qquad
In data fitting we let $g\left(x_{i}\right)$ to differ from measured values f_{i} at x_{i} points having one function only to fit all data points; i.e., the function $g(x)$ fits \qquad all the set of data.

Data fitting may reproduce well the trend of the data, even correcting some experimental errors. \qquad
\qquad
\qquad
\qquad

