Nonlinear Differential Equations

and The Beauty of Chaos

Examples of nonlinear equations

Simple harmonic oscillator (linear ODE)
$m \frac{d^{2} x(t)}{d t}=-k x(t)$
More complicated motion (nonlinear ODE)
$m \frac{d^{2} x(t)}{d t}=-k x(t)(1-\alpha x(t))$
Other examples: weather patters, the turbulent motion of fluids
Most natural phenomena are essentially nonlinear.

What is special about nonlinear ODE?
\Rightarrow For solving nonlinear ODE we can use the same methods we use for solving linear differential equations
What is the difference?
\Rightarrow
Solutions of nonlinear ODE may be simple, complicated, or chaotic

Nonlinear ODE is a tool to study nonlinear dynamic: chaos, fractals, solitons, attractors

Equations

$$
\begin{aligned}
& \frac{d^{2} \theta}{d t^{2}}=-\omega_{0}^{2} \sin (\theta)-\alpha \frac{d \theta}{d t}+f \cos (\omega t) \\
& \omega_{0}^{2}=\frac{m g L}{I}=\frac{g}{L}, \quad \alpha=\frac{\beta}{m L^{2}}, \quad f=\frac{F}{m L^{2}}
\end{aligned}
$$

Case 1: A very simple pendulum

$$
\frac{d^{2} \theta}{d t^{2}}=-\omega_{0}^{2} \sin (\theta)
$$

Is there any difference between the nonlinear pendulum

$$
\frac{d^{2} \theta}{d t^{2}}=-\omega_{0}^{2} \sin (\theta)
$$

and the linear pendulum?

$$
\frac{d^{2} \theta}{d t^{2}}=-\omega_{0}^{2} \theta
$$

- explanation:

$$
\begin{aligned}
& \sin (\theta) \approx \theta-\frac{1}{2} \theta^{2}+\ldots \\
& \sin (\vartheta)<\theta
\end{aligned}
$$

Case 2: The pendulum with dissipation

$$
\frac{d^{2} \theta}{d t^{2}}=-\omega_{0}^{2} \sin (\theta)-\alpha \frac{d \theta}{d t}
$$

How about frequency in this case?

Phase-space plot

for the pendulum with dissipation

Case 3: Resonance and beats

$$
\frac{d^{2} \theta}{d t^{2}}=-\omega_{0}^{2} \sin (\theta)+f \cos (\omega t)
$$

- When the magnitude of the force is very large - the system is overwhelmed by the driven force (mode locking) and the are no beats
- When the magnitude of the force is comparable with the magnitude of the natural restoring force the beats may occur

Beats

- In beating, the natural response and the driven response add:
$\theta \approx \theta_{0} \sin (\omega t)+\theta_{0} \sin \left(\omega_{0} t\right)=2 \theta_{0} \cos \left(\frac{\omega-\omega_{0}}{2} t\right) \sin \left(\frac{\omega+\omega_{0}}{2} t\right)$
mass is oscillating at the average frequency $\left(\omega+\omega_{0}\right) / 2$ and an amplitude is varying at the slow frequency $\left(\omega-\omega_{0}\right) / 2$

Example: beats

Case 4: Complex Motion

$$
\frac{d^{2} \theta}{d t^{2}}=-\omega_{0}^{2} \sin (\theta)-\alpha \frac{d \theta}{d t}+f \cos (\omega t)
$$

- We have to compare the relative magnitude of the natural restoring force, the driven force and the frictional force
- The most complex motion one would expect when the three forces are comparable

code

? 18

Case 4: Chaotic Motion

Case 4: Chaotic Motion

- A chaotic system is one with an extremely high sensitivity to parameters or initial conditions
- The sensitivity to even miniscule changes is so high that, in practice, it is impossible to predict the long range behavior unless the parameters are known to infinite precision (which they never are in practice)

How can we quantify this lack of predictably?

This divergence of the trajectories can be described by the Lyapunov exponent λ, which is defined by the relation:

$$
\left|\Delta x_{n}\right|=\left|\Delta x_{0}\right| e^{\lambda_{n}}
$$

where $\Delta x n$ is the difference between the trajectories at time n.
If the Lyapunov exponent λ is positive, then nearby trajectories diverge exponentially.
Chaotic behavior is characterized by the exponential divergence of nearby trajectories.

Chaotic structure in phase space

1. Limit cycles: ellipse-like figures with
 frequencies greater then ω_{0}
2. Strange attractors: well-defined, yet complicated semi-periodic behavior. Those are highly sensitive to initial conditions. Even after millions of observations, the motion remains attracted to those paths
3. Predictable attractors: well-defined, yet fairy simple periodic behaviors that not particularly sensitive to initial conditions
4. Chaotic paths: regions of phase space that appear as filled-in bands rather then lines

The Lorenz Model \& the butterfly effect

\Rightarrow In 1962 Lorenz was looking for a simple model for weather predictions and simplified the heat-transport equations to the three equations

$$
\begin{aligned}
\frac{d x}{d t} & =10(y-x) \\
\frac{d y}{d t} & =-x z+28 x-y \\
\frac{d z}{d t} & =x y-\frac{8}{3} z
\end{aligned}
$$

\Rightarrow The solution of these simple nonlinear equations gave the complicated behavior that has led to the modern interest in chaos

Hamiltonian Chaos

The Hamiltonian for a particle in a potential

$$
H=\frac{1}{2 m}\left(p_{x}^{2}+p_{y}^{2}+p_{z}^{2}\right)+V(x, y, z)
$$

for N particles -3 N degrees of freedom
Examples: the solar system, particles in EM fields, .. more specific example: the rings of Saturn

Attention: no dissipation!
Constants of motion: Energy, Momentum (linear, angular)
When a number of degrees of freedom becomes large, the possibility of chaotic behavior becomes more likely.

Practice

\Rightarrow Duffing Oscillator
$\frac{d^{2} x}{d t^{2}}+\alpha \frac{d x}{d t}-\frac{1}{2} x\left(1-x^{2}\right)=f \cos (\omega t)$
\Rightarrow Write a program to solve the Duffing model. Is there a parametric region in (α, f, ω) where the system is chaotic

Summary

\Rightarrow The simple systems can exhibit complex behavior
\Rightarrow Chaotic systems exhibit extreme sensitivity to initial conditions.

Fourier Analysis of Nonlinear Oscillations

\Rightarrow The traditional tool for decomposing both periodic and non-periodic motions into an infinite number of harmonic functions
\Rightarrow It has the distinguishing characteristic of generating a periodic approximations

Fourier series

For a periodic function
$y(t+T)=y(t)$
one may write
$y(t)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos (n \omega t)+b_{n} \sin (n \omega t)\right), \quad \omega=\frac{2 \pi}{T}$
The Fourier series is a "best fit" in the least square sense of data fitting

A general function may contain infinite number of components. In practice a good approximation is possible with about 10 harmonics

Fourier transform

The right tool for non-periodic functions
$y(t)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{+\infty} Y(\omega) e^{i \omega t} d \omega$
and the inverse transform is
$Y(\omega)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{+\infty} y(t) e^{-i \omega t} d t$
a plot of $|Y(\omega)|^{2}$ versus ω is called the power spectrum

Methods to calculate Fourier transform

\Rightarrow Analytically
\Rightarrow Direct numerical integration
\Rightarrow Discrete Fourier transform
(for functions that are known only for a finite number of times t_{k}
\Rightarrow Fast Fourier transform (FFT)

Coefficients:

the coefficients are determined by the standard technique for orthogonal function expansion

$$
\begin{aligned}
& a_{n}=\frac{2}{T} \int_{0}^{T} \cos (n \omega t) y(t) d t \\
& b_{n}=\frac{2}{T} \int_{0}^{T} \sin (n \omega t) y(t) d t \\
& \omega=\frac{2 \pi}{T}
\end{aligned}
$$

Spectral function

If $y(t)$ represent the response of some system as a function of time, $\quad Y(\omega)$ is a spectral function that measures the amount of frequency ω making up this response

Discrete Fourier transform

$=$ Assume that a function $y(t)$ is sampled at a discrete number of $\mathrm{N}+1$ points, and these times are evenly spaced
$=$ Let T is the time period for the sampling: a function $\mathrm{y}(\mathrm{t})$ is periodic with $\mathrm{T}, \mathrm{y}(\mathrm{t}+\mathrm{T})=\mathrm{y}(\mathrm{t})$
$=$ The largest frequency for this time interval is $\omega_{1}=2 \pi / T$ and $\omega_{n}=n \omega_{1}=n 2 \pi / T=n 2 \pi /(N h)$

Discrete Fourier transform

- The discrete Fourier transform, after applying a trapezoid rule
$Y\left(\omega_{n}\right)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-i \omega_{n} t} y(t) d t=\frac{h}{\sqrt{2 \pi}} \sum_{k=1}^{N} e^{-i \frac{2 \pi k n}{N}} y_{k}$
$y(t)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{i \omega_{n} t} Y(\omega) d \omega=\frac{\sqrt{2 \pi}}{h N} \sum_{n=1}^{N} e^{i \frac{2 m t}{h N}} Y\left(\omega_{n}\right)$

Practice for the simple pendulum

Solve the simple pendulum for harmonic motion, beats, and chaotic motion (the dissipation and driven forces are included)
4 Decompose your numerical solutions into a Fourier series. Evaluate contribution from the first 10 terms

* Evaluate the power spectrum from your numerical solutions

DFT in terms of separate real and imaginary parts
$e^{i x}=\cos (x)+i \sin (x)$
$Y\left(\omega_{n}\right)=\frac{h}{\sqrt{2 \pi}} \sum_{k=1}^{N}\left[\left(\cos (2 \pi k n / N) \operatorname{Re}\left(y_{k}\right)\right.\right.$
$\left.+\sin (2 \pi k n / N) \operatorname{Im}\left(y_{k}\right)\right)$
$+i\left(\cos (2 \pi k n / N) \operatorname{Im}\left(y_{k}\right)\right.$

- $\left.\left.\sin (2 \pi k n / N) \operatorname{Re}\left(y_{k}\right)\right)\right]$

