

1


2

## Key idea

The idea behind Gaussian quadrature is to approximate the integral of the desired function, $f(x)$, in terms of the weighted sum of the function evaluated at some systematically chosen points.

$$
\int_{a}^{b} f(x) d x \approx \sum_{i=1}^{n} C_{i} f\left(x_{i}\right)
$$

Although this looks almost exactly the same as the previously considered techniques, the key difference is how we obtained the values of $x_{i}$ and $C_{i}$.
When the locations $x_{i}$ are prespecified, this approach yields the best possible result.

Attention: the function should be a known function, such that we can evaluate $f\left(x_{i}\right)$ at any given point.

## Additional degree of freedom

$\qquad$

$$
\int_{a}^{b} f(x) d x \approx \sum_{i=1}^{n} c_{i} f\left(x_{i}\right)
$$

If $n$ points are used, $2 n$ parameters are available: $x_{i}(i=1,2, \ldots, n)$ and $C_{i}(i=1,2, \ldots, n)$.
With $2 n$ parameters it is possible to fit a polynomial of degree $2 n-1$. Gaussian integration (or Gaussian quadrature) produces higher accuracy than the Newton-Cotes formulas with the same number of function evaluations.

If the function to integrate is not smooth, then Gaussian quadrature may give lower accuracy

4

## Procedure

$\qquad$

1. Gaussian quadrature formulas are obtained by choosing the $n$ values of $x_{i}$ and $C_{i}$ so that the integral of a polynomial of degree $2 n-1$ is exact, i.e. if $f(x) \approx P_{2 n-1}(x)$ then

$$
\int_{a}^{b} P_{2 n-1}(x) d x=\sum_{i=1}^{n} C_{i} P_{2 n-1}\left(x_{i}\right)
$$

2. Use these same values of $\left\{x_{i}, C_{i}\right\}$ for any other smooth function.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

5

Gaussian quadrature for $\mathrm{n}=\mathbf{2}(2 \mathrm{n}-1=3) \int_{a}^{b} P_{2 n-1}(x) d x=\sum_{i=1}^{n} c_{i} P_{2 n-1}\left(x_{i}\right)$ $\qquad$

$$
P_{3}(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}
$$

Left-hand side $\qquad$

$$
\begin{aligned}
& \int_{a}^{b}\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}\right) d x=\left[a_{0} x+a_{1} \frac{x^{2}}{2}+a_{2} \frac{x^{3}}{3}+a_{3} x^{4}\right]_{a}^{b}= \\
& \quad=a_{0}(b-a)+a_{1}\left(\frac{b^{2}-a^{2}}{2}\right)+a_{2}\left(\frac{b^{3}-a^{3}}{2}\right)+a_{3}\left(\frac{b^{4}-a^{4}}{3}\right)
\end{aligned}
$$

$\qquad$
$\qquad$
Right-hand side
$C_{1} P_{3}\left(x_{1}\right)+C_{2} P_{3}\left(x_{2}\right)=C_{1}\left(a_{0}+a_{1} x_{1}+a_{2} x_{1}^{2}+a_{3} x_{1}^{3}\right)+C_{2}\left(a_{0}+a_{1} x_{2}+a_{2} x_{2}^{2}+a_{3} x_{2}^{3}\right)$

$$
=a_{0}\left(C_{1}+C_{2}\right)+a_{1}\left(C_{1} x_{1}+C_{2} x_{2}\right)+a_{2}\left(C_{1} x_{1}^{2}+C_{2} x_{2}^{2}\right)+a_{3}\left(C_{1} x_{1}^{3}+C_{2} x_{2}^{3}\right)
$$

Next, we want to match the left-hand side (LHS) and the right-hand side (RHS)

## Gaussian quadrature for $\mathrm{n}=2$ (cont.)

$\qquad$

$$
a_{0}(b-a)+a_{1}\left(\frac{b^{2}-a^{2}}{2}\right)+a_{2}\left(\frac{b^{3}-a^{3}}{2}\right)+a_{3}\left(\frac{b^{4}-a^{4}}{3}\right)=
$$

$\qquad$
$=a_{0}\left(C_{1}+C_{2}\right)+a_{1}\left(C_{1} x_{1}+C_{2} x_{2}\right)+a_{2}\left(C_{1} x_{1}^{2}+C_{2} x_{2}^{2}\right)+a_{3}\left(C_{1} x_{1}^{3}+C_{2} x_{2}^{3}\right)$

$$
\begin{array}{ll}
\text { Four unknowns and four equations } & \text { and the solutions } \\
b-a=C_{1}+C_{2} & C_{1}=\frac{b-a}{2} \\
\frac{b^{2}-a^{2}}{2}=C_{1} x_{1}+C_{2} x_{2} & C_{2}=\frac{b-a}{2} \\
\frac{b^{3}-a^{3}}{3}=C_{1} x_{1}^{2}+C_{2} x_{2}^{2} & x_{1}=\left(\frac{b-a}{2}\right)\left(-\frac{1}{\sqrt{3}}\right)+\frac{b+a}{2} \\
\frac{b^{4}-a^{4}}{4}=C_{1} x_{1}^{3}+C_{2} x_{2}^{3} & x_{1}=\left(\frac{b-a}{2}\right)\left(+\frac{1}{\sqrt{3}}\right)+\frac{b+a}{2}
\end{array}
$$

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
7

## Parameterization

Gaussian quadrature is typically written in terms of a parameter $t$,
defined via $\qquad$
$x=\frac{b-a}{2} t+\frac{b+a}{2}$.
This replaces the integration range from $x \in[a, b]$ to $t \in[-1,+1]$
If we define $F(t) \equiv f[x(t)]$ and redefine $C_{i}$ as $C_{i} \Rightarrow C_{i}(b-a) / 2$ then the Gaussian quadrature can be written as

$$
\int_{a}^{b} f(x) d x=\frac{b-a}{2} \int_{-1}^{1} F(t) d t=\frac{b-a}{2} \sum_{i=1}^{n} c_{i} F\left(t_{i}\right)
$$

There is no inherent advantage of this form, since they are mathematically identical, but it is common in the literature.

8
Re-deriving the previous result $\quad \int_{-1}^{1} F(t) d x=\sum_{i=1}^{n} c_{i} F\left(t_{i}\right)$
With this, we can re-derive the values of $\left\{t_{1}, t_{2}, C_{1} C_{2}\right\}$ by asserting that
the integrals are exact for $F(t)=1+t+t^{2}+t^{3}$. This gives four
different constraints,
$\int_{-1}^{1} 1 d t=2=C_{1}+C_{2}$
$\int_{-1}^{1} t d t=0=C_{1} t_{1}+C_{2} t_{2}$
$\int_{-1}^{1} t^{2} d t=\frac{2}{3}=C_{1} t_{1}^{2}+C_{2} t_{2}^{2} \quad \int_{-1}^{1} F(t) d t=F\left(-\frac{1}{\sqrt{3}}\right)+F\left(+\frac{1}{\sqrt{3}}\right)$
Solving the system $\ldots C_{1}=1, C_{2}=1, t_{1}=-t_{2}=1 / \sqrt{3}-\quad 9$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
We can summarize the values for $\left\{t_{i}, C_{i}\right\}$ polynomials of second, third and fourth order.

| $\mathbf{n}$ | $t_{i}$ | $C_{i}$ |
| :---: | :---: | :---: |
| $\mathbf{2}$ | $-1 / \sqrt{3}$ | 1 |
|  | $1 / \sqrt{3}$ | 1 |
| 3 | $-\sqrt{0.6}$ | $5 / 9$ |
|  | 0 | $8 / 9$ |
|  | $\sqrt{0.6}$ | $5 / 9$ |
|  |  |  |
| 4 | -0.8611363116 | 0.3478548451 |
|  | -0.3399810436 | 0.6521451549 |
|  | 0.3399810436 | 0.6521451549 |
|  | 0.8611363116 | 0.3478548451 |

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
10

Example: 4-point Gaussian quadrature C++ $\qquad$

```
/* Numerical integration of f(x) on [a,b
    method: Gauss (4 points)
input:
    a,b - the two end-points (interval of integration)
output: r - result of integration
double gauss4(double(*f)(double), double a, double b)
const int n = 4;
    double ti[n] = {-0.8611363116, -0.3399810436
    0.3399810436, 0.8611363116};
    double ci[n] = { 0.3478548451, 0.6521451549,
    0.6521451549, 0.3478548451};
    r = 0.0;
    m=(b-a)/2.0
    c=(b+a)/2.0;
    for (int i = 1; i <= n; i=i+1)
    {r = r + ci[i-1]*f(m*ti[i-1] + c); }
    r = r*m;
    return r;
```

11

Example: 8-point Gaussian quadrature C++

```
/* Numerical integration of f(x) on [a,b]
    method: Gauss (8 points using symmetry)
input:
    f - a single argument real function
    a,b - the two end-points (interval of integration)
output: r - result of integration *
    double gauss8(double(*f)(double), double a, double b)
{ const int n = 4
    double ti[n] = {0.1834346424, 0.5255324099
    0.7966664774, 0.9602898564};
    double ci[n] = {0.3626837833, 0.3137066458,
    double r, m, c,
    r = 0.0;
    m=(b-a)/2.0;
    c=(b+a)/2.0
    for (int i = 1; i <= n; i=i+1)
    {r=r+ci[i-1]*(f(m*(-1.0)*ti[i-1]+c)+f(m*ti[i-1]+c));
    r = r*m;
    return r;
```


$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
13

Example $\int_{0}^{\pi} \sin x d x=2.0$
Now let's evaluate the integral considered before sing Trapezoid, Simpson and Gaussian quad. with 4 and 8 points.. $\qquad$
Intervals Trapeze. Simpson
$\begin{array}{lll}2 & 1.570796 & 2.094395\end{array}$
$\begin{aligned} \text { Gauss 4 } & =1.999984 \\ \text { Gauss 8 } & =2.000000\end{aligned}$ $\qquad$ $8 \quad 1.974232 \quad 2.000269$ $\begin{array}{lll}16 & 1.993570 & 2.000017\end{array}$ $32 \quad 1.998393 \quad 2.000001$ $64 \quad 1.999598 \quad 2.000000$ $\begin{array}{lll}128 & 1.999900 & 2.000000 \\ 256 & 1.999975 & 2.000000\end{array}$ $\begin{array}{lll}256 & 1.999975 & 2.000000\end{array}$
$\begin{array}{rrr}512 & 1.999994 & 2.000000 \\ 1024 & 1.999998 & 2.000000\end{array}$
$\begin{array}{lll}1024 & 1.999998 & 2.000000\end{array}$ 14
$\qquad$
$\qquad$
$\qquad$
$\qquad$

14

## Generalized Gaussian quadratures

Gaussian method can be generalized to a wider class of integrals
$\int_{a}^{b} g(x) f(x) d x$

|  | $a, b$ | $g(x)$ |
| :--- | :---: | :---: |
| Gauss-Legendre | $[-1,1]$ | 1 |
| Gauss-Jacobi | $(-1,1)$ | $(1-x)^{\alpha}(1+x)^{\beta}$ |
| Gauss-Chebyshev | $(-1,1)$ | $1 / \sqrt{1-x^{2}}$ |
| Gauss-Hermite | $(-\infty, \infty)$ | $\exp \left(-x^{2}\right)$ |
| Gauss-Laguerre | $[0, \infty)$ | $\exp (-x)$ |

Tables with coefficients can be found in "Handbook of Mathematical Functions, With Formulas, Graphs, and Mathematical Tables" by Abramowitz and Stegun.

$\qquad$
$\qquad$

16

## Automatic integration

"The aim of an automatic integration scheme is to relieve the person who has to compute an integral of any need to think." $\qquad$
Davis P. J., and P. Rabinowitz, Methods of Numerical Integration (Dover, 2nd edition) (2007) $\qquad$

- While any desired accuracy (within round-off limits) can be obtained by taking smaller and smaller increments, this approach is generally $\qquad$ undesirable, since evaluation of the integrand function $f(x)$ is the
$\qquad$
- Imagine that you do not know how many intervals are needed to achieve convergence. $\qquad$ ${ }^{17}$ $\qquad$
17


## Automatic integration from user perspective

$\qquad$
User-friendly routines where the user enters

1. the limits of integration $\qquad$
selects the routine for computation of $f(x)$
2. provides a tolerance $\varepsilon$
3. enters the upper bound $N$ for the number of functional computations.

Then the program exits either

1. with the computed value which is correct within the $\varepsilon$
2. or with a statement that the upper bound $N$ was attained but the tolerance was not achieved, and the computed result may be the "best" value of the integral determined by the program.
$\qquad$
$\qquad$
$\qquad$
$\qquad$ ${ }^{18}$ $\qquad$
18

$$
\begin{aligned}
& \text { Objectives of automatic integration } \\
& \text { Get a value } I \text { of the integral, which is allegedly correct to within the } \\
& \text { tolerance, that is, } \\
& \qquad\left|I-\int_{a}^{b} f(x) d x\right| \leq \varepsilon \\
& \text { or } \\
& \qquad \frac{\left|I-\int_{a}^{b} f(x) d x\right|}{\int_{a}^{b}|f(x)| d x} \leq \varepsilon \\
& \text { or both } \\
& \qquad\left|I-\int_{a}^{b} f(x) d x\right| \leq \max \left(\varepsilon_{a b s}, \varepsilon_{r e l}\left|\int_{a}^{b}\right| f(x)|d x|\right) \\
& \text { where } \varepsilon_{a b s} \text { and } \varepsilon_{r e l} \text { are absolute and relative tolerances, respectively. } 19
\end{aligned}
$$

19

## General exit criterion for automatic integration

Let $I_{1}(f), I_{2}(f), \ldots I_{n}(f), I_{n+1}(f)$ are iterative refinements of the integral, then the program exits and prints out the value $I_{(n+1)}(f)$.

If the upper bound $N$ is achieved without a "yes" to the criterion, the program selects the value of $n$ for which

$$
\left|I_{n+1}(f)-I_{n}(f)\right|=c_{n}
$$

is minimum, and prints out both $I_{n}(f)$ and the difference $c_{n}$.

20

## Efficiency

One of goals of automatic integration is to achieve the desired accuracy with the minimum number of integrand function evaluations
Therefore it is wise to choose rules of integration in such a way that all or almost all the information gathered at the $\mathrm{n}^{\text {th }}$ stage is not discarded but is used in forming the $(n+1)^{\text {th }}$ stage.
Examples of this are the trapezoidal rules using $2^{k}+1$ points, the Gauss-Kronrod sequence, the generalized composite Newton-Cotes rules, i.e., rules in which a particular Newton-Cotes integration rule (usually closed and containing an odd number of points) is used in each subinterval of a general partition of the interval of integration.
$\qquad$

## Required qualities of automatic integration

The qualities required of an automatic integrator are efficiency, reliability, and robustness.

Efficiency is usually measured by either the amount of computer time or the number of integrand evaluations required to calculate a set of integrals.

A reliable program is one that if it exits successfully, then we are reasonably certain that the magnitude of the actual error does not exceed the requested tolerance.

Robustness which means that the program will integrate correctly a broad range of integrals with an occasional failure.
It is virtually impossible to satisfy to highest degree all three qualities in one program.

22

## Two possibilities for automatic integration

1. The non-adaptive schemes: the integration points are chosen in a fixed manner which is independent of the nature of the integrand, although the number of these points depends on the integrand continue to subdivide all subintervals, say by half, until overall error estimate falls below desired tolerance Not an inefficient way, but easy to implement.
2. The adaptive schemes: the points at which the integration is carried out are chosen in a manner that is dependent on the nature of the integrand - the domain of integration is selectively refined to reflect behavior of particular integrand function on a specific subinterval. Generally very efficient, but implementation can be challenging

23

## The non-adaptive schemes

Generally increasing number of interval and compare results, for example for $I(h), I(h / 2), I(h / 4)$... till the tolerance is achieved as $|I(h / n)-I(h / 2 n)| \leq \varepsilon$, where $h$ the initial size of the intervals, and $n=1,2 \ldots$ $\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$


25

The adaptive schemes
Adaptive integration is a generic name denoting a strategy to achieve the desired accuracy with the minimum number of integrand function evaluations.

The overall range of integration is broken into several subranges, and each subrange is evaluated to the desired accuracy by subdividing each individual subrange as required until the desired accuracy is obtained.


26


$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
28

```
cont.
! Simpson's integrals for the left and right intervals
s2 =h(i)*(fm(i)+4.0*f3+fb(i))/6.0
*** stage 2b ***
    l
    f2=fm(i)
    step = h(i)
    err = tol(i)
    0 = s(i)
    deep = il(i)
    ! the current level has been computed
    | i=i-1
        l
        sum = sum + (s1+s2)
    ***sestage 2e ***
    l check if the code can continue to subdivide intervals
        write (6,200) (6,201) dee
        exit
```

29

## cont.

```
*** stage 2f *
    make smaller intervals (i.e. h=h/2)
        data for the right subinterva
            x(i) = x0 + step
            l
            m(i) = f3
            fm(i)=f4
            tol(i)= err/2.0
            tol(i)= err/2.0
    c
            i= i+1 
            l
            fb(i)=f2
            h(i)=h(i-1)
            s(i)=s1(i-1)
Mend if
lol
l return
end subroutine simpson 1
```

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

## Example: with recursive function



31

Example: Quanc8 - efficient, reliable and robust (C++) $\qquad$ void quanc 8 double( dfun) (double), double a , double b,
double\& result, double\& errest, int\& nofun, double\& flag)
estimate the integral of $f u n(x)$ from a to $b$ to a user provided tolerance.
an automatic adaptive routine based on the 8 -panel newton-cotes rule. $\qquad$
$\begin{gathered}\text { input: } \\ \text { fun } \\ \text { a }\end{gathered} \quad \begin{aligned} & \text { the name of the integrand function subprogram fun }(x) \text {. } \\ & \text { the lower Limit of integration. }\end{aligned}$
$\begin{array}{ll}\text { a } & \text { the lower limit of integration. } \\ \text { the upper limit of integration. (b may be less than a.) } \\ \mathrm{b} & \text { a }\end{array}$
relerr
abserr a relative error tolerance. (should be non-negative)
an absolute error tolerance. (Should be non-negative)
result an approximation to the integral hopefully satisfying the
errest an estimate of the magnitude of the actual error
nlag the number of function values used in calculation of result
a reliability indicator. if flag is zero, then result
probably satisfies the error tolerance. if flag is $x \times x$. yyy, then $x \times x=$ the number of intervals which have
not converged and 0 yyy $=$ the fraction of the interval
comments:
written by Alex Godunov

* the program is based on a fortran version of program quanc8.f

〔 double we, w1, w2,w3,w4, area, $\times 0$, , f0, stone, step, cor11, temp;

int
int
kevm;

32

```
cont.
```



```
    levmax = 30
    Levout = 6; ,
```



```
    /()
    1 = 23552.0 /14175.0;
    w3 = 41984.0/14175.0;
    // w4 = =-18160.0 1417itize running sums to zero.
    l
    l
```



```
    // if if** (a == b) return; ine ( 
    lev = 0;
    x0 =a;
```



```
    lon
    stone=(b-a)/ 16.0; 
    * (2)
```

$\qquad$
$\qquad$
$\qquad$

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
34
cont.

```
// multiple logic conditions for the convergence test
        (lev<levmin) key =1
        else if (lev >= levmax)
        lol
        else if, (esterr <= tolerr)
        \begin{subarray}{c}{\mathrm{ keye}}\\{\mathrm{ kele}}\\{\mathrm{ elee}}\end{subarray}
        *)
/// case **: stage 5 % ***********)
        nim=2*nim;
        *)
        {or(i=1; i< <8; i=i+1)
        fsave[i][lev] = f[i+8]
        }assemble left hand elements for immediate use
```



```
            cic
```

        \(\underset{\substack{\text { continue; } \\ \text { break; }}}{\}} /\) go to start of stage 3 "central calculation"
    35

```
cont.
    1/ case 2 2********************************* (mark 62)
    flag = flag + 1.0;
// case 3 3 3 *i******************************* (mark 60)
// **** stage 6 **** trouble section
    number = function vatues is about to exceed limit
    Mofin = 2*nofin
    flag= flag + (b-x0)/(b-a);
// case 4 4********************************* (continue mark 70)
    M,
    // defaut in******************************* (continue mark 70)
    break.
// break;
}// llol
    result = result + qnow;
    cor11 = cor11 + qdiff / 1023.0
    // locate next interval
        { nim = nim/2;
    } nim = nim + 1;
    Nim = nim + 1; ;
```


$\qquad$

37

Example: eps=10-8
$\int_{0}^{\pi} \sin x d x$
Adaptive Simpson $=2.00000001$ Tol. estimated $=0.00000001$ Function calls $=121$

Integral Quanc8 $=2.0000000$
Tol. estimated $=2.00000000$
$\begin{array}{llr}\text { Tol. estimated } & = & 0.00000000 \\ \text { Function calls } & = & 33\end{array}$
Adaptive G7K15 $=2.00000000$
Tol. estimated $=0.00000000$ Function calls

Adaptive G10K21 = 2.00000000
Tol. estimated $=0.00000000$ Function calls = 21

## 

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

38

Example: eps=10-8 $\qquad$

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

## What to do if ...?

Suppose that an automatic integration scheme is applied to a function $f(x)$ over an interval $[a, b]$ with a given error tolerance $\varepsilon$ and exits with an indication of failure. What is one to do next?

1. Increase, if possible, the number of functional evaluations allowed.
2. Raise the error tolerance $\varepsilon$.
3. Subdivide the interval $[a, b]$ into two or more subintervals, preferably in a random manner, and apply the integration scheme separately on each subinterval.
4. Try a different automatic integration scheme, perhaps one with special features suitable for the integrand in question.
5. Try to locate the interior singularities of the integrand and integrate between them, thus converting interior singularities to endpoint singularities which are much more tractable.

40

## Attention

Adaptive programs tend to be effective in practice but it can be fooled.
Interval of integration may be very wide but
"interesting" behavior of integrand is confined to narrow range
Sampling by automatic routine may miss interesting part of integrand behavior, and resulting value for integral may be completely wrong.


Such examples can be found in the excellent book
by Davis and Rabinowitz, chapter 6.

41

## Libraries

All respected numerical libraries have routines for adaptive integration.
Adaptive programs can be found also at $\qquad$
https://ww2.odu.edu/~agodunov/computing.html
Fortran: $\qquad$
adaptive integration based on Simpson rule (simpson2.f90),
based on Gauss quadratures (gauss2.f90), adaptive integration using recursive calls (gaussA.f90), adaptive integration based on NewtonCotes quadrature (quanc8.f)
C++
adaptive integration based on Newton-Cotes quadrature (quanc8.cpp)


43

Improper integrals: Type 1 - Infinite interval

$$
\int_{0}^{\infty} f(x) d x \quad \int_{-\infty}^{\infty} f(x) d x
$$

There several tricks one could use to treat

1. Transform variable of integration so that the new interval is finite: example: use $y=\exp (-x)$, then $[0, \infty]$ goes into $[1,0]$ (but -do not introduce singularities)
2. Replace infinite limits of integration by carefully chosen finite values, or use approach to the limit
3. Use asymptotic behavior (if possible) to evaluate the "tail" contribution.
4. Use nonlinear quadrature rules designed for infinite intervals

44

Example: Replacing infinite limits
Generically we can replace infinite-limits with a finite value and then take the limit numerically

$$
\int_{0}^{\infty} f(x) d x=\lim _{r \rightarrow \infty} \int_{0}^{r} f(x) d x
$$

We can, for example, define the upper bound $r_{n}=2^{n}$, and consider the following integral
$I_{n}=\int_{0}^{r_{n}} \frac{e^{-x}}{x^{4}+1} d x$

| $n$ | $I_{n}$ | Number of function <br> evaluations |
| :--- | :---: | :---: |
| 0 | .57202582 | 35 |
| 1 | .62745952 | 52 |
| 2 | .63043990 | 100 |
| 3 | .6304761 | 178 |
| 4 | .63047766 | 322 |
| Exact | .63047783 |  |

$\qquad$
45

$$
\int_{0}^{\infty} \frac{\sqrt{x}}{x^{2}+1} d x \approx \int_{0}^{a} \frac{\sqrt{x}}{x^{2}+1} d x+\frac{2}{\sqrt{a}}
$$

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
46

Improper integrals: Type 2-discontinuous integrands $\qquad$
Example

$$
\int_{0}^{1} f(x) d x
$$

when $f(x)$ is discontinuous at 0 .
$\qquad$
Formal definition

$$
\int_{0}^{1} f(x) d x=\lim _{t \rightarrow 0} \int_{t}^{1} f(x) d x
$$

Proceeding to the limit

$$
\int_{0}^{1} f(x) d x R=\int_{R_{1}}^{1} f(x) d x+\int_{R_{2}}^{R_{1}} f(x) d x+\cdots \quad R_{n}=2^{-n}
$$

Other methods: change variables, elimination of singularity, Gauss type quadratures,

47

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

Improper integrals: Type 3 - integrable singularity $\qquad$

$$
\int_{a}^{b} \frac{f(x)}{x-c} d x \quad a \leq c \leq b
$$

$\qquad$
Method 1.
write $f(x)=g(x)+h(x)$ where $g(x)$ can be integrated numerically, and
$\qquad$ $h(x)$ can be done analytically

Example: problem at $x=0$
$f(x)=\frac{1}{\sqrt{x\left(1+x^{2}\right)}}$
$f(x)=\frac{1}{\sqrt{x\left(1+x^{2}\right)}}=\left(\frac{1}{\sqrt{x\left(1+x^{2}\right)}}-\frac{1}{\sqrt{x}}\right)+\frac{1}{\sqrt{x^{2}}}$
$\qquad$
49

Improper integrals: Type 3 - integrable singularity $\qquad$

$$
\int_{a}^{b} \frac{f(x)}{x-c} d x \quad a \leq c \leq b
$$

$\qquad$
Method 2.
write $f(x)=\rho(x) h(x)$ wheren $\rho(x)$ is one of known functions for a
$\qquad$ quadrature, like Gauss-Christoffel, Jacobi, Chebyshev, ..

Method 3:
Using non-standard quadrature rules allowing explicitly for the singularity

Improper integrals: Type 4-Principal value integrals $\qquad$

$$
\lim _{\varepsilon \rightarrow 0} \int_{0}^{\infty} \frac{f(x)}{x-x_{0} \pm \varepsilon} d x=P V \int_{0}^{\infty} \frac{f(x)}{x-x_{0}} d x \mp i \pi f\left(x_{0}\right)
$$

$\qquad$
The definition of the principal value integral

$$
P V \int_{a}^{b} \frac{f(x)}{x-x_{0}} d x=\lim _{\mu \rightarrow 0}\left[\int_{a}^{x_{0}-\mu} \frac{f(x)}{x-x_{0}} d x+\int_{x_{0^{+}}}^{b} \overline{f(x)} d x\right]
$$

We can use proceeding to the limit for the integral.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

## Improper integrals: Type 4 - Principal value integrals

$\qquad$
Suppose $f(x)$ is unbounded in the neighborhood of $x=c$ so that the principal value of the integral is

$$
P V \int_{a}^{b} f(x) d x=\lim _{\mu \rightarrow 0}\left[\int_{a}^{x_{0}-\mu} f(x) d x+\int_{x_{0}+\mu}^{b} f(x) d x\right]
$$

Let us take $c=0$, and the limits of the integral are from $-a$ to $a$.

$$
\left.g(x)=\frac{1}{2}-[f(x)-f(-x)], \quad h(x)=\frac{1}{2}-f f(x)+f(-x)\right]
$$

It is possible to show that (see Davis and Rabinowitz, page 182)

$$
P V \int_{-a}^{a} f(x) d x=\int_{-a}^{a}(f(x)+f(-x)) d x
$$

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
52

## Integration of rapidly oscillatory functions

Example

$$
\int_{a}^{b} f(x) \cos n x d x
$$

Recommendation: use methods or programs specially designed to $\qquad$ calculate integrals with oscillating functions, e.g., Filon's method, Clenshaw-Curtis method, ..

Methods: integration between zeros, use of Gauss rules for Fourier coefficients, use of Chebyshev and Legendre expansions and many more


53

## Other cases

- Integration of periodic functions*
- Slowly convergent integrals
- Singular integrals
- Integrating tabular data
- Contour integrals
- Indefinite integrals (integration via differential equations)
*see also Fast Fourier Transform (FFT)

$\qquad$
$\qquad$

55

## Principal challenges

The difficulty of integration is greatly increased when passing from one dimension to several dimensions. $\qquad$

1. The behavior of functions of several variables can be considerably more complicated than that of functions of one variable $\qquad$
2. it usually takes much more time to evaluate a function of several variables.
As the dimension becomes higher, more and more points are necessary for successful approximation, and even with current computing speeds the number of functional evaluations may be an $\qquad$ important consideration. The necessity for economization has, in fact, led to approximate integration by Monte Carlo methods. $\qquad$
$\qquad$
56

Before actually integrating ... $\qquad$
Try to make it easier to integrate numerically

1. Change of order of integration $\qquad$
2. Change of variables $\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
58

Example: 2 D sequential integration $\qquad$

| ```! MAIN PART a = 0.0 b = 1.0 eps = 1.0e-7 integral = simpson2D(f,a,b stop End``` | $\int_{0}^{1} d x \int_{0}^{\sin (x)}(x+y)^{2} d y=0.48258512$ <br> eps) |
| :---: | :---: |
| Function $\mathbf{f}(\mathbf{x})$ common/fxy/x1 |  |
| $c=0.0$$d=\sin (x)$ |  |
| ```x1 = x f = simpson2D(g,c,d,eps) return end``` | ! x1 passes the value of $x$ to $g(y)$ |
| Function $g(y)$ common/fxy/x |  |
| $g=(x+y)^{* * 2}$ <br> return <br> end |  |

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$ common/fxy/x return end

59

$\qquad$
Summary

1. Plot the function - A picture is worth a thousand words
2. Analyze the function: smooth or oscillating, functions with
singularities, narrow peaks, ...
3. Analyze to type of the integral (regular, improper, ...)
4. 

Can you transform the integral to a simpler form?
5.
6elect a method that fits the function and the integral
6. Always test any program for integration before using for your
calculans.
$\qquad$
61

