

1

Boundary value problem vs. initial value problem
The boundary value problem is more challenging than the initial value problem both analytically and numerically
For initial value problems

- Sufficient initial conditions determine unique solutions
- Same numerical methods work for both linear and nonlinear ODE

For boundary value problems

- The solution may not exist for given boundary conditions, or it may not be unique
- Some numerical methods work only for linear ODE
example: $y^{\prime \prime}+y=0$.
for $y(0)=1, y(\pi / 2)=0, \quad y(x)=\cos x$
for $y(0)=0, y(\pi)=0, \quad y(x)=\mathrm{C} \sin x$ (not unique)
for $y(0)=1, y(\pi)=1 \quad$ no solution
3

Second-order ODE with boundary conditions

Linear second-order ODE as an excellent starting point

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=f(x)
$$

General boundary conditions

$$
\begin{gathered}
a_{1} y^{\prime}(0)+b_{1} y(0)=c_{1} \\
a_{2} y^{\prime}(l)+b_{2} y(l)=c_{2}
\end{gathered}
$$

Specific types of boundary conditions

1. Dirichlet boundary conditions

$$
y(0)=y_{0}, \quad y(l)=y_{l}
$$

2. Neumann boundary conditions

$$
y^{\prime}(0)=y_{0}^{\prime}, \quad y^{\prime}(l)=y_{l}^{\prime}
$$

3. Mixed boundary conditions - see general boundary conditions

Part 2:

The shooting method

Key idea for the shooting method

- The key idea of the shooting method is to transform the boundary value ODE into a system of first-order ODEs and solve as an initial value problem.
- Only boundary condition on one side is used as one of the initial conditions. The additional initial condition is assumed.
- Then an iterative approach is used to vary the assumed initial condition till the boundary condition on the other side is satisfied.

7

From boundary value problem to initial value problem

A second guess $y^{\prime}\left(x_{1}\right)=c_{2}$ gives another solution with $y_{c_{2}}\left(x_{2}\right) \neq y\left(x_{2}\right)$.

We can use the two solutions to initiate the iterative search to find such $y^{\prime}\left(x_{1}\right)$ that the right boundary condition is satisfied.
For a non-linear ODE this is a zero finding problem for a nonlinear function of c such that we need to find c such that
$f(c)=y\left(x_{2}\right)-y_{c}\left(x_{2}\right)=0$

9
Short review for solving a nonlinear problem $f(x)=0$
For our problem in hand it is better to proceed with "open domain methods". For the Newton's method we have

$$
f(x)=f\left(x_{0}\right)+\left(x-x_{0}\right) f^{\prime}\left(x_{0}\right)+\left(x-x_{0}\right)^{2} \frac{f^{\prime \prime}\left(x_{0}\right)}{2!}+\cdots
$$

Suppose that x is the solution for $f(x)=0$. If we keep two first terms $f(x)=0=f\left(x_{0}\right)+\left(x-x_{0}\right) f^{\prime}\left(x_{0}\right)$, then
$x=x_{0}-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)}$, or each next iteration is $x_{k+1}=x_{k}-\frac{f\left(x_{k}\right)}{f^{\prime}\left(x_{k}\right)}$
The method of secant estimates the derivative at x_{k} as
$f^{\prime}\left(x_{k}\right)=\frac{f\left(x_{k}\right)-f\left(x_{k-1}\right)}{x_{k}-x_{k-1}}$
then
$x_{k+1}=x_{k}-\frac{f\left(x_{k}\right)}{f^{\prime}\left(x_{k}\right)}=x_{k}-\frac{f\left(x_{k}\right)\left(x_{k}-x_{k-1}\right)}{f\left(x_{k}\right)-f\left(x_{k-1}\right)}$
10

From boundary value problem to initial value problem

Consider the general nonlinear second-order boundary-value ODE with Dirichlet boundary conditions, written in the following form:

$$
y^{\prime \prime}=F\left(x, y, y^{\prime}\right), \quad y\left(x_{1}\right)=y_{1}, \quad y\left(x_{2}\right)=y_{2}
$$

An initial-value problem is created by assuming a value $y^{\prime}\left(x_{1}\right)=c_{1}$. Such guess gives a solution $y_{c_{1}}(x)$ than is most likely does not satisfy the given boundary condition on the right side: $y_{c_{1}}\left(x_{2}\right) \neq y\left(x_{2}\right)=y_{2}$.

8

Applying the method of secants to $y\left(x_{2}\right)-y_{c}\left(x_{2}\right)=0$ In the method of secants

$$
x_{k+1}=x_{k}-\frac{f\left(x_{k}\right)}{f^{\prime}\left(x_{k}\right)}=x_{k}-\frac{f\left(x_{k}\right)\left(x_{k}-x_{k-1}\right)}{f\left(x_{k}\right)-f\left(x_{k-1}\right)}
$$

we let $f(c)=y\left(x_{2}\right)-y_{c}\left(x_{2}\right)$, and we consider c as a variable, then
$c_{k+1}=c_{k}-\frac{y_{2}-y_{c_{n}}\left(x_{2}\right)\left[c_{k}-c_{k-1}\right]}{y\left(x_{2}\right)-y_{c_{k}}\left(x_{2}\right)-y\left(x_{2}\right)+y_{c_{k-1}}}$
or
$c_{k+1}=c_{k}+\frac{\left(y_{2}-y_{c_{n}}\left(x_{2}\right)\right)}{y_{c_{k}}\left(x_{2}\right)-y_{c_{k-1}}\left(x_{2}\right)}\left(c_{k}-c_{k-1}\right)$
Thus, we need two guesses to initiate the
iterative process.


```
Example: Matlab code using the shooting method
function [x,y,dy] = \operatorname{soot2(f, x,y,dy,n,eps)}
%unc
! Solution of the boundary-value second-order 1D ODE
! d2y/dx2 = f(x,y,dy/dx) with Dirichlet boundary conditions
! y(xmin) = \ldots., and y(xmax) =
! Method: unilizes the shooting method based on the method of secants
! (calls 4th-order Runge-Kutta to solve the initial value problem)
! written by: Alex Godunov (last revision: March 2022)
! input ..
    f(x,y,dy) - function d2y/dx2 (supplied by a user)
    f(x,y,dy) - functiony points
    ! y(1), y(n) - boundary values (Dirichlet boundary conditions)
! dy(1),dy(2) - two guesses for y'(x(1))
! n - number of grid points
! output ..
! y(i) and dy(i) solutions at points x(i) (i=1,\ldots,n)
! note: dy corresponds to y' (the first derivative)
%}
```

13

Example: Matlab code (cont.)

function [f] $=f(x, y, d y)$
\% the second derivative - use original ODE
\% $d 2 y / d x 2=f(x, y, d y)$
$f=-4.0 * d y-6.25 * y+\exp (x) ;$
end

15
it=101; \% max number of iterations
\% first guesses for $\mathrm{g}(\mathrm{it})$
$g(1)=d y(1)$;
$\mathrm{yn}=\mathrm{y}(\mathrm{n})$; \%! remember the second boundary condition
$d x=(x(n)-x(1)) /(n-1) ; \%$ generate base points $x(i)$ from $x(1), x(n)$ and n
for $i=2: n$
$x(i)=x(i-1)+d x ;$
\% shooting iterations (for the first two - we use assumed values of $d y(1)$) for $\mathrm{k}=1$:it
$d y(1)=g(k)$;
$[y, d y]=r k 4 _2 d(f, x, y, d y, n)$; \% solves initial value ODE on n-points
$c(k)=y(n)$;
if abs $(\mathrm{yn}-\mathrm{c}(\mathrm{k}))$ < eps
break
if ${ }^{\text {end }}$
$\mathrm{g}(\mathrm{k}+1)=\mathrm{g}(\mathrm{k})-(\mathrm{c}(\mathrm{k})-\mathrm{yn}) *(\mathrm{~g}(\mathrm{k})-\mathrm{g}(\mathrm{k}-1)) /(\mathrm{c}(\mathrm{k})-\mathrm{c}(\mathrm{k}-1)) ;$
end
end \% end iterations
end \% end function shoot2

14

16

Example 2

18

The shooting method for other boundary conditions

The boundary-value problems considered so far had Dirichlet (i.e., known function value) boundary conditions.
Many problems have derivative (i.e., Neumann) or mixed boundary conditions.

The shooting method for derivative boundary conditions is analogous to the shooting method for Dirichlet boundary conditions, except that we shoot for the value of the derivative instead of the value of the function at the boundary.
For the mixed boundary conditions we shoot for the mixed conditions.

19

21

"2. Approximating the exact derivatives in the boundary-value ODE by algebraic finite difference approximations"
$y\left(x_{i}\right)=y_{i}, \quad y^{\prime}\left(x_{i}\right)=y_{i}^{\prime}, \quad y^{\prime \prime}\left(x_{i}\right)=y_{i}^{\prime \prime}$
$y_{i+1}=y_{i}+y_{i}^{\prime} \Delta x+\frac{1}{2}-y_{i}^{\prime \prime} \Delta x^{2}+\cdots$
$y_{i-1}=y_{i}-y_{i}^{\prime} \Delta x+\frac{1}{2}-y_{i}^{\prime \prime} \Delta x^{2}+\cdots$
The central difference approximation for y_{i}^{\prime} and $y_{i}^{\prime \prime}$ are

$$
\begin{gathered}
y_{i}^{\prime}=\frac{y_{i+1}-y_{i-1}}{2 \Delta x}+O\left(\Delta x^{2}\right) \\
y_{i}^{\prime \prime}=\frac{y_{i+1}-2 y_{i}+y_{i-1}}{2 \Delta x^{2}}+O\left(\Delta x^{2}\right)
\end{gathered}
$$

Higher-order approximations for y_{i}^{\prime} and $y_{i}^{\prime \prime}$ can be derived using Taylor series (see lecture notes on Differentiation)

Summary for the shooting method

Pro

- Solving as initial value problem
- Works very well for both linear and nonlinear ODEs
- Easy to implement fourth- or higher-order methods
- No solving a system of FDA equations Con
- Iterative approach
- Shooting for more than one boundary condition is time-consuming

The equilibrium (boundary value) method

Key idea: construct a finite difference approximation of the exact ODE at every point on a discrete finite difference grid. Then a system of equations must be solved simultaneously. Here are the steps:

1. Discretizing the continuous solution domain into a discrete finite difference grid
2. Approximating the exact derivatives in the boundary-value ODE by algebraic finite difference approximations
3. Substituting the FDAs into the ODE to obtain an algebraic finite difference equation
4. Solving the resulting system of algebraic FDEs (for linear ODEs - a system of linear equations)

22

Linear second-order ODE b.v. problem

We consider linear second-order ODE on $[a, b]$ with Dirichlet boundary conditions

$$
\begin{gathered}
y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=F(x) \\
y(a)=A, \quad y(b)=B
\end{gathered}
$$

Substituting the central difference approximations for y^{\prime} and $y^{\prime \prime}$ at i gives

$$
\frac{y_{i+1}-2 y_{i}+y_{i-1}}{2 \Delta x^{2}}+P_{i}\left(\frac{y_{i+1}-y_{i-1}}{2 \Delta x}\right)+Q_{i} y_{i}=F_{i}
$$

Multiplying all terms by Δx^{2}, and gathering terms yields:

$$
\left(1-\frac{\Delta x}{2} P_{i}\right) y_{i-1}+\left(-2+\Delta x^{2} Q_{i}\right) y_{i}+\left(1+\frac{\Delta x}{2} P_{i}\right) y_{i+1}=\Delta x^{2} F_{i}
$$

Applying this at each point in a discrete finite difference grid yields a tridiagonal system of FDEs, which can be solved by the Thomas algorithm (for solving linear tridiagonal systems of linear equations)

$$
\begin{aligned}
& \text { Example: application to five points } i=1,2 \ldots 5 \\
& \text { Introducing the following notations } \\
& \qquad a_{i}=1-\frac{\Delta x}{2} P_{i}, \quad b_{i}=-2+\Delta x^{2} Q_{i}, \quad c_{i}=1+\frac{\Delta x}{2} P_{i}, \quad d_{i}=\Delta x^{2} F_{i}
\end{aligned}
$$

the system of equations can be rewritten as

$$
a_{i} y_{i-1}+b_{i} y_{i}+c_{i} y_{i+1}=d_{i}
$$

where $y_{0}=y(a), y_{6}=y(b)$.
This is clearly a tri-diagonal system.

25

Example: Matlab code - cont.

```
function [X,Y] = ODEbvE(P, Q, F, a, ya, b, yb, N)
n=N-2;
h=(b-a)/(n+1)
for k = 1:n
    x(k) = a + k*h;
    (k,1) = 1.0 - h*P(x(k))/2.0;
    c(k,2) = (1.0)*h*h*Q(x(k)) - 2.0;
```



```
    d(k) = h*h*F(x(k));
end
d(1) = d(1) - c(1,1)*ya;
d(n) = d(n) - c(n,3)*yb;
c(n,3)=0.0;
y] = Thomas(c,d,n)
X(1) =a;
X(N) = b;
Y(1) = ya;
Y(N) = yb;
    x(k+1) = x(k);
    y(k+1) = y(k);
end
```

27

Example 3:

$$
\begin{gathered}
y^{\prime \prime}+(\sqrt{x}+5) y^{\prime}+(x-1) y=\cos (x) e^{-\frac{x}{4}}+1 \\
y(0)=1, \quad y(1)=0
\end{gathered}
$$

```
Example: Matlab code - the equilibrium method
%{
Solving linear boundary value problem with Dirichlet boundary conditions
\mp@subsup{'}{}{\prime}+P(x)\mp@subsup{y}{}{\prime}+O(x)y=F(x)
METHOD: Equilibrium + Thomas algorithm for solving 3-diagonal system
CALLS: external functions: Thomas.m
INPUT:
P(x), Q(x), F(x) - external functions
a and y(a),b and y(b) - boundary conditions
N - total number of points in the grid, including two boundary points
OUTPUT:
Y(X) - solution as arrays Y and X (size N)
Last revision: AG March }202
%}
function [X,Y] = ODEbvE(P, Q, F, a, ya, b, yb,N)
```

26

Example: Matlab code - the Thomas method

function $[\mathrm{x}]=\operatorname{Thomas}(\mathrm{c}, \mathrm{b}, \mathrm{n})$
\% !==========-===1
\% ! Solutions to a system of tridiagonal linear equations $c * x=b$
\% Method: the Thomas method
\%! i-------
\% ! $c(n, 3)$ - array of coefficients for matrix where $c(n, 2)$ - diagonal
$\%!b(n)$ - vector of the right hand coefficients b
! n - number of equations
\%! output
x(n) - solutions
(1)
step 1: forward elimination
for $k=2: n$
(k,2) $k, 1) / c(k-1,2)$
$c(k, 2)=c(k, 2)$-coeff*c $(k-1,3)$;
$b(k)=b(k)-c o e f f * b(k-1)$;
end
step 2: back substitution
$x(n)=b(n) / c(n, 2)$;
for $k=n-1:-1: 1$
$x(k)=(b(k)-c(k, 3) * x(k+1)) / c(k, 2) ;$
end
nd \% Thomas
28

Accuracy of the second-order method

Example for the heat-transfer problem

$$
T^{\prime \prime}-\alpha^{2} T=\alpha^{2} T_{e}, \quad T(0)=100, \quad T(1)=0, \quad T_{e}=0
$$

While the fourth-order methods demonstrates better accuracy it involves solving a penta-diagonal system of equations.

Derivative boundary conditions on the right

When the equilibrium method is used to solve a boundary-value problem with a derivative boundary condition, a finite difference procedure must be developed to solve for the value of the function at the boundary where the derivative boundary condition is imposed.

The finite difference approximation for Dirichlet boundary conditions

$$
\left(1-\frac{\Delta x}{2} P_{i}\right) y_{i-1}+\left(-2+\Delta x^{2} Q_{i}\right) y_{i}+\left(1+\frac{\Delta x}{2} P_{i}\right) y_{i+1}=\Delta x^{2} F_{i}
$$

Assume that point n is the last point of interest, and the $n+1$ is the right boundary point.
With the Dirichlet boundary condition we have y_{n+1}, now we have y_{n+1}^{\prime}. How to update the FDA for given y_{n+1}^{\prime} ?

31

Derivative boundary conditions on the left

On the left side we can use Newton's forward difference polynomial for the first derivative at $i=0$ to connect it to the value of the function at the same point.

Good practice exercises:

1. Update the FDA system of equations when the derivative boundary condition is given for the right boundary point.
2. Update the FDA system when the derivative condition is given for the left boundary point.

33

Example 4b: The derivative condition on the right
$y^{\prime \prime}+2 y^{\prime}+5 y=e^{-x}$,
$y(0)=0, \quad y^{\prime}(2)=0$

From y_{n+1}^{\prime} to y_{n+1}
We can use Newton's backward difference polynomial for the first derivative at $n+1$ to connect it to the value of the function at the same point.

1. First-order

$$
y_{n+1}=y_{n}+\Delta x y_{n+1}^{\prime}
$$

this is $O(\Delta x)$ accuracy, but if the solution is well behaved then there is no problem
2. Second-order

$$
y_{n+1}=\frac{1}{3}\left(4 y_{n}-y_{n-1}+2 \Delta x y_{n+1}^{\prime}\right)
$$

3. Third-order

$$
y_{n+1}=\frac{1}{11}\left(18 y_{n}-9 y_{n-1}+2 y_{n-2}+6 \Delta x y_{n+1}^{\prime}\right)
$$

Generally the second-order method provides the best results since it's accuracy is the same as the second-order FDA - same order $(\Delta x)^{2}$

Example 4a: Dirichlet boundary condition

$$
\begin{aligned}
& y^{\prime \prime}+2 y^{\prime}+5 y=e^{-x} \\
& y(0)=0, \quad y(2)=0
\end{aligned}
$$

34

Example 4c: The derivative condition on the left

$$
y^{\prime \prime}+2 y^{\prime}+5 y=e^{-x}
$$

$$
y^{\prime}(0)=0, \quad y(2)=0
$$

Boundary conditions at infinity

Occasionally one boundary condition is given at infinity.
In such a case, the boundary conditions might be

$$
y(0)=A, \quad y(\infty)=B .
$$

There are two procedures for implementing boundary conditions at infinity: finite domain and asymptotic solution

Boundary conditions at infinity

Finite domain:
In this approach, the boundary condition at $x=\infty$ simply replaced by the same boundary condition applied at a finite location, $x=X$.
Thus $y(\infty)=B \rightarrow y(X)$.
The major problem with this approach is determining what value of X, if any, yields a reasonable solution to the original problem.
In most cases, our interest is in the near the region far away from infinity In that case, successively larger values of X, denoted by X_{1}, X_{2}, etc., can be chosen, until successive solutions in the region of interest change by less than some prescribed tolerance.

38

Boundary conditions at infinity

Asymptotic solution:

A second approach for implementing boundary conditions at infinity is based on an asymptotic solution for large values of x. In many problems, the behavior of the solution near $x \rightarrow \infty$ is much simpler than the behavior in the near region, and the simplified differential equation can be solved exactly, including the boundary condition at infinity, to yield the solution $y_{\text {asymp. }}(x)=F(x)$.
The boundary condition for the solution of the original differential equation is determined by choosing a finite location, $x=X$, and using it

40

Nonlinear ODEs

While the shooting method works well for both linear and non-linear ODE, the equilibrium method is only practical for linear ODE.
Otherwise we need to solve a system of nonlinear FDA equations using, for example, the Newton's method. In this case we need to have a good initial guess.
as boundary condition at X as $F(X)=Y$

39

Summary for the equilibrium method
Pro

- Boundary conditions are automatically satisfied
- The method is good for complicated or delicate boundary conditions Con
- A system of FDA equations should be solved
- Achieving higher than second-order accuracy demands solving a system of many FDA equations
- Non-linear ODEs yields a system of non-linear FDA equations (hard to solve)
- The method needs special handling for non-uniform grids.

Part 4:

Eigenvalue problem

Major methods for the boundary value problem

Eigenproblems arise in equilibrium problems in which the solution exists only for special values (i.e., eigenvalues) of a parameter of the problem.

Eigenproblems occur when homogeneous boundary-value ODEs also have homogeneous boundary conditions.
The eigenvalues are to be determined in addition to the corresponding equilibrium configuration of the system.
Example: stationary Schrodinger equation for given boundary cond.

$$
-\frac{\hbar^{2}}{2 m} \frac{d^{2} \psi(x)}{d x^{2}}+(V(x)-E) \psi(x)=0
$$

There are two principal methods for solving eigenproblems

1. Equilibrium method (most general)
2. Shooting method (less powerful than equilibrium methods, but works well with higher accuracy for some problems in physics)

More on the stationary Schrodinger equation

Stationary Schrodinger equation

$$
-\frac{\hbar^{2}}{2 m} \frac{d^{2} \psi(x)}{d x^{2}}+(V(x)-E) \psi(x)=0
$$

Two principal types of solutions
Type 1: Bound states - a particle is bound, i.e. it is confined to some finite region of space.
For short-range potentials*: $\psi(x) \rightarrow e^{-\sqrt{2|E|}}(x \rightarrow \infty)$
For large $|x|$ we can set $\psi\left(x_{\text {left }}\right)=0, \psi\left(x_{\text {right }}\right)=0$
A short-range potential $V(x) \sim C / x^{2+\mu} \quad(\mu \geq 0)$.
 behavior.

Type 2: Continuum states (oscillating wave functions)
We will concentrate on solutions for bound states

44

The equilibrium method for Schrodinger equation
While the equilibrium method can be easily applied to a general linear ODE, we will concentrate on solving the stationary Schrodinger equation

Using atomic units (also called Hartree units) we can write

$$
\frac{d^{2} y}{d x^{2}}+2[E-V(x)] y=0
$$

For bound states with imply the homogeneous boundary conditions

$$
y\left(x_{\text {left }}\right)=0, \quad y\left(x_{\text {right }}\right)=0 .
$$

46

Using the finite difference approximation

Discretizing the continuous domain into a discrete finite difference grid

and using the second-order central difference for the derivative

$$
\frac{d^{2} y}{d x^{2}} \approx \frac{y_{i+1}-2 y_{i}+y_{i-1}}{h^{2}}
$$

we have for the stationary Schrodinger equation

$$
\frac{y_{i+1}-2 y_{i}+y_{i-1}}{h^{2}}+\left[E-V\left(x_{i}\right)\right] y_{i}=0
$$

with the homogeneous boundary conditions

$$
y_{0}=0, \quad y_{n+1}=0 .
$$

Transforming to the eigenvalue problem

Rearranging the terms we get classical eigenvalue problem $A x=\lambda x$ in linear algebra

$$
-\frac{y_{i+1}}{2 h^{2}}+y_{i}\left(\frac{1}{h^{2}}+V\left(x_{i}\right)\right)-\frac{y_{i-1}}{2 h^{2}}=E y_{i}
$$

where the diagonal elements are $d_{i i}=\frac{1}{h^{2}}+V\left(x_{i}\right)$
and non-diagonal elements $a_{i-1}=a_{i+1}=-\frac{1}{2 h^{2}}$
Then we can use one of methods for solving the eigenvalue problem to find values of $E_{i}(i=1, n)$ and corresponding eigenfunctions.

Note that n is the number of grid points.
Attention: Solutions for $E_{i}<\left.V(x)\right|_{x \rightarrow \infty}$ corresponds to bound states. The rest represents pseudo-continuum states*.

49

Example: MatLab code

function [$\mathrm{x}, \mathrm{y}, \mathrm{Ei}, \mathrm{nstates}$] = QMSch01(Vp, Xmin, Xmax, n)
\% ======================================1
\% Version: November 2021
$\%=$
$\%$
$\%$ \{
IN:
Vp - external function (potential)
$X_{\text {min }}$ - left end-point
$X_{\text {max }}$ - right end-point
n - number of endpoint
OUT:
x - set of grid points
y - eigenvectors corresponding to eigenvalues
Ei - diagonal matrix of eigenvalues
\%\}
\% 1: preparation
$\mathrm{h}=(\mathrm{Xmax}-\mathrm{Xmin}) /(\mathrm{n}-1)$;
$a=z e r o s(n, n) ;$
$x=$
,
$x=\operatorname{zeros}(n, 1)$;
$\mathrm{S}=\operatorname{zeros}(\mathrm{n}, 1) ;$
Vplot $=\operatorname{zeros}(\mathrm{n}, 1)$;
50

Example: MatLab code

Ei = EiSort;
Ei $=$ EiSort $;$
$y=y S o r t ;$
$\%$ end of sorting
\% 5. count bound states
Emax $=\mathrm{Vp}($ Xmax $)$;
nstates $=0$;
if Ei(k,k) > Emax break
nstates $=$ nstates +1 ;
end
\% 3. Calculating eigenvalues and eigenvectors
\% === solver - eigenvalues and eigenvector (Matlab function)
$\%$ \% === end solver
\% 4. sorting eigenvalues (and eigenvectors) in in ascending order
\% attention - Matlab function eig may not always sort
[dwork,ind] = sort(diag(Ei));
EiSort $=$ Ei(ind,ind)
ySort $=y(:$, ind $)$;
51
52

Example: MatLab code

\% 6. Normalization
\% Normalization integral so that $|y(x)|^{\wedge} 2 \mathrm{dx}=1$ (method: Simpson)
\% note: normalization for the first m functions
for $i=1$:nstates
$S(i)=0.0 ;$
for $k=2.2:$
for $k=2: 2: n-1$
$S(i)=S(i)+4.0 * y(k, i) * y(k, i) ;$
$S(i)=S(i)+2.0 * y(k+1, i) * y(k+1, i)$;
end
$S(i)=S(i)+y(1, i) * y(1, i)-y(n, i) * y(n, i)$;
$\mathrm{S}(\mathrm{i})=\operatorname{sqrt}(\mathrm{S}(\mathrm{i}) * \mathrm{~h} / 3.0)$;
end
\% Normalization
for $i=1$:nstates
for $k=1$: n
end $y(k, i)=y(k, i) / S(i) ;$
end

Example: MatLab code

\% 7. plot the potential
Vmin $=\min ($ Vplot $)$;
$V_{\text {max }}=\max ($ Vplot $) ;$
figure (1)
plot(x, Vplot, 'k', 'LineWidth',1.2);
title('Potential');
xlabel('x');
ylabel('V(x)');
ylim([Vmin-1. Vmax*1.2+1.])
end

55

57

Observation

1. For a symmetric potential, $V(x)=V(-x)$ the solutions are either even or odd, that is, the wave function has definite parities.
2. Accuracy for states closer to the continuum is lower due to mixing with pseudo-continuum states

56

58

60

61
62

64

Example: MatLab code

```
function [Ei] = Qwel102(Xmin,Xmax,X0,N,Emin,Emax,eps,state)
%f
Solving stationary Schrodinger equation
y ', + 2(E-V(x))y = 0
METHOD; ShOot,
CALLS: rk4_2d(x,y,dy,n), ypp(x,y,dy), v(x) (potential)
    V(X) - a potential (as a function, so far the name is fixed)
    XMIN, XMAX - left and right endpoints for integration
    x0 - "meeting point" (results should not depend on it)
    N - number of points for the whole interval
    Emin, Emax - energy interval for searching an energy level
    eps - tolerance on matching the log derivative at XO
    OUTPUT:
    Ei - eigenvalue (energy)
    Additional output (in the function
Plot 1: matching (left/right) wavefunctions and derivatives
Plot 2: Wavefunction (normalized)
global Ee
MaxIter = 128; % Max number of iterations
% Working arrays
Delta = zeros(MaxIter,1);
lol
```


The shooting method for Schrodinger equation

The idea is close to the shooting method for a regular boundary value problem.

We choose some $x_{\text {min }}$ and $x_{\max }$ as interval of integration of the ODE. We set the boundary conditions as
$y\left(x_{\min }\right)=0, \quad y\left(x_{\max }\right)=0$

Since for bound states asymptotically $y(x) \sim e^{-\mu|x|}$ then for
$y^{\prime}(x) \sim \mu e^{-\mu|x|}$ where $\mu=\sqrt{2 E}$ (E is the energy)
Attention (watch the signs of the derivatives for even and odd states)
Then we guess a value of E and integrate from $x_{\text {min }}$ to $x_{\text {max }}$, and check if we satisfy the boundary condition on the right. And we keep adjusting E till it works.

63

Serious complication

There are two mathematical solutions at $x \rightarrow \infty$,

$$
y(x) \sim A e^{-\mu x}+B e^{\mu x}
$$

one is exponentially decaying (physical solutions), and the second solution is exponentially increasing (numerically dominant).
A small error (accuracy or round-off) will be exponentially magnified.

Algorithm for the shooting method

1. Choose $x_{\text {min }}, x_{\text {max }}$ and some x_{0}
2. Guess some $E_{\text {min }}$ and $E_{\text {max }}$ (looking for E in between)
3. And solve the ODE for E and $E_{\text {max }}$
a) from the left: $x_{\min }$ to x_{0} to get $y_{l}\left(x_{0}\right)$ and $y_{l}^{\prime}\left(x_{0}\right)$
b) then from the right: $x_{\max }$ to x_{0} to get $y_{r}\left(x_{0}\right)$ and $y_{r}^{\prime}\left(x_{0}\right)$
4. We want a smooth connection between the two solution, therefore instead of the logarithmic derivatives
$y_{l}^{\prime}\left(x_{0}\right) / y_{l}\left(x_{0}\right)=y_{r}^{\prime}\left(x_{0}\right) / y_{r}\left(x_{0}\right)$ it is preferable to use the difference in logarithmic derivatives as

$$
\Delta=\frac{y_{l}^{\prime}\left(x_{0}\right) / y_{l}\left(x_{0}\right)-y_{r}^{\prime}\left(x_{0}\right) / y_{r}\left(x_{0}\right)}{y_{l}^{\prime}\left(x_{0}\right) / y_{l}\left(x_{0}\right)+y_{r}^{\prime}\left(x_{0}\right) / y_{r}\left(x_{0}\right)}
$$

5. If $\Delta_{E} \cdot \Delta_{E_{\text {max }}}>0$ then $E_{\text {max }}=E$ otherwise $E_{\text {min }}=E$ and repeat steps 1-4 till given tolerance.
Note: The Numerov algorithm is a very good choice for solving ODEs ${ }^{64}$

Example: MatLab code

\% Phase 1: Prepare arrays $\mathrm{x}, \mathrm{y} \times \mathrm{x}, \mathrm{yl}, \mathrm{xr}, \mathrm{yr}$ (left and righ)
$h=(X \max -X$ min $) /(N-1)$;
v $=\operatorname{ceil}\left(\left(X \theta-\mathrm{Xmin}_{\mathrm{m}}\right) / \mathrm{h}\right)+1$
$\mathrm{N} 1=\mathrm{N} 0$;
$r=N-N \theta+1$;
\% reserve arrays
$x=z \operatorname{eros}(N, 1) ;$
$y=\operatorname{zeros}(N, 1) ;$
$\mathrm{xl}=\operatorname{zeros}(N 1,1)$
$1=\operatorname{zeros}(\mathrm{Nl}, 1)$
$\mathrm{dy} 1=\operatorname{zeros}(\mathrm{N} 1,1) ;$
$x r=\operatorname{zeros}(N r, 1) ;$
$y r=z e r o s(N r, 1) ;$
\% grid points for x, xl and xr
$\%$ grid point
for $k=1: N$
$\mathrm{x}(\mathrm{k})=\mathrm{X}_{\text {min }}+\mathrm{h}^{*}(\mathrm{k}-1)$
for $k=1$:Ne
$x 1(k)=x(k)$;
end $\mathrm{fon}=\mathrm{N}:-1$: Ne

Example: MatLab code

\% Phase 1: Prepare arrays $x, y \mathrm{xl}, \mathrm{y} 1, \mathrm{xr}, \mathrm{yr}$ (left and righ)
$h=\left(X_{\text {max }}-x_{\text {min }}\right) /(N-1) ;$
$N \theta=\operatorname{ceil}\left(\left(x \theta-x_{\text {min }}\right) / h\right)+1$
$\mathrm{N} \theta=\operatorname{ceil}((X \theta-X \min) / \mathrm{h})+1$;
$\mathrm{Nr}=\mathrm{N}$ - $\mathrm{N} \theta+1$;
\% grid points for $x, x l$ and $x r$
for $k=1: N$
$x(k)=X$ min $+h^{*}(k-1)$;
end $\begin{aligned} & \text { for } k=1 \text { : Ne }\end{aligned}$
$x \mathrm{x}(\mathrm{k})=\mathrm{x}(\mathrm{k})$;
end
for
k
for $\begin{aligned} & k=N:-1: N \theta \\ & k r=N-k+1\end{aligned}$
$x r(k r)=x(k) ;$
end
\% Phase 2: Prepare first three energies (initialization)
$E(1)=E m i n ; ~$
$E(1)=E \min ;$
$E(2)=E \max ;$
$\begin{aligned} E(2) & =E \max ; \\ E(3) & =(E \min +E \max) / 2 ;\end{aligned}$

Example: MatLab code

\% Phase 3: the main loop (iterations)
for $k=1$:MaxIter
$\mathrm{Ee}=\mathrm{E}(\mathrm{k})$;
$\mathrm{b}=\operatorname{sqrt}\left(2.0^{*} \mathrm{abs}(\mathrm{Ee})\right) ;$
\%3a Integration from the left to xe
$\%$ initial position and the derivative on the left
$\mathrm{yl}(1)=\exp \left(-\mathrm{b}^{*} \operatorname{abs}(\times 1(1))\right)$;
$d y 1(1)=b^{*} y 1(1) ;$
$[y 1, d y 1]=r k 4 _2 d(x 1, y 1, d y 1, N 1)$
\%3b Integration from the right to xe
\% initial position and the derivative on the right
$\operatorname{yr}(1)=\operatorname{state}^{*} \exp \left(-\mathrm{b}^{*} \operatorname{abs}(x r(1))\right)$;
[yr,dyr] = rk4_2d(xr,yr,dyr,Nr);
\%3C Calculating the log derivative difference between the two solutions
Lelt $=$ dyl(NQ)/yl(NQ); Lelt $=\operatorname{dyl}(\mathrm{Ne}) / \mathrm{yl}(\mathrm{NO})$;
Right $=\operatorname{dyr}(\mathrm{Nr}) / \mathrm{yr}(\mathrm{Nr}) ;$
Delta(k) $=($ Lelt -Right$) /($ Lelt + Right $) ;$

67
68

Example: MatLab code

```
%3d when k=2 check if there is a solution
    if k == 2
        fprintf(' No solution for given Emin and Emax \n')
        Ei=0.0
        end
    end
%3E bisectional search for the root
% Attention: the bisectional method may converge not only to a root 
    % point xe. 
        if k >= 3 (if Delta(1)*Delta(k) < 0.0
            E(2)=E(k);
            else}E(1)=E(k)
            E(1)=E(k);
        end
        E(k+1)=(E(1)+E(2))/2.0;
        if abs(Delta(k))< eps 
            if abs(E(1)-E(2))< < eps
                Ei= E(k);
    end end end bisectional search
```

69

Example: MatLab code

```
if k == MaxIter
    fprintf(' Max iterations - still no solution \n')
        Ei = 0.0
    end
figure (1)
plot(xl,yl,'b',xr,yr,'r',xl,dyl,'-m',xr,dyr, '-k')
title('Matching functions and derivatives')
grid
% Phase 4: Assembling the whole wave function + normalization
% 4a One function y(x) as a sum of two solutions (left + right)
% 4a One function y(x)
    for k = 1:Ne
        l(k)=xl(k);
end
    or k = 1:Nr
        x(N-k+1) = xr(k);
    end
```

70

Example: MatLab code

\% 4b Calculating Integral $|y(x)|^{\wedge} 2 d x$ for normalization
$\mathrm{Sn}=0.0$;
for $k=2: 2: \mathrm{N}-1$
$\mathrm{Sn}=\mathrm{Sn}+4 . \theta^{*} \mathrm{y}(\mathrm{k}) * \mathrm{y}(\mathrm{k})$;
$\mathrm{Sn}=\mathrm{Sn}+2 \cdot \theta^{*} \mathrm{y}(\mathrm{k}+1) * \mathrm{y}(\mathrm{k}+1)$;
${ }_{\mathrm{Sn}}^{\mathrm{en}}=\mathrm{Sn}+\mathrm{y}(1) * \mathrm{y}(1)-\mathrm{y}(\mathrm{N}) * \mathrm{y}(\mathrm{N})$;
$\mathrm{Sn}=\operatorname{sqrt}\left(\mathrm{Sn}^{*}(\mathrm{~h} / 3 . \theta)\right)$;
\% 4c Normalization
for $k=1: N$
$\mathrm{k}(\mathrm{k})=\mathrm{y}(\mathrm{k}) / \mathrm{sn} ;$
$\mathrm{vp}(\mathrm{k})=\mathrm{v}(\mathrm{x}(\mathrm{k}) \mathrm{l}$,
end
figure (2)
plot (x, y, r^{\prime} ')
\%plot ($x, y, y^{\prime} r^{\prime}{ }^{\prime}, x, v_{p}, b^{\prime}$)
str $=$ sprintf('Wave function for $E i=\% 6.4 f^{\prime}$, Ei $)$;
grid
end \%end function

Example 6: Potential well

function $V x=V(x)$
a = 2.0;
if $\mathrm{abs}(\mathrm{x})<=\mathrm{a}$
$\mathrm{Vx}=-4.0$
${ }^{\text {else }} v x=0.0$;
end

	Analytic	FDM	Shooting
1	-3.77791	-3.778856	-3.778227
2	-3.11995	-3.123640	-3.121178
3	-2.05806	-2.065921	-2.060667

$\begin{array}{lll}2.05806 & -2.065921 & -2.060667\end{array}$
$0.706421-0.698546$

The Numerov method

While Runge-Kutta methods (RK- $4^{\text {th }}$ order or RKF45) works very well for solving ODEs, there is a powerful method for solving second-order ODEs that don't have first derivative.

We consider equation

$$
\frac{d^{2} y}{d x^{2}}+k^{2}(x) y=S(x)
$$

The power of the Numerov method is to get extra precision in the second derivative by taking advantage of there being no first derivative in equation above.

73

The Numerov method

Using the second-order central difference for the second-order derivatives for $-k^{2}(x) y+S(x)$ we have

$$
y_{i}^{\prime \prime \prime \prime}=-\frac{\left(k^{2} y\right)_{i+1}-2\left(k^{2} y\right)_{i}+\left(k^{2} y\right)_{i-1}}{h^{2}}+\frac{S_{i+1}-2 S_{i}+S_{i-1}}{h^{2}}
$$

then

$$
y_{i}^{\prime \prime}=\frac{y_{i+1}-2 y_{i}+y_{i-1}}{h^{2}} \frac{1}{12} y_{i}^{\prime \prime \prime \prime} h^{2}=
$$

$$
\frac{y_{i+1}-2 y_{i}+y_{i-1}}{h^{2}}+\frac{1}{12} h^{2}\left[\frac{\left(k^{2} y\right)_{i+1}-2\left(k^{2} y\right)_{i}+\left(k^{2} y\right)_{i-1}}{h^{2}}+\frac{\left.S_{i+1}-2 S_{i}+S_{i-1}\right]}{h^{2}}\right]
$$

and the equation $y^{\prime \prime}=-k^{2}(x) y+S(x)$ reads

$$
\frac{y_{i+1}-2 y_{i}+y_{i-1}}{h^{2}}+\frac{1}{12} h^{2}\left[\frac{\left(k^{2} y\right)_{i+1}-2\left(k^{2} y\right)_{i}+\left(k^{2} y\right)_{i-1}}{h^{2}}+\frac{\left.S_{i+1}-2 S_{i}+S_{i-1}\right]}{h^{2}}\right]
$$

$$
=-\left(k^{2} y\right)_{i}+S_{i}
$$

Rearranging the terms we have
75

The Numerov method

Two issues:

1) the method is not self-starting, however, we can use the asymptotic behavior
2) the method does not provide first derivatives on its own. But we need them when matching the wave functions. We can calculate the first derivative using the central difference formula or more precisely

$$
y_{i}^{\prime}=\frac{1}{2 h}\left[\left(1+\frac{h^{2}}{12} k_{i+1}^{2}\right) y_{i+1}-\left(1+\frac{h^{2}}{12} k_{i-1}^{2}\right) y_{i-1}\right]+O\left(h^{4}\right)
$$

Summary for the Numerov method:

The speed gain for shooting with Numerov's method is significant. We can use it to extend calculations to systems requiring large number of grid points.

The Numerov method

0 | 0 | 0 | 0 |
| :---: | :---: | :---: |
| $i-1$ | i | $i+1$ |

The Taylor series for the function $y(x)$ at the points $i+1$ and $\mathrm{n} i-1$

$$
\begin{gathered}
y_{i+1}=y_{i}+y_{i}^{\prime} h+\stackrel{1}{2} \boldsymbol{y} y_{i}^{\prime \prime} h^{2}+\frac{1}{6}-y_{i}^{\prime \prime \prime} h^{3}+\frac{1}{24} y_{i}^{\prime \prime \prime \prime} h^{4}+\cdots \\
y_{i-1}=y_{i}-y_{i}^{\prime} h+\stackrel{1}{2} y_{i}^{\prime \prime} h^{2}-\frac{1}{6}-y_{i}^{\prime \prime \prime} h^{3}+\frac{1}{24} y_{i}^{\prime \prime \prime \prime} h^{4}-\cdots \\
y_{i+1}+y_{i-1}=2 y_{i}+y_{i}^{\prime \prime} h^{2}+\frac{1}{1} y_{i}^{\prime \prime \prime \prime} h^{4}+\cdots
\end{gathered}
$$

Then

$$
y_{i}^{\prime \prime}=\frac{y_{i+1}-2 y_{i}+y_{i-1}}{h^{2}} 1 \frac{1}{12} y_{i}^{\prime \prime \prime \prime} h^{2}
$$

At the same time from the differential equation $\frac{d^{2} y}{d x^{2}}+k^{2}(x) y=S(x)$

$$
y_{i}^{\prime \prime \prime \prime}=\left.\frac{d^{2}}{d x^{2}}\left(-k^{2}(x) y+S(x)\right)\right|_{x=x_{i}}
$$

74

The Numerov method

$$
\begin{aligned}
& y_{i+1}\left(1+\frac{h^{2}}{12} k_{i+1}^{2}\right)-2 y_{i}\left(1-\frac{5 h^{2}}{12} k_{i}^{2}\right)+y_{i-1}\left(1+\frac{h^{2}}{12} k_{i-1}^{2}\right) \\
& =\frac{h^{2}}{12}\left(S_{i+1}+10 S_{i}+S_{i-1}\right)+O\left(h^{6}\right)
\end{aligned}
$$

We see that the Numerov method uses the values of $y(x)$ at the two previous steps x_{i} and x_{i-1} to move y forward to x_{i+1}.
The Numerov methods is a three-point recursion relation.
It is stable and has a local error $\sim O\left(h^{6}\right)$ the same as RKF45. We need six calls for RKF45 and only one call for the Numerov method.

76

More methods II: Basic expansion method

The idea - expand the unknown function on a finite basis set
The method is very popular for structure calculations in multi-electron systems. It's often called as Configuration Interaction method.
There are very many variants of the method.

More methods I: Final Element Method

Final element method - very powerful for solving Partial Differential Equations.

It can be used for solving Schrodinger equation too.
FEM breaks space up into multiple geometric objects (elements),
determine approximate solution for each element, and then match the solutions up at the element edges.
Much more powerful than FDM but MUCH more work required.

79

More methods III: Variational methods

The idea - the exact wavefunction gives the lowest energy for the ground state

$$
E_{0}=\frac{\left\langle\psi_{0}(r)\right| \widehat{H}\left|\psi_{0}(r)\right\rangle}{\left\langle\psi_{0}(r) \mid \psi_{0}(r)\right\rangle}
$$

The variational method can be adapted to give bounds on the energies of excited states (under certain conditions).
There are many versions of the method: Hartree-Fock method, Variational Monte-Carlo method

80

Variational Monte Carlo method

The objective is finding $\psi(x)$ that minimize

$$
E_{0}=\frac{\left\langle\psi_{0}(x)\right| \widehat{H}\left|\psi_{0}(x)\right\rangle}{\left\langle\psi_{0}(x) \mid \psi_{0}(x)\right\rangle}=\frac{\left\langle\psi_{0}(x)\right|-\frac{1}{2} \nabla^{2}+V(x)\left|\psi_{0}(x)\right\rangle}{\left\langle\psi_{0}(x) \mid \psi_{0}(x)\right\rangle}
$$

Steps:

1. Choose a trial function $y_{t}(x)$ and discretize space into bins Δx size
2. Choose randomly a "bin i " (or x_{i} value) and create a provisional function $y_{p}(x)$ by changing $y_{t}(x)$ function in x_{i} location by an amount chosen randomly $\pm d y_{k}$ using Monte Carlo
3. Calculate E_{p}. If it is lover that E_{t} with y_{t} then accept the provisional function, if it is higher that E_{t} then discard the provisional function
4. Keep doing 2 and 3 till desired tolerance is reached

Note: Use Metropolis method to accept/reject solutions with $E_{p}>E_{t}$

Example: MatLab code

\% ! Monte Carlo interactive procedure to minimize
\% ! by varying randomly $f(i)$ and random minimize energy
\% !=================================$\times(\mathrm{i})$
function [f, energy, hits] $=\operatorname{norfolk}(x, f, d f, e i, n, t e s t s)$
hits $=0$;
for $i=1$: tests
$\% k=2+$ floor $($ rand $*(n-2)) ;$
$k=1+$ randi $(n-3)$
$k=1+$ randi $(n-3) ;$
fold $=f(k)$.
$f(k)=f(k)+2.0 *($ rand $-\theta .5) * d f ;$
$e f=$ hamilton $(x, f$, n) ;
if ef < ei
ei $=$ ef;
$f=$ fnorn
$f=$ fnorm (x, f, n),
hits $=$ hits +1 .
hits $=$ hits +1 ;
else
$\underset{f(k)}{ }=$ fold;
end
end
energy = ei;
end \% norfolk

Example: MatLab code

\% compute $\langle f| H|f\rangle \mid\langle f \mid f\rangle$ for a given $x(i)$ and $f(i)$
(
function energy $=$ hamilton (x, f, n)
energy $=0.0 ;$
sum $=0.0 ;$
$\mathrm{dx}=\mathrm{x}(2)-\mathrm{x}(1)$;
for $\mathrm{i}=2: \mathrm{n}-1$
$1=v(x(i))$;
nergy $=$ energy +dx *potential*f(i)*f(i);
energy $=$ energy $-d x^{*}\left(0.5 / d x^{*} d x\right) * f(i) *\left(f(i+1)-2 . \theta^{*} f(i)+f(i-1)\right)$;
\quad sum
end
energy
energy = energy / sum; end \% hamilton

85

87

