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Nonlinear Differential EquationsNonlinear Differential Equations

and The Beauty of Chaos
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Examples of nonlinear equations
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Simple harmonic oscillator (linear ODE)

More complicated motion (nonlinear ODE)
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Other examples: weather patters, the turbulent motion 
of fluids
Most natural phenomena are essentially nonlinear.
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What is special about nonlinear ODE?

For solving nonlinear ODE we can use the same 
methods we use for solving linear differential equations

What is the difference?

Solutions of nonlinear ODE may be simple, complicated, 
or chaotic

Nonlinear ODE is a tool to study nonlinear dynamic: 
chaos, fractals, solitons, attractors
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A simple pendulum

Model: 3 forces

• gravitational force

• frictional force is proportional 
to velocity

• periodic external force
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Equations
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Computer simulation: there are very many web sites there are very many web sites 
with Java animation for the with Java animation for the 
simple pendulumsimple pendulum
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Case 1: A very simple pendulum
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Is there any difference between the nonlinear 
pendulum

and the linear pendulum?
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Amplitude dependence of frequency

For small oscillations the solution for the nonlinear 
pendulum is periodic with

For large oscillations the solution is still periodic but with 
frequency

explanation:
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Phase-Space Plot
velocity versus position
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phase-space plot is 
a very good way to 
explore the dynamic 
of oscillations
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Case 2: The pendulum with dissipation
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How about frequency in this case?
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Phase-space plot 
for the pendulum with dissipation
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Case 3: Resonance and beats
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When the magnitude of the force is very large – the 
system is overwhelmed by the driven force (mode 
locking) and the are no beats

When the magnitude of the force is comparable with 
the magnitude of the natural restoring force the beats 
may occur
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Beats
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In beating, the natural response and the driven 
response add:

mass is oscillating at the average frequency 
and an amplitude is varying at the slow 

frequency 2)( 0ωω −
2)( 0ωω +
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Example: beats

0 20 40 60 80 100 120
-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

 θ(0)=0.2, α=0.0, f=0.2, ω=1.1

 

 

θ(
t)

time

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0
-2.0
-1.8
-1.6
-1.4
-1.2
-1.0
-0.8
-0.6
-0.4
-0.2
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

 

 

dθ
/d

t

θ

17

Resonance
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That is not true for the nonlinear 
oscillator

For a simple harmonic oscillator 
the amplitude of oscillations 
increases without bound

code
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Case 4: Complex Motion
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We have to compare the relative magnitude of the 
natural restoring force, the driven force and the 
frictional force

The most complex motion one would expect when the 
three forces are comparable
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Case 4: Chaotic Motion
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Chaotic motion is not random!

Chaos is the deterministic 
behavior of a system displaying no 
discernable regularity
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Case 4: Chaotic Motion
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A chaotic system is one with 
an extremely high sensitivity 
to parameters or initial 
conditions

The sensitivity to even 
miniscule changes is so high 
that, in practice, it is 
impossible to predict the 
long range behavior unless 
the parameters are known to 
infinite precision (which they 
never are in practice)
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Measuring Chaos

How do we know if a system is chaotic?

The most important characteristic of chaos is sensitivity 
to initial conditions.

Sensitivity to initial conditions implies that our ability to 
make numerical predictions of its trajectory is limited.
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How can we quantify this lack of 
predictably?

This divergence of the trajectories can be described by the 
Lyapunov exponent λ, which is defined by the relation:

where Δxn is the difference between the trajectories at time n.

If the Lyapunov exponent λ is positive, then nearby 
trajectories diverge exponentially. 

Chaotic behavior is characterized by the exponential 
divergence of nearby trajectories.
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Chaotic structure in phase space
1. Limit cycles: ellipse-like figures with 

frequencies greater then       

2. Strange attractors: well-defined, yet 
complicated semi-periodic behavior. Those 
are highly sensitive to initial conditions. Even 
after millions of observations, the motion 
remains attracted to those paths

3. Predictable attractors: well-defined, yet fairy 
simple periodic behaviors that not 
particularly sensitive to initial conditions

4. Chaotic paths: regions of phase space that 
appear as filled-in bands rather then lines

0ω
-24-22-20-18-16-14-12-10-8 -6 -4 -2 0 2 4 6 8 10

-3

-2

-1

0

1

2

3

 

 

dθ
/d

t

θ



5

25

The Lorenz Model & the butterfly effect
In   1962 Lorenz was looking for a simple model for 
weather predictions and simplified the heat-transport 
equations to the three equations

The solution of these simple nonlinear equations gave 
the complicated behavior that has led to the modern 
interest in chaos
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Example
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Hamiltonian Chaos
The Hamiltonian for a particle in a potential

for N particles – 3N degrees of freedom

Examples: the solar system, particles in EM fields, ...
more specific example: the rings of Saturn

Attention: no dissipation! 

Constants of motion: Energy, Momentum (linear, angular)

When a number of degrees of freedom becomes large, 
the possibility of chaotic behavior becomes more likely.
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Summary

The simple systems can exhibit complex behavior 
Chaotic systems exhibit extreme sensitivity to initial 
conditions.
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Practice
Duffing Oscillator

Write a program to solve the Duffing model. Is there a 
parametric region in                      where the system is 
chaotic
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Fourier Analysis of Nonlinear Oscillations

The traditional tool for decomposing both periodic 
and non-periodic motions into an infinite number of 
harmonic functions

It has the distinguishing characteristic of generating 
a periodic approximations
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Fourier series 

For a periodic function 

one may write

The Fourier series is a “best fit” in the least square 
sense of data fitting
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A general function may contain infinite number of 
components. In practice a good approximation is 
possible with about 10 harmonics
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Coefficients:

the coefficients are determined by the standard 
technique for orthogonal function expansion
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Fourier transform 

The right tool for non-periodic functions 

and the inverse transform is

a plot of              versus       is called the power spectrum
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Spectral function 

If          represent the response of some system as a 
function of time,                is a spectral function that 
measures the amount of frequency      making up this 
response 
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Methods to calculate Fourier transform 

Analytically

Direct numerical integration

Discrete Fourier transform 
(for functions that are known only for a finite number 
of times tk
Fast Fourier transform (FFT)
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Discrete Fourier transform 

Assume that a function y(t) is sampled at a discrete 
number of N+1 points, and these times are evenly 
spaced

Let T is the time period for the sampling:
a function y(t) is periodic with T, y(t+T)=y(t)

The largest frequency for this time interval is
and T/21 πω = )/(2/21 NhnTnnn ππωω ===
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Discrete Fourier transform 

The discrete Fourier transform, after applying a trapezoid 
rule
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DFT in terms of separate real and 
imaginary parts
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Practice for the simple pendulum

Decompose your numerical solutions into a Fourier 
series. Evaluate contribution from the first 10 terms

Evaluate the power spectrum from your numerical 
solutions

Solve the simple pendulum for harmonic motion, beats, 
and chaotic motion (the dissipation and driven forces 
are included)


