
Computational Physics

Alex Godunov and and Andi Klein

Version 2.0

2

Contents

10 Systems of Linear Equations 1

10.1 Introduction . 1

10.2 Direct elimination methods . 3

10.2.1 Basic elimination . 4

10.2.2 Gauss elimination . 7

10.2.3 Computing inverse matrices and determinants 12

10.2.4 Tridiagonal systems . 16

10.2.5 Round-off errors and ill-conditioned systems 19

10.3 Iterative methods . 21

10.4 Practical notes . 25

10.5 Problems . 27

11 The Eigenvalue Problem 29

11.1 Introduction . 29

11.2 The power method . 32

11.2.1 The basic power method . 32

11.2.2 The shifted power method . 35

11.2.3 The inverse power method . 36

11.3 The Jacobi Method (Symmetric Matrices) 37

11.4 The basic QR method . 43

11.5 Practical methods . 47

11.6 Problems . 47

i

ii CONTENTS

Chapter 10

Systems of Linear Equations

10.1 Introduction

Systems of linear equations hold a special place in computational physics, chemistry,

and engineering. In fact, multiple computational problems in science and technology

can be mathematically expressed as a linear system. Most methods in computational

mathematics for solving systems of partial differential equations (PDE), integral equa-

tions, and boundary value problems in ordinary differential equations (ODE) utilize

the Finite Difference Approximation, effectively replacing the original differential and

integral equations on systems of linear equation. Additionally, other applications of

systems of linear equations in numerical analysis include the linearization of systems of

simultaneous nonlinear equations, and the fitting of polynomials to a set of data points.

A system of linear equations has the following form

a11x1 + a12x2 + a13x3 + . . .+ a1nxn = b1

a21x1 + a22x2 + a23x3 + . . .+ a2nxn = b2

. .

an1x1 + an2x2 + an3x3 + . . .+ annxn = bn

(10.1)

where xj(j = 1, 2, . . . , n) are unknown variables, aij(i, j = 1, 2, . . . , n) are the coef-

ficients, and bi(i = 1, 2, . . . , n) are the nonhomogeneous terms. The first subscript i

identifies the row of the equation and the second subscript j identifies the column of the

1

2 Chapter 10. Systems of Linear Equations

system of equations. The system (10.1) can also be written as a matrix equation
a11 a12 a13 . . . a1n

a21 a22 a23 . . . a2n

.

an1 an2 an3 . . . ann

x1

x2

. . .

xn

 =

b1

b2

. . .

bn

 , (10.2)

or in a compact form as Ax = b

Methods for solving linear systems are normally taught in mathematical classes and

courses of linear algebra. The standard syllabus includes the substitution method,

Cramer’s rule, and the inverse matrix. Unfortunately, Cramer’s rule is a highly in-

efficient method for solving real systems of linear equations: the number of equations

in a system may run into the hundreds, thousands, or even millions (e.g. structure and

spectra calculations for quantum systems). Since Cramer’s rule is based on evaluations

of multiple determinants, it needs about n! multiplications and divisions for solving a

system of n equations. Thus, solving a system of only 30 equations (30! ∼ 2 · 1032)

would take as much time as the age of the universe on a teraflop computer. Another

common idea in standard linear algebra courses is that the solution to Ax = b can be

written as x = A−1b, where A−1 is the inverse matrix of A. However, in most practical

computational problems, it is not recommended to compute the inverse matrix to solve

a system of linear equations. In fact, it normally takes more operations to compute

the actual inverse matrix instead of simply finding the solution by one of the direct

elimination methods. Finally, the method of substitution, well known for high school

students, is the foundation for multiple methods in numerical analysis for solving real

problems.

There are two classes of methods for solving systems of linear equations. In direct

methods, a finite number of arithmetic operations leads to an ”exact” (within round-off

errors) solution. Examples of such direct methods include Gauss elimination, Gauss-

Jordan elimination, the matrix inverse method, and LU factorization. The average

number of operations to solve a system of linear equations for these methods is ∼ n3.

Iterative methods achieve the solution asymptotically by an iterative procedure, start-

ing from the trial solution. The calculations continue until the accepted tolerance ε

is achieved. Jacobi, Gauss-Seidel, and successive over-relaxation, are all examples of

iterative methods. Direct elimination methods are normally used when the number of

equations is less than a few hundred, or if the system of equations is ill-conditioned.

10.2. Direct elimination methods 3

Iterative methods are more common for large and diagonally dominant systems of equa-

tions, especially when many non-diagonal coefficients equal zero or very small numbers.

At present, there are multiple algorithms and programs developed for solving systems

of linear equations based on direct and iterative methods. Using a method that utilizes

the most from the matrix shape (symmetric, sparse, tridiagonal, banded) results in

higher efficiency and accuracy. The most common problems in matrix calculations are

the results of round-off errors or the running out of memory and computational time

for large systems of equations. It is also important to remember that various computer

languages may handle the same data very differently. For example, in C/C++, the first

element of an array starts from index 0, in Fortran (by default), from index 1. It is

also useful to note that Fortran 90/95 has numerous intrinsic functions to do matrix

calculations.

In this chapter, we will consider linear systems (10.1) to have real coefficients aij.

We will also assume an existence of a unique solution (e.g. detA 6= 0 if the right-hand

coefficients bi 6= 0, or detA = 0 if bi = 0).

Comments: 1) possible examples from physics: electric circuits, equilibrium problems

10.2 Direct elimination methods

Elimination methods use a simple idea that is well known from courses of algebra: a

system of two equations worked out formally by solving one of the equations. Let’s

say we solve the first equation for the unknown x1 in terms of the other unknown x2.

Substituting the solution for x1 into the second equation gives us a single equation for

one unknown x2, thus x1 is eliminated from the second equation. After x2 is found, the

other x1 unknown can be found by back substitution.

In the general case of n linear equations, the elimination process employs operations

on rows of linear equations that do not change the solution, namely, ”scaling” - any

equation may be multiplied by a constant, ”pivoting” - the order of equations can be

interchanged, ”elimination” - any equation can be replaced by a linear combination of

that equation with any other equation.

4 Chapter 10. Systems of Linear Equations

10.2.1 Basic elimination

For a good understanding of basic techniques of direct elimination, it is incredibly helpful

to apply the elimination method to find solutions of a system of three linear equations

a11x1 + a12x2 + a13x3 = b1

a21x1 + a22x2 + a23x3 = b2 (10.3)

a31x1 + a32x2 + a33x3 = b3

Step 1a: Subtracting the first equation multiplied by a21/a11 from the second equation,

and multiplied by a31/a11 from the third equation gives

a11x1 + a12x2 + a13x3 = b1

(a21 − a21)x1 + (a22 − a21
a11
a12)x2 + (a23 − a21

a11
a13)x3 = b2 − a21

a11
b1

(a31 − a31)x1 + (a32 − a31
a11
a12)x2 + (a33 − a31

a11
a13)x3 = b3 − a31

a11
b1

(10.4)

One can see that the coefficients by the unknown x1 in the second and the third rows

of the new system are zero

a11x1 + a12x2 + a13x3 = b1

0 + a′22x2 + a′23x3 = b′2
0 + a′32x2 + a′33x3 = b′3

(10.5)

where a′ij = aij − ai1a1j
a11

and b′i = bi − ai1
a11
b1. Thus, we eliminated the first unknown x1

from the second and third equations.

Step 1b: Now, let’s subtract the modified second equation multiplied by a′32/a
′
22 from

the third equation in (10.5)

0 + (a′32 − a′32)x2 + (a′33 − a′23
a′32
a′22

)x3 = b′3 − b′2
a′32
a′22

(10.6)

After the two eliminations we have a new form for the system (10.3)

a11x1 + a12x2 + a13x3 = b1

0 + a′22x2 + a′23x3 = b′2
0 + 0 + a′′33x3 = b′′3

(10.7)

with a′′ij = a′ij −
a′i2a

′
2j

a′22
and b′′i = b′i −

a′i2
a′22
b2. Thus, the original system Ax = b is reduced

to triangular form.

10.2. Direct elimination methods 5

Step 2: The last equation in (10.7) can be solved for x3, and the second for x2, and

finally the first for x1

x3 = b′′3/a
′′
33

x2 = (b′2 − a′23x3)/a′22 (10.8)

x1 = (b1 − a12x2 − a13x3)/a11

The basic elimination method can be easily generalized for a general n by n system,

Ax = b

Algorithm 6.1 The basic elimination algorithm for solving a system of n linear

equations.

Step 1: Apply the elimination procedure to every column k (k = 1, 2, . . . , n − 1) for

rows i (i = k + 1, k + 2, . . . , n) to create zeros in column k below the pivot element ak,k

ai,j = ai,j − (ai,k/ak,k) ak,j (i, j = k + 1, k + 2, . . . , n) (10.9)

bi = bi − (ai,k/ak,k) bk (i, j = k + 1, k + 2, . . . , n) (10.10)

Step 2: The solutions of the reduced triangular system can then be found using the

backward substitution

xn = (bn/an,n) (10.11)

xj =
1

ai,i

(
bi −

n∑
j=i+1

ai.jxj

)
(i = n− 1, n− 2, . . . , 1) (10.12)

The total number of multiplications and divisions done by the basic elimination algo-

rithm for a system of n equations is about O(n3). The back substitution takes approx-

imately O(n2) multiplication and divisions.

Comments: Every next elimination uses results from the elimination before. For

large systems of equations the round-off errors may quickly accumulate. It takes finite

number of steps to get a true (within the round-off error solution)

The program below implements the basic elimination for a general n by n matrix A

Program 10.1. The basic elimination.

subroutine gauss_1(a,b,x,n)

!==

! Solutions to a system of linear equations A*x=b

6 Chapter 10. Systems of Linear Equations

! Method: the basic elimination (simple Gauss elimination)

! Alex G. November 2009

!---

! input ...

! a(n,n) - array of coefficients for matrix A

! b(n) - vector of the right hand coefficients b

! n - number of equations

! output ...

! x(n) - solutions

! comments ...

! the original arrays a(n,n) and b(n) will be destroyed

! during the calculation

!===

implicit none

integer n

double precision a(n,n), b(n), x(n)

double precision c

integer i, j, k

!step 1: forward elimination

do k=1, n-1

do i=k+1,n

c=a(i,k)/a(k,k)

a(i,k) = 0.0

b(i)=b(i)- c*b(k)

do j=k+1,n

a(i,j) = a(i,j)-c*a(k,j)

end do

end do

end do

!step 2: back substitution

x(n) = b(n)/a(n,n)

do i=n-1,1,-1

c=0.0

do j=i+1,n

c= c + a(i,j)*x(j)

end do

x(i) = (b(i)- c)/a(i,i)

end do

end subroutine gauss_1

10.2. Direct elimination methods 7

Example 10.1. Solution by the basic elimination.

Basic elimination (Simple Gauss)

Matrix A and vector b

3.000000 2.000000 4.000000 4.000000

2.000000 -3.000000 1.000000 2.000000

1.000000 1.000000 2.000000 3.000000

Matrix A and vector b after elimination

3.000000 2.000000 4.000000 4.000000

0.000000 -4.333333 -1.666667 -0.666667

0.000000 0.000000 0.538462 1.615385

Solutions x(n)

-2.000000 -1.000000 3.000000

10.2.2 Gauss elimination

The first immediate problem with the basic elimination method comes when one of

diagonal elements is zero. For example, the following system

0x1 + 1x1 + 2x1 = 4

2x1 + 1x2 + 4x3 = 3 (10.13)

2x1 + 4x2 + 6x3 = 7

has a unique solution of x = {−2.5, 0.0, 2.0}. However, basic elimination would fail on

the first step since the a11 pivot element is zero. The procedure also fails when any

of subsequent ak,k pivot elements during the elimination procedure are zero. However,

the basic elimination procedure can be modified to push zero ak,k elements off the

major diagonal. The order of equations in a linear system can be interchanged without

changing the solution. This procedure is called ”partial pivoting”. ”Full pivoting”

includes interchanging both equations and variables, and it is rarely applied in practical

calculations because of its complexity. Nevertheless, pivoting can remove divisions by

zero during the elimination process.

The effect of round-off errors can be reduced by scaling before pivoting. Scaling

selects an equation with the relatively largest pivot element akk. On every step k of

the elimination procedure we a) look first for a largest element ai,j in every row i =

8 Chapter 10. Systems of Linear Equations

k, k + 1, . . . , n and scale (normalize) every element in that row on the largest element,

b) look for the largest element ai,k in the column k to have it as a pivot element for

the next elimination, c) interchange the current equation k with the equation with the

largest pivot element.

Let’s apply scaled pivoting to the system (10.13). The first scaling gives the following

ai,1 elements {0.00, 0.50, 0.33}. Therefore, we rearrange the system placing the second

equation as the first one, and the third equation into second place.

2x1 + 1x2 + 4x3 = 3

2x1 + 4x2 + 6x3 = 7 (10.14)

0x1 + 1x1 + 2x1 = 4

After the first elimination, we have

2x1 + 1x2 + 4x3 = 3

0x1 + 3x2 + 2x3 = 4 (10.15)

0x1 + 1x2 + 2x3 = 4

The second scaling gives {1.00, 0.50} for ai,2 elements where i ≥ 2. Therefore, we

keep the same order of equations. After the second elimination, the original matrix is

transformed to the upper triangular form

2.00x1 + 1.00x2 + 4.00x3 = 3.00

0.00x1 + 3.00x2 + 2.00x3 = 4.00 (10.16)

0.00x1 + 0.00x2 + 1.33x3 = 2.66

The backward substitution returns the solutions {2.0, 0.0,−2.5}
The Gauss elimination includes all three basic operations on rows of linear equations:

scaling, pivoting and elimination.

Algorithm 6.2 Gauss elimination for solving a system of n linear equations.

Step 1: Apply the scaling, pivoting and elimination to every column k (k = 1, 2, . . . , n−
1) starting from k = 1

a). Find the largest element in every row i = k, k + 1, . . . , n and divide other elements

of those rows by the corresponding largest element.

b). Find the largest pivoting element ai,k in a given column k for i = k, k + 1, . . . , n.

Let’s say it was al,k

10.2. Direct elimination methods 9

c). Interchange rows k and l to have the relatively largest akk into the pivot position.

d). Apply the elimination procedure to the column k for rows i (i = k+ 1, k+ 2, . . . , n)

ai,j = ai,j − (ai,k/ak,k) ak,j (i, j = k + 1, k + 2, . . . , n) (10.17)

bi = bi − (ai,k/ak,k) bk (i, j = k + 1, k + 2, . . . , n) (10.18)

Step 2. Now it is time for backward substitution. At this point all the diagonal elements

are non zero, if the matrix is not singular. From the last equation we have

xn = (bn/an,n) (10.19)

Solving the other unknowns in the reverse order

xj =
1

ai,i

(
bi −

n∑
j=i+1

ai.jxj

)
(i = n− 1, n− 2, . . . , 1) (10.20)

The solution is achieved in a finite number of steps determined by the size of the sys-

tem. The partial pivoting takes a very small fraction of computational efforts comparing

to the elimination calculations. The total number of operations is about O(n3). If all

the potential pivots elements are zero, then the matrix A is singular. Linear systems

with singular matrices either have no solutions, or do not have a unique solution.

Program 10.2. Gauss elimination with scaling and pivoting.

subroutine gauss_2(a,b,x,n)

!===

! Solutions to a system of linear equations A*x=b

! Method: Gauss elimination (with scaling and pivoting)

! Alex G. (November 2009)

!---

! input ...

! a(n,n) - array of coefficients for matrix A

! b(n) - array of the right hand coefficients b

! n - number of equations (size of matrix A)

! output ...

! x(n) - solutions

! coments ...

! the original arrays a(n,n) and b(n) will be destroyed

! during the calculation

!===

10 Chapter 10. Systems of Linear Equations

implicit none

integer n

double precision a(n,n), b(n), x(n)

double precision s(n)

double precision c, pivot, store

integer i, j, k, l

! step 1: begin forward elimination

do k=1, n-1

! step 2: "scaling"

! s(i) will have the largest element from row i

do i=k,n ! loop over rows

s(i) = 0.0

do j=k,n ! loop over elements of row i

s(i) = max(s(i),abs(a(i,j)))

end do

end do

! step 3: "pivoting 1"

! find a row with the largest pivoting element

pivot = abs(a(k,k)/s(k))

l = k

do j=k+1,n

if(abs(a(j,k)/s(j)) > pivot) then

pivot = abs(a(j,k)/s(j))

l = j

end if

end do

! Check if the system has a sigular matrix

if(pivot == 0.0) then

write(*,*) ’ The matrix is sigular ’

return

end if

! step 4: "pivoting 2" interchange rows k and l (if needed)

if (l /= k) then

do j=k,n

store = a(k,j)

a(k,j) = a(l,j)

10.2. Direct elimination methods 11

a(l,j) = store

end do

store = b(k)

b(k) = b(l)

b(l) = store

end if

! step 5: the elimination (after scaling and pivoting)

do i=k+1,n

c=a(i,k)/a(k,k)

a(i,k) = 0.0

b(i)=b(i)- c*b(k)

do j=k+1,n

a(i,j) = a(i,j)-c*a(k,j)

end do

end do

end do

! step 6: back substiturion

x(n) = b(n)/a(n,n)

do i=n-1,1,-1

c=0.0

do j=i+1,n

c= c + a(i,j)*x(j)

end do

x(i) = (b(i)- c)/a(i,i)

end do

end subroutine gauss_2

Example 10.2. Solution by Gauss elimination.

Gauss elimination with scaling and pivoting

Matrix A and vector b

0.000000 1.000000 2.000000 4.000000

2.000000 1.000000 4.000000 3.000000

2.000000 4.000000 6.000000 7.000000

Matrix A and vector b after elimination

2.000000 1.000000 4.000000 3.000000

12 Chapter 10. Systems of Linear Equations

0.000000 3.000000 2.000000 4.000000

0.000000 0.000000 1.333333 2.666667

Solutions x(n)

-2.500000 0.000000 2.000000

It is useful to remember that there are variations of the Gauss elimination. For

example, the Gauss-Jordan elimination transforms the matrix A to a diagonal form, with

a subsequent reduction to the identity matrix I. As a result, the transformed vector

b is a solution vector. Despite the fact that this method needs more computational

time, it can be used to evaluate the inverse of matrix A−1, so that AA−1 = I. On the

other hand, LU factorization is very efficient for solving multiple systems with the same

matrix A but with different vectors b. The Thomas algorithm treats tridiagonal systems

of equations.

10.2.3 Computing inverse matrices and determinants

The inverse matrix A−1 can be computed using the same Gauss elimination procedure.

Finding an inverse matrix is equivalent to finding matrix X such as

AX = I (10.21)

This equation can be rewritten as

n∑
k=1

ai,kxk,j = δi,j (i, j = 1, 2, . . . , n), (10.22)

where δi,j is the Kronecker delta. Then the system (10.22) is actually a set of n indepen-

dent systems of equations with the same matrix A but different vectors b. Let’s define

the two following vectors

x(j) = {xi,j}, e(j) = {δi,j}, (i = 1, 2, . . . , n) (10.23)

Now the the j-th column of the inverse matrix A−1 is the solution of the linear system

Ax(j) = e(j) (j = 1, 2, . . . , n) (10.24)

The set of systems (10.24) can be solved with Gauss elimination. It is clear that find-

ing the inverse matrix requires n-times more computational time than the elimination

procedure.

10.2. Direct elimination methods 13

For the illustration of this method, we consider a system of three equations. The

first column of the inverse matrix X can be found from the following systems a11 a12 a13

a21 a22 a23

a31 a32 a33

 x11

x21

x31

 =

 1

0

0

 . (10.25)

The next two columns of the inverse matrix X correspond to solutions of the linear

equations with the same matrix A and the right sides as

b =

 0

1

0

 for the second column, and b =

 0

0

1

 for the third column. (10.26)

Technically, we may use Gauss elimination algorithm for solving n systems of n linear

equations to find the inverse matrix. However, computationally, it is time consuming

since we have to do the elimination for the same matrix A over and over again.

On the other hand, the LU factorization algorithm is incredibly efficient for solving

multiple linear equations with the same matrix but different right-hand vectors b. Any

matrix can be written as a product of two other matrices, in particular as A = LU ,

where L and U are the lower triangular and upper triangular matrices. If the elements

on the major diagonal of L are equal to one, the method is called the Doolittle method.

For unity elements on the major diagonal of U , the method is called the Crout method.

For A = LU , the linear system of equations Ax = b becomes LUx = b. Multiplying

both sides of the system by L−1 gives L−1LUx = L−1b, and then Ux = L−1b = d, where

d is a solution of Ld = b. Now it should be easy to see that the following algorithm

would lead to a solution of the linear system. First, we calculate U and L matrices

using the Gaussian elimination. While getting U is the goal of the elimination, the L

matrix consists of the elimination multipliers with unity elements of the main diagonal

(it would correspond to the Dolittle method). For every vector b we solve Ld = b to

find d, namely

di = bi −
i−1∑
k=1

li,kdk (i = 2, 3, . . . , n), note that d1 = b1 (10.27)

Then, xn = dn/U(n, n), and other solutions for the linear system Ux = d are

xi = di −
n∑

k=i+1

ui,kxk/ui,i (i = n− 1, n− 2, . . . , 1) (10.28)

14 Chapter 10. Systems of Linear Equations

Since the number of multiplications to find solutions from the last two equations are of

the order O(n2), we can see that the LU decomposition method is exceptionally helpful

for computing inverse matrices.

Program 10.3. Compute Inverse matrix using LU Doolittle factorization

subroutine inverse(a,c,n)

!==

! Inverse matrix

! Method: Based on Doolittle LU factorization for Ax=b

! Alex G. December 2009

!---

! input ...

! a(n,n) - array of coefficients for matrix A

! n - dimension

! output ...

! c(n,n) - inverse matrix of A

! comments ...

! the original matrix a(n,n) will be destroyed

! during the calculation

!===

implicit none

integer n

double precision a(n,n), c(n,n)

double precision L(n,n), U(n,n), b(n), d(n), x(n)

double precision coeff

integer i, j, k

! step 0: initialization for matrices L and U and b

! Fortran 90/95 aloows such operations on matrices

L=0.0

U=0.0

b=0.0

! step 1: forward elimination

do k=1, n-1

do i=k+1,n

coeff=a(i,k)/a(k,k)

L(i,k) = coeff

do j=k+1,n

a(i,j) = a(i,j)-coeff*a(k,j)

end do

10.2. Direct elimination methods 15

end do

end do

! Step 2: prepare L and U matrices

! L matrix is a matrix of the elimination coefficient

! + the diagonal elements are 1.0

do i=1,n

L(i,i) = 1.0

end do

! U matrix is the upper triangular part of A

do j=1,n

do i=1,j

U(i,j) = a(i,j)

end do

end do

! Step 3: compute columns of the inverse matrix C

do k=1,n

b(k)=1.0

d(1) = b(1)

! Step 3a: Solve Ld=b using the forward substitution

do i=2,n

d(i)=b(i)

do j=1,i-1

d(i) = d(i) - L(i,j)*d(j)

end do

end do

! Step 3b: Solve Ux=d using the back substitution

x(n)=d(n)/U(n,n)

do i = n-1,1,-1

x(i) = d(i)

do j=n,i+1,-1

x(i)=x(i)-U(i,j)*x(j)

end do

x(i) = x(i)/u(i,i)

end do

! Step 3c: fill the solutions x(n) into column k of C

do i=1,n

c(i,k) = x(i)

end do

b(k)=0.0

16 Chapter 10. Systems of Linear Equations

end do

end subroutine inverse

Example 10.3. Inverse matrix

Computing Inverse matrix

Matrix A

3.000000 2.000000 4.000000

2.000000 -3.000000 1.000000

1.000000 1.000000 2.000000

Inverse matrix A^{-1}

1.000000 0.000000 -2.000000

0.428571 -0.285714 -0.714286

-0.714286 0.142857 1.857143

The elimination method can be easily applied to compute matrix determinants. At

the end of the elimination procedure, the original matrix A is transformed to the upper

triangular form. For such matrices, the determinant is a product of diagonal elements.

det(A) = ±
n∏

i=1

aii = a11a22a33 . . . ann, (10.29)

where the sign depends on the number of interchanges. Let’s remember that pivoting

changes the value of the determinant (interchanging any two equations changes the sign

of the determinant). However, counting the number of equation interchanges would give

us the proper sign for the determinant.

10.2.4 Tridiagonal systems

When a system of linear equations has a special shape (symmetric, or tridiagonal), then

it is recommended to use a method specifically developed for this kind of equation.

Such methods are not only more efficient in term of computational time and computer

memory, but also accumulate smaller round-off errors.

Here is an example of a tridiagonal system of five equations
a11 a12 0 0 0

a21 a22 a23 0 0

0 a32 a33 a34 0

0 0 a43 a44 a45

0 0 0 a54 a55

x1

x2

x3

x4

x5

 =

b1

b2

b3

b4

b5

 , (10.30)

10.2. Direct elimination methods 17

It is clear to see that one only element is to be eliminated in every row, namely

ai−1,i, affecting only the diagonal elements and the right hand vector. Subsequently, the

elimination procedure for a tridiagonal matrix

ai,i = ai,i − (ai,i−1/ai−1,i−1) ai−1,i (i = 2, . . . , n) (10.31)

and

bi = bi − (ai,i−1/ai−1,i−1) bi−1 (i = 2, . . . , n) (10.32)

However, it is possible to improve the efficiency of this method even further. Instead

of storing all n × n elements of the matrix A, since there is no need to keep the zero

elements, we may use a smaller matrix such n× 3:

− c12 c13

c21 c22 c23

c31 a32 c33

.

cn−1,1 cn−1,2 cn−1,3

cn,1 cn,2 −

(10.33)

where the coefficients cij are related to the coefficients of the original matrix A as

ci,1 = ai,i−1, ci,2 = ai,i, and ci,3 = ai,i+1. (10.34)

Then the elimination procedure for the new matrix C

ci,2 = ci,2 − (ci,1/ci−1,2) ci−1,3 (i = 2, 3, . . . , n) (10.35)

and

bi = bi − (ci,1/ci−1,2) bi,i−1 (i = 2, 3, . . . , n) (10.36)

After the forward elimination, the back substitution gives the solutions of the tridiagonal

system

xn = bn/cn,2 (10.37)

xi = (bi − ci,3xi+1)/ci,2 (i = n− 1, n− 2, . . . , 1) (10.38)

This algorithm for solving tridiagonal systems is called the Thomas algorithm. Thus

algorithm is widely used in solving 3-point partial and ordinary differential equations

(more details?)

18 Chapter 10. Systems of Linear Equations

Program 10.4. the Thomas method for tridiagonal systems

subroutine thomas(c,b,x,n)

!==

! Solutions to a system of tridiagonal linear equations C*x=b

! Method: the Thomas method

! Alex G. November 2009

!---

! input ...

! c(n,3) - array of coefficients for matrix C

! b(n) - vector of the right hand coefficients b

! n - number of equations

! output ...

! x(n) - solutions

! comments ...

! the original arrays c(n,3) and b(n) will be destroyed

! during the calculation

!===

implicit none

integer n

double precision c(n,3), b(n), x(n)

double precision coeff

integer i

!step 1: forward elimination

do i=2,n

coeff=c(i,1)/c(i-1,2)

c(i,2)=c(i,2)-coeff*c(i-1,3)

b(i)=b(i)-c(i,1)*b(i-1)

end do

!step 2: back substitution

x(n) = b(n)/c(n,2)

do i=n-1,1,-1

x(i) = (b(i)- c(i,3)*x(i+1))/c(i,2)

end do

end subroutine thomas

Example 10.4. Solution by the Thomas method

The Thomas method for tridiagonal systems

10.2. Direct elimination methods 19

Matrix A and vector b

0.000000 4.000000 -1.000000 0.000000

-1.000000 4.000000 -1.000000 0.000000

-1.000000 4.000000 -1.000000 0.000000

-1.000000 4.000000 -1.000000 0.000000

-1.000000 4.000000 -1.000000 0.000000

-1.000000 4.000000 -1.000000 0.000000

-1.000000 4.000000 -1.000000 0.000000

-1.000000 4.000000 0.000000 16.000000

Solutions x(n)

0.000395 0.001578 0.005919 0.022099

0.082476 0.307806 1.148748 4.287187

Pivoting destroys the tridiagonality, and cannot be used ... (more?) However, as

a rule, tridiagonal systems representing real physical systems are diagonally dominant,

and pivoting is unnecessary. more ... the number of multiplicative operations ∼ 5n ,

that makes it much more efficient comparing to Gauss elimination by a factor of ∼ n2.

10.2.5 Round-off errors and ill-conditioned systems

In the elimination methods, each elimination step uses results from the step before. For

linear systems with large numbers of equations, the round-off errors may strongly affect

the solution. Round-off errors can be minimized by using double precision calculations

and scaled pivoting. Therefore, for matrix calculations, it is vital to use high precision

arithmetic. Unfortunately, it takes additional computational resources (memory and

time), but it is better then having unreliable solutions.

The effect of round-off errors is especially dangerous for ill-conditioned systems,

when doing ”everything right”, you may in fact get ”everything wrong”. Ill-conditioned

systems are very sensitive to small variations in the equation coefficient. There are no

methods for solving this problem other than increasing precision. If we cannot fix the

problem, it is at least good to know if we are dealing with an ill-conditioned system. The

Ill-conditioned system has a matrix similar to a singular form, and their determinant is

close to zero. A commonly used measure of the condition of a matrix is its condition

number. In fact, the norm of a matrix can be used to evaluate the condition number:

there are several ways to define the norm of a matrix, but the most widely accepted is

20 Chapter 10. Systems of Linear Equations

the Euclidean norm

‖A‖ =

(
n∑

i=1

n∑
j=1

a2i,j

)1/2

. (10.39)

For a matrix equation Ax = b it follows from the norm definition that

‖A‖‖x‖ ≥ ‖b‖. (10.40)

A small change in the right-hand vector b results in a change in the solution x as

A(x+ δx) = b+ δb, (10.41)

or subtracting the original equation for this one

Aδx = δb or δx = a−1δb (10.42)

Using norm’s properties we may write

‖δx‖ ≤ ‖A−1‖‖δb‖ (10.43)

Combining together equations (10.40) and (10.43)

‖b‖‖δx‖ ≤ ‖A‖‖x‖‖A−1‖‖δb‖ (10.44)

or

|δx‖
‖x‖

≤ ‖A‖‖A−1‖|δb‖
‖b‖

= C(A)
|δb‖
‖b‖

, (10.45)

where the product of two norms

C(A) = ‖A‖‖A−1‖ (10.46)

is the condition number of matrix A. The condition number is always ≥ 1. Logically, the

condition number is a factor by which a small variation in the coefficients is amplified

during the elimination procedure. Since computing the inverse matrix takes more time

than solving the system itself, it is common to use estimations for ‖A−1‖ without actually

calculating the inverse matrix. The most sophisticated codes in numerical libraries

estimate the condition number along with the solution, giving users an idea about the

accuracy of the returned result. For ill-conditioned systems it is advisable to check the

final solution by a direct substitution in the original equation.

10.3. Iterative methods 21

Here is an example. Consider the equation

3.000000x1 + 2.00x2 + 4.000000x3 = 4.00

3.000001x1 + 2.00x2 + 4.000002x3 = 4.00 (10.47)

1.000000x1 + 1.00x2 + 2.000000x3 = 3.00

The condition number of the matrixA is 1.3264 · 107. The single precision solution by

the basic elimination is x = {−2.000, 2.750, 1.125}, and the double precision solution is

x = {−2.0, 3.0, 1.0} (that is the true solution).

10.3 Iterative methods

Iterative methods cannot compete with direct elimination methods for arbitrary matrix

A. However, in certain types of problems, systems of linear equations have many ai,j

elements as zero, or close to zero (sparse systems). Under those circumstances, iterative

methods can be extremely fast. Iterative methods are also efficient for solving Partial

Differential Equations by finite difference or finite element methods.

The idea of the iterative solution of a linear system is based on assuming an initial

(trial) solution that can be used to generate an improved solution. The procedure is

repeated until convergence with an accepted accuracy solution occurs. However, for

an iterative method to succeed/converge, the linear system of equations needs to be

diagonally dominant.

|ai,i| >
∑
j 6=i

|ai,j|. (10.48)

Iterative methods are less sensitive to round-off errors in comparison to direct elimination

methods.

Let’s consider a system of linear equations

n∑
j=1

ai,jxj = bi (i = 1, 2, . . . , n). (10.49)

Every equation can be formally solved for a diagonal element

xi =
1

ai,i

(
bi −

i−1∑
j=1

ai,jxj −
n∑

j=i+1

ai,jxj

)
(i = 1, 2, . . . , n). (10.50)

22 Chapter 10. Systems of Linear Equations

Choosing an initial solution we may calculate the next iteration

xk+1
i =

1

ai,i

(
bi −

i−1∑
j=1

ai,jx
k
j −

n∑
j=i+1

ai,jx
k
j

)
(i = 1, 2, . . . , n). (10.51)

Equation (10.51) can be rewritten in the iterative form

xk+1
i = xki +

1

ai,i

(
bi −

n∑
j=1

ai,jx
k
j

)
(i = 1, 2, . . . , n). (10.52)

Equation (10.51) defines the Jacobi iterative method, which is also called the method

of simultaneous iterations. It is possible to prove that if A is diagonally dominant, then

the Jacobi iteration will converge. The number of iterations is either predetermined by

a maximum number of allowed iterations, or by one of conditions for absolute errors

max
1≤i≤n

∣∣xk+1
i − xki

∣∣ ≤ ε, or
n∑

i=1

∣∣xk+1
i − xki

∣∣ ≤ ε, or

(
n∑

i=1

(
xk+1
i − xki

)2)1/2

≤ ε, (10.53)

where ε is a tolerance. It is also possible to use another condition

‖Axk − b‖
‖b‖

< ε (10.54)

Since efforts to evaluate the norms above are comparable with the iterative calculations,

it is recommended to check the convergence based on equation (10.54) after every tenth

iteration.

In the Jacobi method, all values of xk+1 are calculated using xk values. In the Gauss-

Seidel method, the most recently computed values of xi are used in calculations for j > i

solutions

xk+1
i =

1

ai,i

(
bi −

i−1∑
j=1

ai,jx
k+1
j −

n∑
j=i+1

ai,jx
k
j

)
(i = 1, 2, . . . , n), (10.55)

or

xk+1
i = xki +

1

ai,i

(
bi −

i−1∑
j=1

ai,jx
k+1
j −

n∑
j=i

ai,jx
k
j

)
(i = 1, 2, . . . , n). (10.56)

The Gauss-Seidel iterations generally converge faster than Jacobi iterations.

10.3. Iterative methods 23

Quite often, the iterative solution to a linear system approaches the true solution in

the same direction. Then it is possible to accelerate the iterative process by introducing

the over-relaxing factor ω

xk+1
i = xki + ω

1

ai,i

(
bi −

i−1∑
j=1

ai,jx
k+1
j −

n∑
j=i

ai,jx
k
j

)
(i = 1, 2, . . . , n). (10.57)

For ω = 1 the system (10.57) is the Gauss-Seidel method, for 1.0 < ω < 2.0 the system

is over-relaxed, and for ω < 1.0 the system is under-relaxed. The optimum value of ω

depends on the size of the system and the nature of the equations. The iterative process

(10.57) is called the successive-over-relaxation (SOR) method.

Program 10.5. Gauss-Seidel: The successive-over-relaxation

subroutine gs_sor(a,b,x,omega,eps,n,iter)

!==

! Solutions to a system of linear equations A*x=b

! Method: The successive-over-relaxation (SOR)

! Alex G. (November 2009)

!--

! input ...

! a(n,n) - array of coefficients for matrix A

! b(n) - array of the right hand coefficients b

! x(n) - solutions (initial guess)

! n - number of equations (size of matrix A)

! omega - the over-ralaxation factor

! eps - convergence tolerance

! output ...

! x(n) - solutions

! iter - number of iterations to achieve the tolerance

! coments ...

! kmax - max number of allowed iterations

!==

implicit none

integer, parameter::kmax=100

integer n

double precision a(n,n), b(n), x(n)

double precision c, omega, eps, delta, conv, sum

integer i, j, k, iter, flag

! check if the system is diagonally dominant

24 Chapter 10. Systems of Linear Equations

flag = 0

do i=1,n

sum = 0.0

do j=1,n

if(i == j) cycle

sum = sum+abs(a(i,j))

end do

if(abs(a(i,i)) < sum) flag = flag+1

end do

if(flag >0) write(*,*) ’The system is NOT diagonally dominant’

do k=1,kmax

conv = 0.0

do i=1,n

delta = b(i)

do j=1,n

delta = delta - a(i,j)*x(j)

end do

x(i) = x(i)+omega*delta/a(i,i)

if(abs(delta) > conv) conv=abs(delta)

end do

if(conv < eps) exit

end do

iter = k

if(k == kmax) write (*,*)’The system failed to converge’

end subroutine gs_sor

Example 10.5. Solution by successive-over-relaxation

The successive-over-relaxation (SOR)

Matrix A and vector b

8.00000 2.00000 4.00000 2.00000

2.00000 6.00000 1.00000 6.00000

1.00000 1.00000 8.00000 4.00000

Trial solutions x(n)

0.00000 0.00000 0.00000

Solutions x(n)

-0.20000 1.00000 0.40000

10.4. Practical notes 25

iterations = 10

Consider here to have an example from PDE

The Jacobi and Gauss-Seidel iterative methods are one step iterative methods since

the xk+1
i solution is defined through xki . In multi-step iterative methods, the xk+1

i

solution is determined in accordance with past iterations xk+1
i = f(xki , x

k−1
i , . . . , xk−mi).

There are multiple variations or iterative methods, like explicit and implicit iterative

methods, the method of upper relaxation, ... more?

10.4 Practical notes

There are multiple methods, and various computer packages available for solving systems

of linear equations. A researcher (or a student) faces this question - what would be a

good way to solve my problem? Should I invest my time in writing a program, buy

software that could do this job for me, learn how to use a sophisticated numerical

package, or attempt to find a matrix calculator on the Web?

The answer depends on the following factors: a) the complexity of the system of

equations (the size, conditioning, a general or sparse matrix), b) whether the problem is

a part of a larger computational problem or a standing alone task, c) whether a one-time

solution is needed, or multiple systems are to be solved.

A simple student problem can instantly be solved even with Excel. Excel has a

number of functions to work with matrices, in particularly MINVERSE to find an inverse

matrix, and MMULT for matrix multiplication. With Excel a solution can be just a

few clicks away using x = A−1b. Software packages such as Mathematica, Maple, or

MathCad have libraries for solving various systems of equations. If the problem is part

of a larger computational project, and a system of equations is not very large (less than

a few hundreds of equation), yet well-conditioned, then using the quick and efficient

programs of this chapter would be best. However, for serious computational projects, it

is advisable to use sophisticated packages developed by experts in numerical analysis.

The most well known commercial general libraries are NAG (Numerical Algorithmic

Group), and IMSL (International Mathematical and Statistical Library), both available

in Fortran 90/5 and C/C++. The NAG package also includes libraries for parallel

calculations. The IMSL library now is a part of compilers such as Intel Fortran, and

Intel C++ (check it!).

26 Chapter 10. Systems of Linear Equations

Additionally, there are also various special packages to solve multiple problems of

linear algebra that are absolutely free. LAPACK (Linear Algebra PACKage) is the

most advanced linear algebra library. It provides routines for solving systems of linear

equations and eigenvalue problems. LAPACK was originally written in Fortran 77, and

was the successor of LINPAC (routines for the linear equations) and EISPACK (set of

routines for solving the eigenvalue problem). LAPACK has routines to handle both

real and complex matrices in single and double precision. The present core version of

LAPACK is written in Fortran 90. It has several implementations: LAPACK95 uses

features of Fortran 95, CLAPACK in for C, LAPACK++ for C++ (it is being superseded

by the Template Numerical Toolkit (TNT), JLAPACK for Java.

There are also two large numerical libraries that have multiple routines for linear

algebra problems. SLATEC is a comprehensive library of routines having over 1400

general purpose mathematical and statistical programs. The code was developed by a

group from few National Laboratories (US), and is therefore public domain. The library

was written in Fortran 77, but some routines are translated to Fortran 90, and there

is a possibility to use SLATEC routines from a C++ code. The other large library

is the GNU Scientific Library (or GSL). It is written in the C. The GSL is part of

the GNU project and is distributed under the GNU General Public License. GAMS -

Guide to Available Mathematical Software from the National Institute of Standards and

Technology (NIST) is a practical starting point to find the best routine for your problem.

GAMS provides an excellent reference place and orientation for available programs.

10.5. Problems 27

10.5 Problems

1. Modify the Gauss 2 program above to calculate the determinant of a matrix A.

2. Using the routines from this chapter, write a program that evaluates the condi-

tional number of a linear system (place eq number)

3. Modify the GS SOR program above based on Gauss-Seidel successive over-relaxation,

to change the convergence condition from (10.53) to (10.54).

4. Study on a diagonally dominant linear system how the choice of the factor ω affects

the convergence of the solution.

5. Implement a program from the LAPACK library to solve a system of linear equa-

tions(select one or two)

6. Calculations: Compare accuracy of the program implementing the Gauss elimina-

tion method with a program from a standard library for solutions of the following

system of equations
1 1

2
1
3

1
4

1
2

1
3

1
4

1
5

1
3

1
4

1
5

1
6

1
4

1
5

1
6

1
7

x1

x2

x3

x4

 =

4

3

2

1

7. consider some physics problems

28 Chapter 10. Systems of Linear Equations

Chapter 11

The Eigenvalue Problem

11.1 Introduction

Applications of the eigenvalue problem can be found in practically every field of physics,

from classical to quantum, mechanics. (more specific examples: structure calculations in

in atomic, molecular, nuclear and solid state physics). Discretization of some types of

ordinary and partial differential equation also leads to the eigenvalue problem in linear

algebra.

Let’s recollect some rudimentary knowledge from courses of linear algebra. If A is a

square matrix of order n, then the eigenvalue problem is presented as

A~x = λ~x, (11.1)

or as a system of linear equations

a11x1 + a12x2 + . . .+ a1nxn = λx1

a21x1 + a22x2 + . . .+ a2nxn = λx2

. .

an1x1 + an2x2 + . . .+ annxn = λxn.

(11.2)

The system (11.2) looks like a regular linear system of equations. However, there is

substantial difference between the eigenvalue problem and solving a linear system of

equations. For the eigenvalue problem the scalars λ’s are unknown, and solutions for

the system (11.2) exist only for specific values of λ. These values are called eigenvalues.

A vector ~x corresponding to an eigenvalue λ is an eigenvector.

29

30 Chapter 11. The Eigenvalue Problem

Regrouping terms in the system (11.2) gives a system of homogeneous linear equa-

tions
a11 − λ a12 . . . a1n

a21 a22 − λ . . . a2n

. .

an1 an2 . . . ann − λ

x1

x2

. . .

xn

 =

0

0

. . .

0

 , (11.3)

Introducing a unit matrix I, which is

I =

1 0 · · · 0

0 1 · · · 0

· · · · · · · · · · · ·
0 0 · · · 1

 (11.4)

the system of linear equations (11.3) may also be written as

(A− λI)~x = 0. (11.5)

Nontrivial solutions for the system (11.5) exists if and only if the determinant of the

matrix (A− λI) to be zero, that is

det |A− λI| = 0. (11.6)

If expanded, the determinant (11.6) is a characteristic polynomial of degree n in λ.

It has n eigenvalues λi (i = 1, 2, . . . , n), including multiple roots. Since a polynomial

can have not only real but complex roots as well, the eigenvalues can be real and/or

complex. It has been proved, that it is not possible to compute roots of a polynomial

for n > 4 in a finite number of steps. Therefore, all numerical methods for finding

eigenvalues are iterative. Than makes the eigenvalue problem in linear algebra different

form other linear problems. All other linear problems can be solved in a finite number

of calculations.

There are many methods for solving the eigenvalue problem. The direct solution

of the characteristic equation derived from equation (11.6) would yield n roots (eigen-

values). Then, the eigenvectors ~x, can be calculated by substituting the individual

eigenvalues λ into the homogeneous system of equations (11.3). Looking straightfor-

wardly, this approach is rarely used in practice, unless n the matrix is very small. If

one only eigenvalue is needed (the largest or the smallest in absolute value), then the

11.1. Introduction 31

iterative power method is a practical approach. The power method is based on the

repetitive matrix multiplication of a trial eigenvector ~y by matrix A, which eventually

yields the largest eigenvalue. Most methods for finding the eigenvalues and eigenvectors

are based on the fact that the transformation

A′ = R−1AR (11.7)

does not alter the eigenvalues of A. It is also called as the similarity transforma-

tion. This property can be easily demonstrated using determinant properties. Since

det(AB) = det(A) det(B) and det(A−1) = (det(A))−1) then det(A′) = det(R−1AR) =

det(R−1) det(A) det(R) and using the property for the inverse matrices det(A′) = det(A) det(R−1) det(R) =

det(A). With a proper similarity transformation it is possible to transform matrix A to

the diagonal or triangular form. Then the problem is solved, since the eigenvalues can

be read from the diagonal. The process is iterative and its convergence depends on the

type of a matrix (may add the definition for the determinant for these kind of matrices).

The Jacobi method for symmetric matrices transforms matrix A to its diagonal form by

iterative rotation transformations, that is a subset of similarity transformations. The

most efficient methods for solving the eigenvalue problem employ a two-step approach.

As the first step, a similarity transformation is used to to reduce the original matrix

to tridiagonal or Hessenberg form. It can be done in a finite number of steps. Then,

using one of factorization methods (e.g. the QR method) all the eigenvalues are com-

puted. The factorization methods converge faster for these specific matrices (tridiagonal

or Hessenberg).

Since there are many forms of matrices, there is no single method that is universally

suitable. The choice of a proper method for attacking the eigenvalue problem depends

of the form of matrix A, the matrix dimension n, whether we need one or all eigenvalues.

The most efficient methods are tailored to the form of a matrix. For example, many

applications in physics deal with symmetric matrices with real coefficients, or Hermitian

matrices.

In this chapter we will mostly work with this kind of matrices.

Comment on eigenvectors: Even so, this x is determined only up to a proportionality

factor, since the homogeneity of our equations permits any solution to be multiplied by

an arbitrary constant and still remain a solution. Geometrically, our solution vector x

has a unique direction but indeterminant length.

32 Chapter 11. The Eigenvalue Problem

11.2 The power method

In some applications we are interested in one or few of the eigenvalues. For example, in

quantum mechanical structure calculations we often need only to evaluate the ground

state energy (that is the largest negative eigenvalue).

In this section we consider a symmetric n×n matrix A with real coefficients, and hav-

ing n eigenvalues. Most of equations in this section continue to be correct for asymmetric

matrices, till the largest eigenvalue is a real number. In case of complex eigenvalues, the

equations presented in this section are to be modified, or methods specifically designed

for comples eigenvalues are to be used.

11.2.1 The basic power method

Without simplifying the consideration, we may assume, that the eigenvalues are aligned

in decreasing order |λ1| > |λ2| > . . . |λn|. The n eigenvectors of a nonsingular matrix

span the n-dimensional space. (The eigenvectors of a symmetric matrix are mutually

orthogonal). The power method is based on the fact that any arbitrary vector in the

n-dimensional space may be expressed as a linear combination of the eigenvectors of the

matrix A, as

~y =
n∑

i=1

ci~xi, (11.8)

where ~x is a set of eigenvectors.

Multiplying both sides of (11.8) by A, AA, . . ., A(k), and using that A~x = λ~x we

obtain

A~y =
n∑

i=1

ciA~xi =
n∑

i=1

ciλi~xi = ~y(1) (11.9)

AA~y = A~y(1) =
n∑

i=1

ciλiA~xi =
n∑

i=1

ciλ
2
i~xi = ~y(2) (11.10)

. . .

A(k)~y = A~y(k−1) =
n∑

i=1

ciλ
k−1
i A~xi =

n∑
i=1

ciλ
k
i ~xi = ~y(k). (11.11)

Thus, each multiplication by A changes the previous vector to a new one

~y(k+1) = A~y(k). (11.12)

11.2. The power method 33

Factoring out λk1 in (11.11) we may write

A(k)~y = λk1

n∑
i=1

ci

(
λi
λ1

)k

~xi = λki

[
c1~x1 + c2

(
λ2
λ1

)k

~x2 + . . .+ cn

(
λn
λ1

)k
]

(11.13)

Since λ1 is the largest eigenvalue in absolute value, then all (λi/λk)k → 0 for i =

2, 3, . . . , n as k →∞. Thus, we may write

~y(k) = λki c1~x1. (11.14)

The repeated pre-multiplication of an arbitrary vector ~y by matrix A would result in

computing the largest eigenvalue, since for k →∞

~y(k+1) = λ1~y(k). (11.15)

For the algorithm to be practical we need to take into account that the repeated

pre-multiplication results in unconstrained grows of the length of ~y(k), while changing

its direction rather slowly. The problem can be addressed by a normalization between

iterations, that preserves the direction of ~y(k) but rescale the length. In older textbooks,

for in hand calculations, it was recommended to make the largest component of ~y(k)

equal to unity. For computer calculations we may normalize the length of the vector

~y(k) to unity at each iteration, treating all components of the vector symmetrically.

The convergence of the iterative process is proportional to the ratio λ2/λ1, where λ2

is the next largest in magnitude eigenvalue. It is clear that the power method fails if the

ratio of the first two eigenvalues is ±1. If the two first eigenvalues are very close (but not

identically equal), the iterative process would be very slow to be practical. Therefore

for the power method to be efficient, the largest eigenvalue must be distinct. Besides,

the initial guess for the trial vector ~y must have some component of the eigenvector ~x

corresponding to λ1. It is common to choose all the components of the trial vector as

equal to unity.

example - hand in calculations for 3x3 matrix The reader should try this iteration

on the matrix ... starting with [1,0,0] and carrying out about five iterations,

Program 11.1. The Power method for symmetric matrices

subroutine Power(a,y,lambda,eps,n,iter)

!==

! Evaluate the largest eigenvalue and corresponding eigenvector

! of a real matrix a(n,n): a*x = lambda*x

34 Chapter 11. The Eigenvalue Problem

! method: the power method

! comment: the program works for real values only

! Alex G. (December 2009)

!--

! input ...

! a(n,n) - array of coefficients for matrix A

! x(n) - initial vector

! n - number of equations

! eps - convergence tolerance

! output ...

! lambda - eigenvalue (the largest modulus)

! x(n) - eigenvector corresponding to lambda

! iter - number of iterations to achieve the tolerance

! comments ...

! kmax - max number of allowed iterations

!==

implicit none

integer n, iter

double precision a(n,n),y(n),lambda, eps

double precision yp(n),lambda0, norm

integer k, i, j

integer, parameter::kmax=1000

lambda0=0.0

do k=1,kmax

! compute y’=A*y

do i=1,n

yp(i)=0.0

do j=1,n

yp(i) = yp(i)+a(i,j)*y(j)

end do

end do

! normalization coefficient

norm = 0.0

do i=1,n

norm = norm + yp(i)*yp(i)

end do

norm = sqrt(norm)

! normalize vector y(n) to unity for the next iteration

do i=1,n

11.2. The power method 35

y(i)=yp(i)/norm

end do

lambda = norm

! check for convergence

if (abs(lambda-lambda0) < eps) exit

! prepare for the next iteration

lambda0 = lambda

end do

iter = k

if(k == kmax) write (*,*)’The eigenvlue failed to converge’

end subroutine Power

Example 11.1. Solution by the Power method

The largest eigenvalues (Power method)

Matrix A

1.000000 2.000000 3.000000

2.000000 2.000000 -2.000000

3.000000 -2.000000 4.000000

Initial vector

1.000000 1.000000 1.000000

The largest eigenvalue

6.000000

Eigenvector

0.436487 -0.218143 0.872865

iterations = 18

Have comments for arbitrary matrices - see comments at the end

11.2.2 The shifted power method

The eigenvalues λ of a matrix A may all be shifted by a scalar s by subtracting it from

the main diagonal elements of A. Thus

(A− sI)~x = (λ− s)~x, (11.16)

36 Chapter 11. The Eigenvalue Problem

and

B~x = β~x, (11.17)

where the new eigenvalue problem (11.17) has the same eigenvectors, and the old and

new eigenvalues are connected in a simple way β = λ− s.
Shifting the eigenvalues of a matrix is very useful in finding the the opposite extreme

eigenvalue, accelerating the convergence, and even to find intermediate eigenvalues.

Suppose a matrix A has five eigenvalues, for example 1, 4, 9, 16, 25. Using the

direct power method we may find the largest eigenvalue, that is 25. Then, shifting the

eigenvalues by this amount s=25 would result in a set of the following eigenvalues for

the shifted matrix -24, -21, -16, -9, 0. Applying the basic power method to the shifted

matrix B yields the largest (in absolute scale) eigenvalue β = −24, that corresponds

to λ = 1. Thus, the shifting provides the power method with a tool to find both the

largest and the smallest eigenvalues of a matrix.

The convergence rate of the power method for the original matrix A is the ratio of

the largest to the second largest eigenvalue, i.e. 25/16 ' 1.56. What would happen if we

shift the above eigenvalues 1, 4, 9, 16, 25 by a smaller amount, for example s=5. Then

the new set of β is -4, -1, 4, 11, 20, and the convergence rate accelerates 20/11 ' 1.82.

Thus if our iterative process seems to be slow, we may shift the eigenvalues by some

amount, and continue iterations. If the convergence speeds up, we may try to shift more,

if it gets worse, we may shift in the opposite direction. This approach was popular in

the times of the in hand calculations, however, it is still useful in computer calculations.

11.2.3 The inverse power method

In many physics applications the eigenvalues are arranged in non-linear manner. For

example, energy spectrum (eigenvalues) of most quantum systems (atoms, molecules,

nuclei) have rather a distinct ground state (the most negative eigenvalue), with most

excited states concentrated closer to the zero. Therefore, shifting in by the ground

state energy will bring the smallest eigenvalue λn to the largest eigenvalue β1, but the

next eigenvalue β2 could be so close to the first one, that the convergence rate may be

impractical. For the example above, the shifting by s=25, yields a slower convergence

24/21 ' 1.14 for finding the smallest eigenvalue.

The inverse power method, that is a variation of the basic power method, is more

11.3. The Jacobi Method (Symmetric Matrices) 37

powerful way to find the smallest distinct eigenvalue. In the original eigenvalue problem

A~x = λ~x (11.18)

we multiple both sides by the inverse matrix A−1

A−1A~x = ~x = λA−1~x, (11.19)

hence

A−1~x =
1

λ
~x. (11.20)

The inverted matrix has the same eigenvectors as A, but inverted eigenvalues. Evidently,

the power method applied to the inverse matrix yields the largest 1/λ, that corresponds

to the smallest (in absolute value) eigenvalue of matrix A. In practical calculations.

As we recall from chapter 6, the LU Doolittle factorization is an efficient technique to

compute the matrix A−1.

Using together the inverse power method with the shifted power method makes

possible to find other eigenvalues. We consider the same example with five eigenvalues 1,

4, 9, 16, 25 of A. Suppose we already calculated the largest and the smallest eigenvalues,

i.e. 1 and 25. If we shift the eigenvalues by s=(25-1)/2=12, then the shifted set is -11, -8,

-3, 4, 13. Applying the inverse power method yields the smallest eigenvalue in absolute

value, that is -3, corresponding to the middle eigenvalue in the original set λ = 9. The

methods sounds as feasible, however rarely use to find more that few eigenvalues. There

are more efficient methods to find all eigenvalues of a matrix.

11.3 The Jacobi Method (Symmetric Matrices)

The power method with variations is a simple and fast method for computing the largest

and the smallest eigenvalues, provided they are well distinct from the adjusted eigen-

values. We need a different approach if all the eigenvalues are to be computed. Most

numerical method for calculating all the eigenvalues and eigenvectors are based on sim-

ilarity transformations.

A→ Q−1AQ or A→ QAQ−1. (11.21)

It is easy to demonstrate that similarity transformation preserves eigenvalues of A. We

start with the eigenvalue equation

A~x = λ~x (11.22)

38 Chapter 11. The Eigenvalue Problem

and multiply both sides by inverse matrix Q−1

Q−1A~x = λQ−1~x. (11.23)

Defining a new vector ~y

Q−1~x = ~y (11.24)

we get

~x = Q~y, (11.25)

and then substituting it to (11.23)

Q−1AQ~y = λQ−1Q~y = ~y. (11.26)

Thus the matrix Q−1AQ has the same eigenvalues, but different eigenvectors. Methods

based on similarity transformation attempt to to find muticesQ such that matrixQ−1AQ

has a form, that makes simple/easy to evaluate the eigenvalues.

There are various types (classes?) of similarity transformations. The orthogonal

transformation is one of the most popular transformation in the eigenvalue problem. In

this case the transpose matrix QT is equal to its inverse matrix Q−1. The orthogonality

transformation Q−1AQ preserves both eigenvalues and symmetry of original A. One

of the simples orthogonal transformation is the plane rotation. In 1846 Jacobi applied

the plane rotation transformation to calculate all the eigenvalues and eigenvector of real

symmetric and Hermitian matrices.

The Jacobi method iteratively uses orthogonal similarity transformations

Ak+1 = R−1k AkRk (11.27)

to transform the original matrix A to a diagonal form. Then the eigenvalues are the

diagonal elements. The R matrices are the plane rotational matrices (also called Givens

rotational matrices), where for Ri,j the diagonal elements ri,i = rj,j = c, all the other

diagonal elements are unity, and for off-diagonal elements ri,j = −rj,i = s, all other

off-diagonal elements are zero. The coefficients c and s satisfy the following condition

c2 + s2 = 1. For example 5× 5 matrix R2,4 has the following form
1 0 0 0 0

0 c 0 s 0

0 0 1 0 0

0 −s 0 c 0

0 0 0 0 1

 . (11.28)

11.3. The Jacobi Method (Symmetric Matrices) 39

The Givens rotational matrices have the following property R−1i,j = RT
i,j where RT

i,j is the

transpose matrix. Thus Ri,j is orthogonal since RT
i,jRi,j = Ri,jR

T
i,j = I.

We consider in detailes the transformation RT
i,jARi,j. The pre-multiplication RT

i,jA

has the effect of replacing rows i and j by linear combination of the original rows i and

j, while ARi,j changes only columns i and j. In the transformed matrix A′ we are most

interested in the two diagonal elements a′i,i, a
′
j,j, and two off-diagonal elements a′i,j and

a′j,i. They follow the transformation

a′i,i = c2ai,i + s2aj,j − 2scai,j (11.29)

a′j,j = s2ai,i + c2aj,j + 2scai,j (11.30)

a′i,j = (c2 − s2)ai,j + sc(ai,i − aj,j) = a′j,i. (11.31)

The other affected elements are

a′k,i = cak,i − sak,j (k 6= i, k 6= j) (11.32)

a′k,j = cak,j + sak,i (k 6= i, k 6= j) (11.33)

but we are not interested in these.

We want to choose the coefficients c and s so that the off-diagonal elements a′i,j =

a′j,i = 0. Then from equation (11.31) follows that

(c2 − s2)ai,j + sc(ai,i − aj,j) = 0 (11.34)

or

c2 − s2

sc
=
aj,j − ai,i
ai,j

= 2β (11.35)

Since c2 + s2 = 1 we may eliminate s from (11.35) and after simple algebra

c4 − c2 +
1

4(1 + β2)
= 0 (11.36)

Solving the quadratic equations for c2 we get for the coefficients c and s

c =

(
1

2
− β

2(1 + β2)1/2

)1/2

(11.37)

s =

(
1

2
+

β

2(1 + β2)1/2

)1/2

(11.38)

40 Chapter 11. The Eigenvalue Problem

The good news - choosing the coefficients from (11.37,11.38) we may bring zero into

any off-diagonal position i, j, while preserving the eigenvalues, and the symmetry of the

matrix. The bad news - on the next transformation the zero elements will be transformed

to non-zero. It looks like we do not gain much. However, there is a theorem stating that

when the symmetric matrix A is transformed into RT
i,jARi,j, with Ri,j chosen so that

a′i,j = 0, the sum of the squares of the diagonal elements increases by 2a2i,j, while the sum

of squares of the off-diagonal elements decreases by the same amount. (a reference?).

Thus, we make steady progress toward the diagonalization. (more here?)

There are a couple ways to practically implement the Jacobi method to transfer

a real symmetric matrix to near diagonal form (within accepted tolerance). First, we

may use a systematic way to treat ((ai,j, j = i + 1, . . . , n), i = 1, 2, . . . , n − 1) till all

off-diagonal elements are small. This way is definitely slow since we will zero in elements

that are already small. Second, we search for the largest (in absolute value) off-diagonal

element and transform it to zero (the original Jacobi method). It could be efficient for

”in hand calculations” but not for real computing. Finding the largest element takes

O(n2) operations, while the transformation (11.27) takes about O(n) operations. The

third, and the most efficient way would be to check all the off-diagonal elements in a

systematic order, but zeroing only those whose squares |ai,j|2 is more that a half of the

current average for all average for all off-diagonal. (place a condition here).

The convergence of the iterative process is at least linear, when far from the solution,

and quadratic, when close to the solution.

Here goes the algorithm

Algorithm 7.1 The Jacobi method for ...

Step 1: ...

Program 11.2. the Jacobi method for symmetric matrices

subroutine Jacobi(a,x,abserr,n)

!===

! Evaluate eigenvalues and eigenvectors

! of a real symmetric matrix a(n,n): a*x = lambda*x

! method: Jacoby method for symmetric matrices

!---

! input ...

! a(n,n) - array of coefficients for matrix A

! n - number of equations

! abserr - abs tolerance [sum of (off-diagonal elements)^2]

11.3. The Jacobi Method (Symmetric Matrices) 41

! output ...

! a(i,i) - eigenvalues

! x(i,j) - eigenvectors

! comments ...

!===

implicit none

integer i, j, k, n

double precision a(n,n),x(n,n)

double precision abserr, b2, bar

double precision beta, coeff, c, s, cs, sc

! initialize x(i,j)=0, x(i,i)=1

! *** the array operation x=0.0 is specific for Fortran 90/95

x = 0.0

do i=1,n

x(i,i) = 1.0

end do

! find the sum of all off-diagonal elements (squared)

b2 = 0.0

do i=1,n

do j=1,n

if (i.ne.j) b2 = b2 + a(i,j)**2

end do

end do

if (b2 <= abserr) return

! average for off-diagonal elements /2

bar = 0.5*b2/float(n*n)

do while (b2.gt.abserr)

do i=1,n-1

do j=i+1,n

if (a(j,i)**2 <= bar) cycle ! do not touch small elements

b2 = b2 - 2.0*a(j,i)**2

bar = 0.5*b2/float(n*n)

! calculate coefficient c and s for Givens matrix

beta = (a(j,j)-a(i,i))/(2.0*a(j,i))

coeff = 0.5*beta/sqrt(1.0+beta**2)

s = sqrt(max(0.5+coeff,0.0))

42 Chapter 11. The Eigenvalue Problem

c = sqrt(max(0.5-coeff,0.0))

! recalculate rows i and j

do k=1,n

cs = c*a(i,k)+s*a(j,k)

sc = -s*a(i,k)+c*a(j,k)

a(i,k) = cs

a(j,k) = sc

end do

! new matrix a_{k+1} from a_{k}, and eigenvectors

do k=1,n

cs = c*a(k,i)+s*a(k,j)

sc = -s*a(k,i)+c*a(k,j)

a(k,i) = cs

a(k,j) = sc

cs = c*x(k,i)+s*x(k,j)

sc = -s*x(k,i)+c*x(k,j)

x(k,i) = cs

x(k,j) = sc

end do

end do

end do

end do

return

end

Example 11.2. Solution by the Jacobi method

Eigenvalues and eigenvectors (Jacobi method)

Matrix A

1.000000 2.000000 3.000000

2.000000 2.000000 -2.000000

3.000000 -2.000000 4.000000

Eigenvalues

-2.541381 3.541381 6.000000

Eigenvectors

-0.703413 -0.561011 0.436436

0.522158 -0.824459 -0.218218

0.482246 0.074391 0.872872

The Jacobi method is about 10 times slower comparing to ... However, the Jacobi

11.4. The basic QR method 43

method is invaluable when accuracy, reliability, and simplicity of calculations are more

important than time.

11.4 The basic QR method

The QR method employs orthogonal transformations to transform matrix A into a

triangular form. On the first step matrix A is factorized as

A = QR, (11.39)

where columns matrix Q form a set of orthogonal (mutually orthogonal) vectors ~q,

and matrix R is the upper triangular matrix, whose elements are the vector products

ri,j = ~QT
i ~aj. Here ~aj is column j of matrix A. Once Q and R are evaluated, a new A′

is calculated as

A′ = RQ. (11.40)

Matrices A and A′ are connected by similarity transformation, and share the same

eigenvalues. Multiplying from the left (11.39) by Q−1 we have

Q−1A = Q−1QR = R. (11.41)

Multiplying (11.41) from the right by Q yields

Q−1AQ = RQ = A′. (11.42)

Vectors ~q of matrix Q are evaluated using Gram-Schmidt orthogonalization process.

The first vector ~q1 is a normalized vector ~a1

~q1 = ~a1/‖~a1‖, (11.43)

where

‖~aj‖ =
(
a2j1 + a2j2 + · · ·+ a2jn

)1/2
. (11.44)

The rest vectors ~qj are evaluated as

~a′j = ~aj −
j−1∑
m=1

(~qTm~aj)~qm (j = 2, . . . , n), (11.45)

44 Chapter 11. The Eigenvalue Problem

and

~qj = ~a′j/‖~a′j‖. (11.46)

The diagonal coefficients of the upper triangular matrix R are

rj,j = ‖~a′j‖ (j = 1, . . . , n), (11.47)

the off-diagonal coefficients are

ri,j = ~qTi ~aj (i = 1, . . . , n, j = i+ 1, . . . , n). (11.48)

add more details + iterations

Program 11.3. the QR method for symmetric matrices

subroutine QRbasic(a,e,eps,n,iter)

!==

! Compute all eigenvalues: real symmetric matrix a(n,n,)

! a*x = lambda*x

! method: the basic QR method

! Alex G. (January 2010)

!--

! input ...

! a(n,n) - array of coefficients for matrix A

! n - dimension

! eps - convergence tolerance

! output ...

! e(n) - eigenvalues

! iter - number of iterations to achieve the tolerance

! comments ...

! kmax - max number of allowed iterations

!==

implicit none

integer n, iter

double precision a(n,n), e(n), eps

double precision q(n,n), r(n,n), w(n), an, Ajnorm, sum, e0,e1

integer k, i, j, m

integer, parameter::kmax=1000

! initialization

q = 0.0

11.4. The basic QR method 45

r = 0.0

e0 = 0.0

do k=1,kmax ! iterations

! step 1: compute Q(n,n) and R(n,n)

! column 1

an = Ajnorm(a,n,1)

r(1,1) = an

do i=1,n

q(i,1) = a(i,1)/an

end do

! columns 2,...,n

do j=2,n

w = 0.0

do m=1,j-1

! product q^T*a result = scalar

sum = 0.0

do i=1,n

sum = sum + q(i,m)*a(i,j)

end do

r(m,j) = sum

! product (q^T*a)*q result = vector w(n)

do i=1,n

w(i) = w(i) + sum*q(i,m)

end do

end do

! new a’(j)

do i =1,n

a(i,j) = a(i,j) - w(i)

end do

! evaluate the norm for a’(j)

an = Ajnorm(a,n,j)

r(j,j) = an

! vector q(j)

do i=1,n

q(i,j) = a(i,j)/an

end do

end do

! step 2: compute A=R(n,n)*Q(n,n)

46 Chapter 11. The Eigenvalue Problem

a = matmul(r,q)

! egenvalues and the average eigenvale

sum = 0.0

do i=1,n

e(i) = a(i,i)

sum = sum+e(i)*e(i)

end do

e1 = sqrt(sum)

! check for convergence

if (abs(e1-e0) < eps) exit

! prepare for the next iteration

e0 = e1

end do

iter = k

if(k == kmax) write (*,*)’The eigenvlue failed to converge’

end subroutine QRbasic

function Ajnorm(a,n,j)

implicit none

integer n, j, i

double precision a(n,n), Ajnorm

double precision sum

sum = 0.0

do i=1,n

sum = sum + a(i,j)*a(i,j)

end do

Ajnorm = sqrt(sum)

end function Ajnorm

Example 11.3. Solution by the QR method

QR basic method - eigenvalues for A(n,n)

Matrix A

1.000000 2.000000 3.000000

2.000000 2.000000 -2.000000

3.000000 -2.000000 4.000000

The eigenvalues

11.5. Practical methods 47

6.000000 3.541381 -2.541381

iterations = 21

11.5 Practical methods

Three parameters are important for practical algorithms: (1) convergence, (2) stability,

and (3) efficiency.

Given’s method utilizes the same kind or rotational matrix transformations, however,

the technique does not destroy any zeros which were created in the previous transforma-

tions. Unlike in Jacobi method, we use (c,s) rotation to zero in the (c-1,s) element with

c = 1, 2, . . . , n− 1 and s = c + 2, c + 3, . . . , n). The end result of the rotations is not a

diagonal matrix, but a tridiagonal one. The eigenvalues of a tridiagonal matrix are then

calculated using a Sturmanian recursive sequence of polynomials. The total number of

multiplications to calculate all the eigenvalues in this approach is 4n3/3. However, there

is even faster method. Householder’s method also uses orthogonal transformations to

reduce a symmetric matrix to tridiagonal form. Unlike Given’s method, Householder

method produces them a row at a time. The method is much more complicated compu-

tationally, but works faster than other methods. Both Given’s and Householder methods

are extremely stable.

It is worth to mention about other efficient methods. The LR method involves

repeated factorization to bring the original matrix A into a product of left-triangular,

and right-triangular matrices A = LU . It works the same way as Gaussian elimination.

The LR decomposition works fast, but it is not very stable. Another decomposition, an

exceedingly stable one, is QR algorithm.

Other methods: Faddeev-Leverrier, Lanczos

11.6 Problems

1. Modify the program ”Power” in this chapter to carry out calculations with the

shifted power method.

2. Using routines from this chapter and chapter ”Systems of linear equations”, write

a program that calculates the smallers eigenvalue (the inverse power method)

3. Using the QRbasic routine together with one of programs from chapter ”Systems

48 Chapter 11. The Eigenvalue Problem

of linear equations”, write a code that calculates all eigenvalues and eigenvectors

of a symmetric matrix with real coefficients.

4. plus some numerical calculations ...

