
\qquad
\qquad
\qquad

1

\qquad
\qquad
\qquad

2

Analytic vs. numerical differentiation \qquad
Derivative

$$
\frac{d}{d x} f(x) \equiv f^{\prime}(x) \equiv f_{x}(x)=\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}
$$

In general, known functions can be differentiated exactly.
In numerical calculations the function $f(x)$ may be a known function, but normally $f(x)$ is given as a set of data points (a table of $[x, f(x)]$ pairs).
Differentiation of discrete data, requires an approximate numerical procedure.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Quick note

\qquad
We cannot use

$$
\frac{d}{d x} f(x) \equiv f^{\prime}(x) \equiv f_{x}(x)=\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}
$$

for numerical differentiation because of the error in subtractive cancellation (a difference between two close numbers)
Besides, the subtractive cancellation is magnified by division on small number Δx.

And if Δx is not small enough then, for example, for $f(x)=a+b x^{2}$

$$
f(x)^{\prime}=\frac{f(x+\Delta x)-f(x)}{\Delta x}=2 b x+b \Delta x
$$

We can only get the correct derivative $f^{\prime}(x)=2 b x$ if $\Delta x \ll 2 x$ otherwise the error is $b \Delta x$.

4

Key ideas

Most common numerical procedures for differentiation are based on

1. fitting an approximating function to the discrete data, or a subset of the discrete data
2. and the approximating polynomial is differentiated

The polynomial may be fit exactly to a set of discrete data (see interpolation), or approximately by a least squares fit (see fitting data).
\qquad
\qquad

5

7

Most common techniques

Three straightforward numerical differentiation procedures that can be used for both unequally spaced data and equally spaced data

The procedures are based on differentiation of fitting approximating functions \qquad

- Direct fit polynomials
- Lagrange polynomials
- Divided difference polynomials

8

Direct-fit polynomials

A direct fit polynomial procedure is based on fitting the data directly by a polynomial and differentiating the polynomial \qquad

$$
P_{n}(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{k} x^{n}
$$

where $P_{n}(x)$ is determined by one of the following methods: \qquad

1. Interpolation (if number of points $N=n+1$)
2. The least-square fit (if $N>n+1$)

After the approximating polynomial has been fit, the derivatives are determined by differentiating the approximating polynomial.

$$
\begin{gathered}
f^{\prime}(x) \cong P_{n}^{\prime}(x)=a_{1}+2 a_{2} x+3 a_{3} x^{2}+\cdots \\
f^{\prime \prime}(x) \cong P_{n}^{\prime \prime}(x)=2 a_{2}+6 a_{3} x+12 a_{4} x^{2}+\cdots
\end{gathered}
$$

Numerical differentiation can be highly inaccurate!

Numerical differentiation formulas can be developed by fitting approximating functions (e.g., polynomials) to a set of discrete data and differentiating the approximating function. Thus,

$$
\frac{d}{d x} f(x) \cong \frac{d}{d x} P_{n}(x)
$$

However, even though the approximating polynomial $P_{n}(x)$ passes through the discrete data points exactly, the derivative of the polynomial may not be a very accurate approximation.

In general, numerical differentiation is an inherently inaccurate process.

$\xrightarrow{\longrightarrow}$

10

Lagrange polynomials

The second procedure that can be used for both unequally spaced data and equally spaced data is based on differentiating a Lagrange polynomial. For example, consider the second- degree Lagrange polynomial,

$$
P_{2}(x)=\frac{(x-b)(x-c)}{(a-b)(a-c)} f(a)+\frac{(x-a)(x-c)}{(b-a)(b-c)} f(b)+\frac{(x-a)(x-b)}{(c-a)(c-b)} f(c)
$$

Differentiating yields:

$$
f^{\prime}(x) \cong P_{2}^{\prime}(x)=\frac{2 x-(b+c)}{(a-b)(a-c)} f(a)+\frac{2 x-(a+c)}{(b-a)(b-c)} f(b)+\frac{2 x-(a+b)}{(c-a)(c-b)} f(c)
$$

$$
f^{\prime \prime}(x) \cong P_{2}^{\prime \prime}(x)=\frac{2 f(a)}{(a-b)(a-c)}+\frac{2 f(b)}{(b-a)(b-c)}+\frac{2 f(c)}{(c-a)(c-b)}
$$

11

Divided Difference Polynomials

The third procedure that can be used for both unequally spaced data and equally spaced data is based on differentiating a divided difference \qquad polynomial (see interpolation),
$P_{n}(x)=f_{i}^{(0)}+\left(x-x_{0}\right) f_{i}^{(1)}+\left(x-x_{0}\right)\left(x-x_{1}\right) f_{i}^{(2)}+\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{2}\right) f_{i}^{(3)}+$. \qquad
Differentiating yields:
$f^{\prime}(x) \cong P_{n}^{\prime}(x)=f_{i}^{(1)}+\left[2 x-\left(x_{0}+x_{1}\right)\right] f_{i}^{(2)}$

$$
+\left[3 x^{2}-2\left(x_{0}+x_{1}+x_{2}\right) x+\left(x_{0} x_{1}+x_{0} x_{2}+x_{1} x_{2}\right)\right] f_{i}^{(3)}+\cdots
$$

$f^{\prime \prime}(x) \cong P_{n}^{\prime \prime}(x)=2 f_{i}^{(2)}+\left[6 x-2\left(x_{0}+x_{1}+x_{2}\right)\right] f_{i}^{(3)}+\cdots$
\qquad
\qquad
\qquad
\qquad

13

Easier to work with equally spaced data

When the tabular data to be differentiated are known at equally spaced points, the Newton forward-difference and backward-difference polynomials, can be fit to the discrete data with much less effort than a direct fit polynomial, a Lagrange polynomial, or a divided difference polynomial.
This can significantly decrease the amount of effort required to evaluate derivatives.

14

Newton Forward-Difference Polynomial

\qquad
Recall the Newton forward-difference polynomial,

$$
P_{n}(x)=f_{0}+s \Delta f_{0}+\frac{s(s-1)}{2!} \Delta^{2} f_{0}+\frac{s(s-1)(s-2)}{3!} \Delta^{3} f_{0}+\cdots
$$

+ Error

$$
\text { Error }=\binom{S}{h} h^{n+1} f^{n+1}(\xi) \quad x_{0} \leq \xi \leq x_{n}
$$

where the interpolating parameter is given by

$$
s=\frac{x-x_{0}}{\Delta x}=\frac{x-x_{0}}{h} \quad x=x_{0}+s h
$$

Equation above requires that the approximating polynomial be an explicit function of x, whereas it is implicit in x. However,
$f^{\prime}(x) \cong \frac{d}{d x} P_{n}(x)=\frac{d}{d s} P_{n}(s) \frac{d s}{d x}, \quad \frac{d s}{d x}=\frac{1}{h} \quad$ then $\quad f^{\prime}(x) \cong \frac{1}{h} \frac{d}{d s} p_{n}(s)$

15

Newton Forward-Difference Polynomial

\qquad
Substituting

$$
P_{n}(x)=f_{0}+s \Delta f_{0}+\frac{s(s-1)}{2!} \Delta^{2} f_{0}+\frac{s(s-1)(s-2)}{3!} \Delta^{3} f_{0}+\cdot
$$

into

$$
\begin{gathered}
f^{\prime}(x) \cong P_{n}^{\prime}(x)=\frac{1 d}{h d s} P_{n}(s) \text { gives } \\
P_{n}^{\prime}(x)=\frac{1}{h}\left(\Delta f_{0}+\frac{2 s-1}{2} \Delta^{2} f_{0}+\frac{3 s^{2}-6 s+2}{6} \Delta^{3} f_{0}+\cdots\right) \\
P_{n}^{\prime \prime}(x)=\frac{1}{h^{2}}\left(\Delta^{2} f_{0}+(s-1) \Delta^{3} f_{0}+\cdots\right)
\end{gathered}
$$

Higher-order derivatives can be obtained in a similar manner. Recall that $\Delta^{n} f$ becomes less and less accurate as n increases. Consequently, higher-order derivatives become increasingly less accurate.

16

Newton Forward-Difference Polynomial

$$
\text { At } x=x_{0}, s=0 \text { equations from the previous slide become }
$$

$$
P^{\prime}{ }_{n}\left(x_{0}\right)=\frac{1}{h}\left(\Delta f_{0}-\frac{1}{2} \Delta^{2} f_{0}+\frac{1}{3} \Delta^{3} f_{0}-\frac{1}{4} \Delta^{4} f_{0} \ldots\right)
$$

$$
P_{n}^{\prime \prime}(x)=\frac{1}{h^{2}}\left(\Delta^{2} f_{0}-\Delta^{3} f_{0}+\cdots\right)
$$

Equations above are one-sided forward-difference formulas.

17

Errors

The error associated with numerical differentiation can be determined by differentiating the error term,

$$
\frac{d}{d x}\left[\operatorname{Error}\left(x_{0}\right)\right]=\frac{(-1)^{n}}{(n+1)} h^{n} f^{n+1}(\xi) \neq 0
$$

Even though there is no error in $P_{n}\left(x_{0}\right)$, there is error in $P_{n}^{\prime}\left(x_{0}\right)$.
The order of an approximation is the rate at which the error of the approximation approaches zero as the interval h approaches zero. \qquad Analysis shows that

$$
P_{n}^{\prime}\left(x_{0}\right) \sim O\left(h^{n}\right), \quad P_{n}^{\prime \prime}\left(x_{0}\right) \sim O\left(h^{n-1}\right)
$$

\qquad
As we can see, each differentiation introduces an additional h into the denominator of the error term. \qquad
\qquad

Newton centered-difference formulas

\qquad
Centred-difference formulas can be obtained by evaluating the Newton forward-difference polynomial at points within the range of fit. For \qquad example, at $x=x_{1}, s=1.0$

$$
\begin{gathered}
P_{n}^{\prime}\left(x_{1}\right)=\frac{1}{h}\left(\Delta f_{0}+\frac{1}{2}-\Delta^{2} f_{0}-\frac{1}{6} \Delta^{3} f_{0}+\cdots\right) \\
P_{n}^{\prime \prime}(x)=\frac{1}{h^{2}}\left(\Delta^{2} f_{0}+\frac{1}{12} \Delta^{4} f_{0}+\cdots\right)
\end{gathered}
$$

\qquad
\qquad
\qquad
\qquad
\qquad

19

Difference formulas

\qquad
The formulas for derivatives developed above are expressed in terms of differences. \qquad
Those formulas can be expressed directly in terms of function values if the order of the approximation is specified and the expressions for the \qquad differences in terms of function values are substituted into the formulas
\qquad
The resulting formulas are called difference formulas.
\qquad
\qquad
\qquad

20

Difference formulas

Example for the one-sided forward-difference formula

$$
P_{n}^{\prime}\left(x_{0}\right)=\frac{1}{h}\left(\Delta f_{0}-\frac{1}{2} \Delta^{2} f_{0}+\frac{1}{3} \Delta^{3} f_{0}-\frac{1}{4}-\Delta^{4} f_{0} \ldots\right)
$$

Keeping only the first term gives

$$
P_{n}^{\prime}\left(x_{0}\right)=\frac{1}{h}\left(\Delta f_{0}+O\left(h^{2}\right)\right)
$$

Recall that $\Delta f_{0}=\left(f_{1}-f_{0}\right)$ then

$$
P_{n}^{\prime}\left(x_{0}\right)=\frac{f_{1}-f_{0}}{h}+O(h)
$$

\qquad
Truncating after the second term and using $\Delta^{2} f_{0}=\left(f_{2}-2 f_{1}+f_{0}\right)$ gives

$$
P_{2}^{\prime}\left(x_{0}\right)=\frac{-3 f_{0}+4 f_{1}-f_{2}}{2 h}+O\left(h^{2}\right)
$$

Higher-order difference formulas can be obtained in a similar manner.

Difference formulas (cont.)

\qquad
Second order: one-sided forward-difference formula

$$
\begin{gathered}
P_{2}^{\prime \prime}\left(x_{0}\right)=\frac{f_{0}-2 f_{1}+f_{2}}{h^{2}}+O(h) \\
P_{3}^{\prime \prime}\left(x_{0}\right)=\frac{2 f_{0}-5 f_{1}+4 f_{2}-f_{3}}{h^{2}}+O\left(h^{2}\right)
\end{gathered}
$$

Centered-difference formulas

$$
\begin{gathered}
P_{2}^{\prime}\left(x_{1}\right)=\frac{f_{2}-f_{0}}{2 h}+O\left(h^{2}\right) \\
P_{2}^{\prime \prime}\left(x_{1}\right)=\frac{f_{0}-2 f_{1}+f_{2}}{h^{2}}+O\left(h^{2}\right)
\end{gathered}
$$

Difference formulas of any order can be developed in a similar manner \qquad for derivatives of any order, based on one-sided, centered, or nonsymmetrical differences. \qquad
22

23

Taylor series and difference formulas \qquad
Difference formulas can also be developed using Taylor series.
This approach is especially useful for deriving finite difference approximations of exact derivatives (both total derivatives and partial derivatives) that appear in differential equations. \qquad
\qquad
\qquad
\qquad
\qquad

However ...

Taylor series for a function f at point $x+h$ using x as a base point

$$
f(x+h)=f(x)+f^{\prime}(x) h+\frac{1}{2!} f^{\prime \prime}(x) h^{2}+\frac{1}{3!} f^{\prime \prime \prime}(x) h^{3}+\cdots
$$

then we can write for the first derivative at point x

$$
f^{\prime}(x)=\frac{f(x+h)-f(x)}{h} \frac{h}{2} f^{\prime \prime}(x)-\frac{h^{2}}{6} f^{\prime \prime \prime}(x)+\cdots
$$

If we keep the first term, then the error is proportional to h unless $f^{\prime \prime}(x)=0$
But, by making h smaller we can lose precision.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
25

Taylor series

For, example, using points $i, i \pm 1$
$f_{i+1}=f_{i}+f_{i}^{\prime} h+\frac{1}{2} f_{i}^{\prime \prime} h^{2}+\frac{1}{6} f_{i}^{\prime \prime \prime} h^{3}+\cdots$
$0_{i-2}^{h} \int_{0}^{h} \int_{0}^{h} \quad i_{0}^{h} \quad i_{i+1} \quad i+2$
$f_{i-1}=f_{i}-f_{i}^{\prime} h+\frac{1}{2} f_{i}^{\prime \prime} h^{2}-\frac{1}{6} f_{i}^{\prime \prime \prime} h^{3}+\cdots$
\qquad
difference $f_{i+1}-f_{i-1}=2 f_{i}^{\prime} h+{ }_{3}^{1} f_{i}^{\prime \prime \prime} h^{3}+\cdots$
First derivative
$f_{i}^{\prime}=\frac{f_{i+1}-f_{i-1}}{2 h}-\frac{1}{6} f_{i}^{\prime \prime \prime} h^{3}$
Now the error is $\sim h^{2}$, or one order better then before \qquad (check it for $f(x)=a+b x^{2}$)
sum $f_{i+1}+f_{i-1}=2 f_{i}+f_{i}^{\prime \prime} h^{2}+\frac{1}{12} f_{i}^{\prime \prime \prime \prime} h^{4}+\cdots$ gives the second derivative \qquad $f_{i}^{\prime \prime}=\frac{f_{i+1}+f_{i-1}-2 f_{i}}{h^{2}}-\frac{1}{12} f_{i}^{\prime \prime \prime \prime} h^{4}$

26

Partial derivatives

We can easily extend the Taylor series approach to partial derivatives for partial differential equations (PDE) \qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Taylor series - anything you want

\qquad
Choose the order of derivatives n
Choose the order of the reminder in the difference h^{m} \qquad
Then the order of the reminder in Taylor series h^{m+n}
Choose the type: centered, forward, backward, nonsymmetric
Determine the number of additional grid points: $k \leq m+n-1$
Write Taylor series of order $m+n$ at the grid points
Combine the Taylor series and illuminate unwanted derivatives, then solve it.
Examples:

$\mathrm{n}=1, \mathrm{~m}=2$	$\mathrm{~m}+\mathrm{n}-1=2$	$i \pm 1$
$\mathrm{n}=1, \mathrm{~m}=4$	$\mathrm{~m}+\mathrm{n}-1=4$	$i \pm 1, i \pm 2$
Note: point i is always included in series.		

\qquad
\qquad
\qquad
\qquad
\qquad
28

Example 1

First derivative ($\mathrm{n}=1$), fifth-order reminder $h^{5}(\mathrm{~m}=5$),
then we need $\mathrm{n}+\mathrm{m}-1=5: i, i \pm 1, i \pm 2$ \qquad
$f_{i+1}=f_{i}+f_{i}^{\prime} h+\frac{1}{2} f_{i}^{\prime \prime} h^{2}+\frac{1}{6} f_{i}^{\prime \prime \prime} h^{3}+\frac{1}{24} f_{i}^{\prime \prime \prime \prime} h^{4}+\frac{1}{120} f_{i}^{\prime \prime \prime \prime \prime} h^{5}$
$f_{i-1}=f_{i}-f_{i}^{\prime} h+\frac{1}{2} f_{i}^{\prime \prime} h^{2}-\frac{1}{6} f_{i}^{\prime \prime \prime} h^{3}+\frac{1}{24} f_{i}^{\prime \prime \prime \prime} h^{4}-\frac{1}{120} f_{i}^{\prime \prime \prime \prime \prime} h^{5}$
$f_{i+2}=f_{i}+2 f_{i}^{\prime} h+2 f_{i}^{\prime \prime} h^{2}+\frac{4}{3} f_{i}^{\prime \prime \prime} h^{3}+\frac{2}{3} f_{i}^{\prime \prime \prime \prime} h^{4}+\frac{4}{15} f_{i}^{\prime \prime \prime \prime \prime} h^{5}$
$f_{i-2}=f_{i}-2 f_{i}^{\prime} h+2 f_{i}^{\prime \prime} h^{2}-\frac{4}{3} f_{i}^{\prime \prime \prime} h^{3}+\frac{2}{3} f_{i}^{\prime \prime \prime \prime} h^{4}-\frac{4}{15} f_{i}^{\prime \prime \prime \prime \prime} h^{5}$
Then, multiple $\left(f_{i+1}-f_{i-1}\right)$ by eight and and subtract $8\left(f_{i+1}-f_{i-1}\right)-$
$\left(f_{i+2}-f_{i-2}\right)$ will result in

$$
f_{i}^{\prime}=\frac{1}{12 h}\left(f_{i-2}-8 f_{i-1}+8 f_{i+1}-f_{i+2}\right)
$$

29

Example 2

\qquad
Let's develop a third-order, nonsymmetrical, backward-biased, difference formula for $f^{\prime}(x)$ \qquad
First derivative ($\mathrm{n}=1$), third-order reminder $h^{3}(\mathrm{~m}=3)$,
then $\mathrm{n}+\mathrm{m}-1=3$: $i \pm 1, i-2$
$f_{i+1}=f_{i}+f_{i}^{\prime} h+\frac{1}{2} f_{i}^{\prime \prime} h^{2}+\frac{1}{6} f_{i}^{\prime \prime \prime} h^{3}+\frac{1}{24} f_{i}^{\prime \prime \prime \prime} h^{4}+\cdots$
$f_{i-1}=f_{i}-f_{i}^{\prime} h+\frac{1}{2} f_{i}^{\prime \prime} h^{2}-\frac{1}{6} f_{i}^{\prime \prime \prime} h^{3}+\frac{1}{24} f_{i}^{\prime \prime \prime \prime} h^{4}-\cdots$
$f_{i-2}=f_{i}-2 f_{i}^{\prime} h+2 f_{i}^{\prime \prime} h^{2}-\frac{4}{3} f_{i}^{\prime \prime \prime} h^{3}+\frac{2}{3} f_{i}^{\prime \prime \prime \prime} h^{4}-\cdots$
After some some manipulation with the series we will get

$$
f_{i}^{\prime}=\frac{1}{6 h}\left(f_{i-2}-6 f_{i-1}+3 f_{i}+2 f_{i+1}\right)-\frac{1}{2} f^{\prime \prime \prime \prime}(\zeta) h^{3}
$$

\qquad
\qquad
\qquad
\qquad
\qquad

Difference formulas (first order)

\qquad

$$
\begin{gathered}
f_{i}^{\prime}=\frac{f_{i+1}-f_{i}}{h}-\frac{1}{2} f^{\prime \prime}(\xi) h \\
f_{i}^{\prime}=\frac{f_{i+1}-f_{i-1}}{2 h}-\frac{1}{6} f^{\prime \prime \prime}(\xi) h^{2} \\
f_{i}^{\prime}=\frac{-3 f_{i}+4 f_{i+1}-f_{i+2}}{2 h}+\frac{1}{3} f^{\prime \prime \prime}(\xi) h^{2}
\end{gathered}
$$

The central difference gives better result when we use 2 points, or the
\qquad
\qquad
\qquad same accuracy as forward/beachward difference with more points.
Therefore, it's often better to use the central difference, \qquad
e.g. for h^{4} we have

$$
f_{i}^{\prime}=\frac{f_{i-2}-8 f_{i-1}+8 f_{i+1}-f_{i+2}}{12 h}+\frac{1}{30} f^{\prime \prime \prime \prime \prime}(\xi) h^{4}
$$

\qquad
\qquad
31

Difference formulas (second order)

$$
\begin{gathered}
f_{i}^{\prime \prime}=\frac{f_{i}-2 f_{i+1}+f_{i+2}}{h^{2}} f^{\prime \prime \prime}(\xi) h \\
f_{i}^{\prime \prime}=\frac{f_{i+1}-2 f_{i}+f_{i-1}}{h^{2}} \frac{1}{1 \overline{2}^{\prime \prime \prime \prime}(\xi) h^{2}} \\
f^{\prime \prime}{ }_{i}=\frac{2 f_{i}-5 f_{i+1}+4 f_{i+2}-f_{i+3}}{h^{2}}+\frac{11}{12} f^{\prime \prime \prime \prime}(\xi) h^{2}
\end{gathered}
$$

The central difference gives better result when we use 3 points, or the same accuracy as forward/beachward difference with more points.
Again, it's often better to use the central difference, \qquad

$$
f_{i}^{\prime \prime}=\frac{-f_{i-2}+16 f_{i-1}-30 f_{i}+16 f_{i+1}-f_{i+2}}{12 h^{2}}+\frac{1}{9 \sigma^{\prime}} f^{\prime \prime \prime \prime \prime \prime}(\xi) h^{4}
$$

32

Working with end-points

\qquad Eirst-order derivatives

For the left end-point we use forward difference \qquad

$$
\begin{gathered}
f_{0}^{\prime}=\frac{-3 f_{0}+4 f_{1}-f_{2}}{2 h}{ }_{3}^{1} f^{\prime \prime \prime \prime(\xi)} h^{2} \\
f_{0}^{\prime}=\frac{-11 f_{0}+18 f_{1}-9 f_{2}+2 f_{3}}{6 h}{ }_{4}^{1} f^{\prime \prime \prime \prime(\xi)} h^{3}
\end{gathered}
$$

and for the right end-point we use backward difference

$$
\begin{gathered}
f_{n}^{\prime}=\frac{f_{n-2}-4 f_{n-1}+3 f_{n}}{2 h}+\frac{1}{3} f^{\prime \prime \prime \prime}(\xi) h^{2} \\
f_{n}^{\prime}=\frac{-2 f_{n-3}+9 f_{n-2}-18 f_{n-1}+11 f_{n}}{6 h}+\frac{1}{4} f^{\prime \prime \prime \prime(\xi)} h^{3}
\end{gathered}
$$

\qquad
\qquad
\qquad
\qquad
\qquad

34

Example: for $f(x)=\sin (x)$ with $h=0.2$					
x	$f(x)=\sin (x)$	$\mathrm{f}^{\prime}(\mathrm{x})=\cos (\mathrm{x})$	2 point Back	2 point C	4 point C
0	0.00000	1.00000			
0.2	0.19867	0.98007	0.99335	0.97355	
0.4	0.38942	0.92106	0.95375	0.91493	0.92101
0.6	0.56464	0.82534	0.87612	0.81984	0.82529
0.8	0.71736	0.69671	0.76357	0.69207	0.69667
1	0.84147	0.54030	0.62057	0.53671	0.54027
1.2	0.93204	0.36236	0.45284	0.35995	0.36234
1.4	0.98545	0.16997	0.26705	0.16884	0.16996
1.6	0.99957	-0.02920	0.07062	-0.02901	-0.02920
1.8	0.97385	-0.22720	-0.12863	-0.22569	-0.22719
2	0.90930	-0.41615	-0.32275	-0.41338	-0.41612
2.2	0.80850	-0.58850	-0.50401	-0.58459	-0.58847
2.4	0.67546	-0.73739	-0.66517	-0.73249	-0.73735
2.6	0.51550	-0.85689	-0.79981	-0.85119	-0.85684
2.8	0.33499	-0.94222	-0.90257	-0.93595	-0.94217
3	0.14112	-0.98999	-0.96934	-0.98341	-0.98994

35

Example: for $f(x)=\sin (x)$ with twice smaller $h(h=0.1)$ \qquad

x	$f(\mathrm{x})=\sin (\mathrm{x})$	$f^{\prime}(x)=\cos (x)$	2 point Back	2 point C	4 point C	
0	0.00000	1.00000				
0.1	0.09983	0.99500	0.99833	0.99335		
0.2	0.19867	0.98007	0.98836	0.97843	0.98006	
0.3	0.29552	0.95534	0.96851	0.95375	0.95533	
0.4	0.38942	0.92106	0.93898	0.91953	0.92106	
0.5	0.47943	0.87758	0.90007	0.87612	0.87758	
0.6	0.56464	0.82534	0.85217	0.82396	0.82533	
0.7	0.64422	0.76484	0.79575	0.76357	0.76484	
0.8	0.71736	0.69671	0.73138	0.69555	0.69670	
0.9	0.78333	0.62161	0.65971	0.62057	0.62161	
1	0.84147	0.54030	0.58144	0.53940	0.54030	
1.1	0.89121	0.45360	0.49736	0.45284	0.45359	
1.2	0.93204	0.36236	0.40832	0.36175	0.36236	
1.3	0.96356	0.26750	0.31519	0.26705	0.26750	
1.4	0.98545	0.16997	0.21892	0.16968	0.16997	
1.5	0.99749	0.07074	0.12045	0.07062	0.07074	
1.6	0.99957	-0.02920	0.02079	-0.02915	-0.02920	
1.7	0.99166	-0.12884	-0.07909	-0.12863	-0.12884	
1.8	0.97385	-0.22720	-0.17817	-0.22682	-0.22720	
1.9	0.94630	-0.32329	-0.27548	-0.32275	-0.32329	
2	0.90930	-0.41615	-0.37003	-0.41545	-0.41615	36

Example: Fortran - first- or second-order derivatives

```
function deriv4(xx, xi, yi, ni, n, m)
    !========================================
    ! on three or four data points
    ! on three or four data points
    ! written by: Alex Godunov
    !---------------------------------------------
    ! input ... 
    ! xi() - the arrays of data abscissas
    yi() - the arrays of data ordinates
    ! ni - size of the arrays xi() and yi()
    ! m - order of a derivative (1 or 2)
    ! output
    ! deriv4 - the first- or second-order derivative
    =============*/
    implicit none
    double precision deriv4, xx
    i, n, m
    double precision xi(ni), yi(ni)
    double precision x(n), f(n)
    double precision x(n), f(n)
    integer i j k ix
```

37

Example (cont.)

```
! exit if too high-order derivative was needed
! or too many base points were needed for derivatives
    if (m>2 .or. m>= n .or. n>5) then
    deriv4 = 0.0
    return
end if
If x is ouside the xi(1)-xi(ni) interval set deriv4=0.0
    if (xx < xi(1) .or. xx > xi(ni)) then
        deriv4
    nd if
! a binary (bisectional) search to find i so that xi(i-1) < x <
xi(i)
i = 1
do while (j > i+1)
    k = (i+j)/2
    if (xx<xi(k)) then
        j = k
        i = k
    end if
end do
```

38

Example (cont.)

! shift i that will correspond to n-th order of interpolation
! the search point will be in the middle in $x_{-} i, x_{-} i+1, x_{-} i+2$
! the search point will be in the middle in $x_{-} i, x_{-} i+1, x_{-} i+2 \ldots$
$i=1+1-n / 2$
! check boundaries: if i is ouside of the range [1, ...n]-> shift i if $(i<1) i=1$
if (i $+n>n i$) $i=n i-n+1$
! just want to use index i
! in = 1
do $i=1, n$
$f(i)=y i(i x+i-1)$
$x(1)=x i(i x+i-1)$
end do

39

Example (cont.)

```
! calculate divided difference coefficients
d1 = f(2) - f(1)
if (n > 2) d2 = f(3)-2.0*f(2) + f(1)
if (n>3) d3 =
s = (xx-x(1))/h
! calculate the first order derivative
if (m == 1) then
    (1.0/h)*d1
        if (n>2) deriv4 = deriv4 + (1.0/h)*((2.0*s-1.0)/2.0)*d2
        if (n>3) deriv4 = deriv4 + (1.0/h)*((3.0*s*s-6.0*s+2.0)/6.0)*d3
end if
calculate the second order derivativ
if (m == 2 .and. n>2) then
*)
if (n > 3) deriv4 = deriv4 + (1.0/h**2)*(s-1.0)**d
end if
end function deriv4
```

40

```
Example: Fortran - based on Lagrange interpolation
function deriv3(xx, xi, yi, ni, m)
l=============================================================
! Evaluate first- or second-order derivatives
! using three-point Lagrange interpolation
! written by: Alex Godunov
! input
!! xx - - the abscissa at which the interpolation is to be evaluated
! xi() - the arrays of data abscissas
M xi() - the arrays of data abscissas
|i - size of the arrays xi() and yi()
m - order of a derivative (1 or 2)
m - order of a derivative (1 or 2)
! output
! deriv3 - interpolated value
*===========================================**/
implicit none
integer, parameter :: n=3
double precision deriv3, xx
integer ni, m
double precision xi(ni), yi(ni)
double precision }x(n),f(n
integer i, j, k, ix
```

41

Example (cont.)

```
! exit if too high-order derivative was needed,
    if (m>2) then
    deriv3 =
return
! if x is ouside the xi(1)-xi(ni) interval set deriv3=0.0
if (xx < xi(1) .or. xx > xi(ni)) then
    if (xx < xi(1)
    \mathrm{ return }
return
! a binary (bisectional) search to find i so that xi(i-1)< x< xi(i)
i = 1
j = ni
do while (j > i+1)
    k = (i+j)/2
    if (xx < xi(k)) then
    j = k
    else
    i = k
    end if
end do
```


43

44

Error estimation and extrapolation

\qquad
The error can be estimated by evaluating the algorithm for two different step sizes h. The error estimate can be used both for error control and extrapolation (not only for derivatives).

Consider a numerical algorithm which approximates an exact calculation with an error that depends on an increment, h

$$
f_{\text {exact }}=f(h)+A h^{n}+B h^{n+m}+C h^{n+2 m}+\cdots
$$

where n is the order of the leading error term and m is the increment in the order of the following error terms. Applying the algorithm at two increment

$$
\begin{gathered}
f_{\text {exact }}=f(h)+A h^{n}+O\left(h^{n+m}\right) \\
f_{\text {exact }}=f(h / R)+A(h / R)^{n}+O\left(h^{n+m}\right)
\end{gathered}
$$

then, the difference

$$
0=f(h)-f(h / R)+A h^{n}-A(h / R)^{n}+O\left(h^{n+m}\right)
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

$$
\text { sizes, } h_{1}=h \text { and, gives } h_{2}=h / R \text { gives }
$$

\qquad
\qquad

45

Error estimation and extrapolation (cont.)
$\qquad$$0=f(h)-f(h / R)+A h^{n}-A(h / R)^{n}+O\left(h^{n+m}\right)$ $0=f(h)-f(h / R)+A h^{n}\left(1-1 / R^{n}\right)+O\left(h^{n+m}\right)$
Solving for the error term $A h^{n}$ gives
Error $(h)=A h^{n}=\frac{R^{n}}{R^{n}-1}(f(h / R)-f(h))+O\left(h^{n+m}\right)$
Error $(h / R)=A(h / R)^{n}=\frac{1}{R^{n}-1}(f(h / R)-f(h))+O\left(h^{n+m}\right)$
The error estimates can beadded to the approximate results to yield an
improved approximation.
$\qquad f_{\text {exact }}=f(h / R)+A(h / R)^{n}+O\left(h^{n+m}\right)$

This process is called extrapolation
Extrapolated value $=f(h / R)+\frac{1}{R^{n}-1}(f(h / R)-f(h))+O\left(h^{n+m}\right)$
\qquad
46

