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Aerodynamic drag crisis and its possible effect on the flight of baseballs
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At Reynolds numbers above about 10° the aerodynamic drag force on a sphere drops sharply as
the flow begins to become turbulent in the boundary layer. For baseballs, this “drag crisis” may
occur at speeds which are typical for pitched or batted balls. The effects of the drag reduction on
the behavior of both pitched and batted balls is significant, and may explain several features of the
game of baseball which previously have been unexplained or attributed to other causes. In
particular, the drag reduction may help to explain why pitched fastballs appear to rise, why
pitched curve balls appear to drop sharply, and why home run production has increased since the
introduction of the alleged “lively ball.” Calculations suggest that aerodynamic forces are as
important a factor in fastpitch softball as in baseball, and that they are a critical factor in a number

of other ball games.

L. INTRODUCTION

It is now firmly established that aerodynamic forces sig-
nificantly affect pitched baseballs. Indeed, without these
forces it would be impossible to throw a ball that curves or
“knuckles,” i.e., changes direction sharply sideways after it
has left the pitcher’s hand. Although once a matter of con-
troversy,' ™ both baseball players and physicists now agree
that the ball does deviate from a “straight” path,>®i.e., the
path followed by a ball affected only by the forces of gravity
and aerodynamic drag. Perhaps the most comprehensive
study is that of Briggs,” who showed that baseballs can
curve up to about 29 cm from a straight path because the
rotation of the ball causes pressure imbalances between the
left and right side of the ball. Furthermore, Watts and Saw-
yer®® explained that the erratic trajectory of knuckle balls
occurs because of asymmetry in the pressure field around
the ball caused by the presence of the stitching on the base-
ball.

The purpose of the present paper is to suggest that the
behavior of pitched and hit baseballs may be strongly af-
fected by the change in drag regime which occurs when the
Reynolds number exceeds about 10°. The Reynolds num-
ber R is defined as

R=Vd/v.
Here, d is the diameter of the baseball (7.32 cm), V is its
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velocity relative to the air, and v is the kinematic viscosity
of air (about 0.000015 m?/s at 20 °C). This “drag crisis”'°
occurs when the laminar flow of air in a boundary layer
near the ball begins to separate and become turbulent. The
ultimate effect of this turbulence in the boundary layer is to
reduce the size of the turbulent wake behind the ball, and
hence reduce the drag force. Generally, the drag force F, is
characterized in terms of drag coefficient C,

F,= —1pC,AV?, (1)

where p is the fluid density of air (1.29 kg/m? and
A =mnd?/4 is the cross-sectional area of the ball. At the
drag crisis the drag coefficient C; may drop by a factor of 2
to 5 as the velocity increases by a factor of less than 2 (see
Fig. 1). Although several researchers have discussed the
effect of the sudden drag reduction on the behavior of golf
balls,''~'* the author is not aware of any previous study
which investigates the effect on baseballs.

The Reynolds number at which turbulence occurs in the
boundary layer and causes the drag reduction depends
strongly on the roughness of the sphere’s surface.'*!® Gen-
erally the drag reduction will occur at lower Reynolds
numbers as the surface roughness increases (Fig. 2). For
golf balls, this has the effect that balls with roughened or
dimpled surfaces can be driven considerably further than
balls with smooth surfaces.’® This has been known for
some time." Indeed, partly because there exist strong eco-
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Fig. 1. Drag coefficient C, of a smooth sphere versus Reynolds number R
(Refs. 16, 10). Note especially the “drag crisis,” the sharp decrease in drag
that occurs at about R = 4 X 10°. The vertical lines correspond to veloc-
ities of 1 m/s and 42.67 m/s for a smooth sphere with the diameter of a
baseball. 42.67 m/s is the terminal velocity of a baseball as measured by
Briggs,” and is approximately the velocity of the fastest major league
pitchers. Most previous investigators have assumed that a baseball is aero-
dynamically smooth, and that C; = 0.5 for all Reynolds numbers.

nomic incentives for producing a better golf ball, there has
been considerable research concerning the effect that the
surface has on the drag and lift of golf balls.!'~'*

The aerodynamic conditions affecting baseballs are simi-
lar enough to those affecting golf balls that it is reasonable
to expect that the drag crisis affects the behavior of base-
balls as well. Baseballs and golf balls in flight have Reyn-
olds numbers of about 1X 10° to 2X 10° (see Table I). In
addition, since the radial bumpiness on a baseball caused
by the seams is roughly & = 0.5 mm (Fig. 3), the effective
roughness k /d is about 700x 107>, This is slightly less
than that for a golf ball (k /d = 900X 10~3, as reported by
Bearman and Harvey'?). However, it is considerably larger
than the surface roughness necessary to strongly affect

10 m/s 4267 m/s 100 m/s 1000 m/s
M M N 2

10 1
REYNOLDS NUMBER

Fig. 2. Effect of the surface roughness of a sphere on drag coefficient C, at
Reynolds numbers near the drag crisis. Surface roughness is parameter-
ized by k /d where k is the height of the roughness elements, and d is the
sphere diameter. The roughness for the various spheres shown are type 1
ball—k /d = 1250 X 10~ 5; type 2 ball—k /d = 500X 10~%; type 3 ball—
k/d =150x 1075 type 4 ball—smooth sphere; and type 5 ball—
C, = 0.5for all R. The top horizontal scale shows the equivalent air speed
for a sphere with the diameter of a baseball. The plotted symbols are from
Achenbach. ' The lines connecting measured values show values used for
C, for the calculations reported in this paper.

drag'® (Fig. 2). Briggs’ reported that a baseball could be
suspended in the airstream of a vertical wind tunnel when
the air speed was about 140 ft/s (42.67 m/s). From Eq. {1),
since at terminal velocity the drag force F equals mass of
baseball (0.145 kg) times the acceleration of gravity, one
finds that C, = 0.29, clearly beyond the onset of the drag
crisis for a smooth sphere (see Fig. 1).

Table I. Representative speeds for various balls used in sports, and calculated values of the Reynolds number and ratio a/g of aerodynamic and
gravitational forces. For uniformity, even for balls with large reported Reynolds numbers, in this table the author assumes C; = 0.5 when calculating
the aerodynamic force. Numbered sources are references from the reference list.

Reported Reynolds

Type of speed Diameter Mass number
ball (m/s) (cm) (kg) (X 10%) a/g Source  Comments
Baseball 42.67 7.32 0.145 2.08 1.74 7 Terminal velocity in

wind tunnel
Basketball 9.0 24.26 0.600 1.46 0.21 44 Calculated for 25-ft

jump shot
Bowling 7.76 21.8 7.27 1.13 0.01 45 Release speed of expert
Golf 61.0 4.26 0.046 1.73 3.80 13 Moderately long drive by pro
Jai alai 67.0 5.08 0.139 226 2.30 cee Original source unavailable
Shot put 14.02 11.0 7.27 1.03 0.01 24 World record performance
Soccer 29.1 222 0.454 431 2.38 55
Softball 44.2 9.70 0.188 2.86 2.53 40 Ball pitched by very

fast professional
Table tennis 4.27 3.8 0.0025 0.11 0.27 39 Forehand drive by expert
Tennis 45.15 6.5 0.058 1.96 3.84 56 Serve of top professionals
Volleyball 30.26 21.0 0.270 4.23 3.86 57 Very hard spike by

male college player
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Fig. 3. Shadow cast by the seams of a baseball, showing that the roughness
height & is about 0.5 mm. To prepare this figure, the author used an
enlarger to cast a shadow of a Rawlings official National League baseball
on photographic paper, which was photographed and enlarged. The lar-
gest dimension of the black rectangle beneath the seam is 10 mm.

The purpose of the present paper is to speculate on how
the observed drag reduction affects the behavior of pitched
and hit baseballs. Since no precise measurements of drag
coeflicient for a baseball are available, the author wrote a
computer program to calculate the trajectory of five differ-
ent types of balls, each with the diameter and mass of a
baseball and with drag coefficient which varies in different
ways as the Reynolds number increases. For the drag coef-
ficients, the author chose the measurements of Achen-
bach’® for spheres of varying roughness. The “type 1” ball
had the highest degree of roughness, with the “type 2,”
“type 3,” and “type 4” (smooth sphere) corresponding to
spheres of lesser roughness. For the “type 5 ball, C, was
assigned to be constant at 0.5 over the entire range of Reyn-
olds numbers, as has been assumed in a previous analysis of
baseball aerodynamics.'” Because the primary concern in
this paper is with the effects of drag reduction on the trajec-
tory of balls, in the calculations we will ignore the effects of
rotation of the ball on the trajectory, i.e., we assume that
the lift is zero and there is no lateral deflection.

II. NUMERICAL METHODS

From Eq. (1), the components of acceleration in the hori-
zontal and vertical directions can be expressed in terms of
the velocity components x and y:

i=— 1P c s
2 M
" 1&4; .
= — = C,Vy —g. 2
y >y G -8 ()

These equations are not integrable for most normally en-
countered functional forms of C, (Ref. 18) and thus trajec-
tories must be calculated numerically. As noted by Froh-
lich,' the trajectories are relatively robust if the numerical
integration is performed at regular intervals of time Az, and
if the third derivative of position is calculated in terms of
the velocity components. In particular, if B = p4 /2M,

X = —B(acd bx + Cyox + C,,,w'e),
av (3)

ac, . . .. .
V= _—B( oy + C,0 +Cu'),
y ET% y aUY avy
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where

b= (xX + yj)/v.
Thus if the position (x, y) and the velocity (x, y) are known
at any point in the trajectory then we can calculate the

change in velocity and positon after a time Az in terms of a
Taylor series expansion

Ax = %At + LxAt? + L X413,

Ax = %At + LXAt?,
and similarly for Ay and Ajy.

In each time interval the drag coefficient and its partial
derivative were determined using the values reported by
Achenbach'® and a straightforward semilog interpolation
scheme. In particular, at a velocity V corresponding to a
Reynolds number R between the Reynolds numbers R,
and R, where drag coefficient values C, and C, are plotted
in Fig. 2,

InR—1nR,

C,=C c,—-C
d 1+ (G l)lnRz—lan

and

9Cs _9CadR _ d _C-—C,

¥ AR ¥V R mR,— IR,

Using a FORTRAN program written to implement the
above scheme, the author obtained satisfactory results with
At = 0.003 s. In particular, tests of the effect of 47 on the
computed range of baseballs “hit” with the above algo-
rithm showed that changing A¢ from 0.003 t0 0.001 s never
changed the calculated range by more than 1 cm, or less
than about 0.01%. For baseballs “pitched” with the above
algorithm a Az of 0.003 s was used.

III. TRAJECTORY CALCULATIONS FOR
PITCHED BASEBALLS

To investigate the effect on pitched baseballs of varia-
tions inC, and in initial velocity, the author calculated tra-
Jectories for five different functional types of the drag coef-
ficient C,. Although the distance from the pitcher’s rubber
to the plate is 60 ft, 6 in. (18.44 m), cinematographic studies
by Selin* found that typically the ball is released by the
pitcher about 56 ft (17 m) from the plate, and about 7 ft
(2.13 m) vertically above the plate (0.48 m pitcher’s mound
with ball released at 1.65 m level).

Speeds of pitched baseballs vary depending on the
pitcher and the type of pitch. However, the range of speeds
varies from about 24 m/s (80 ft/s) for changeup or knuckle-
ball pitches,* to 45 m/s (148 ft/s or about 100 mph) which
has been reported for a few fastball pitchers, including Bob
Feller and Nolan Ryan.?® Baseballs released at these speeds
and at the height and distance mentioned above crossed the
plate in the strike zone if they were thrown horizontally or
at angles slightly above the horizontal.

The calculations performed in this study showed clearly
that balls pitched into different drag regimes had trajector-
ies that were significantly different. For example, identical-
ly pitched type 2 and type 3 balls with initial velocities of
35.66 m/s arrive at the plate with elapsed times differing by
0.016 s, vertical height differences of 5.3 cm, and velocities
differing by 1.99 m/s (Table II). A speed of 35.66 m/s cor-
responds to a Reynolds number of 1.74 X 10°, which is in
the most steeply decreasing part of the C, drag crisis for a
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Table II. Calculated elapsed times, final vertical height, and final speeds for pitched balls of various types released at different initial speeds. The
calculations assume that the ball is released horizontally by the pitcher at a height of 1.5 m above the ground, and the calculations describe its
trajectory when it crosses the plate 17 m from the point of release and 6.1 m before it crosses the plate. Negative vertical heights indicate that a ball re-

leased horizontally would hit the ground before reaching the plate.

Values as ball crossés plate

6.1 m before crossing plate

Initial speed Ball Final speed Elapsed time Vertical height Vertical height Elapsed time
(m/s) type (m/s) (s) (m) (m) (s)
42.67 1 38.28 0.424 0.651 1.159 0.267

2 38.31 0.424 0.653 1.158 0.267
3 41.65 0.406 0.700 1.171 0.260
4 36.36 0.436 0.620 1.151 0.272
5 36.58 0.434 0.625 1.152 0.271
35.66 1 32.28 0.506 0.290 1.012 0.319
2 32.41 0.505 0.292 1.014 0.319
3 34.40 0.489 0.345 1.028 0.312
4 30.59 0.521 0.242 1.000 0.325
5 30.75 0.519 0.247 1.001 0.325
26.21 1 24.53 0.686 —0.728 0.602 0.433
2 25.10 0.678 —0.696 0.608 0.430
3 23.22 0.706 —0.817 0.579 0.441
4 23.13 0.708 —0.825 0.576 0.442
5 23.20 0.717 —0.821 0.579 0.441

type 3 ball, whereas it corresponds to the increasing part of
the C,; curve for the type 2 ball (Fig. 2). Thus as it ap-
proaches the plate and slows, the type 3 ball faces drag
forces which increase deceleration from a/g = 0.27 to a/
g =0.39, whereas the type 2 ball faces forces which de-
crease from a/g = 0.83 to a/g = 0.65.

In a similar fashion, type 2 and type 3 balls behave in
different ways if they are pitched at 26.2 m/s. This corre-
sponds to a Reynolds number of 1.28 X 10°, which is close
to the drag minimum for type 2 balls but well before the
onset of the drag crisis for type 3 balls. In this case the type
2 ball arrives at the plate 0.028 s before and 12.1 cm above
the type 3 ball. Since typical bat speeds are 3040 m/s
(Refs. 21, 22), it is clear that timing differences of 0.028 s
will affect a batter’s point of contact with the ball. Similar-
ly, since typical bat diameters are 7 cm, and since the ball
diameter is 7.32 cm, it is clear that vertical height differ-
ences of 12.1 cm can make the difference between a solidly
hit line drive and a swing and miss.

Studies of major league batters have shown that the deci-
sion to swing at a pitch is made when the ball is about 20 ft
(6.1 m) from the plate.”® Since the pitcher may be able to
affect the drag regime by changing its orientation, spin,
etc., he would find it especially useful if this affected the
ball’s trajectory after the batter had begun his swing. The
calculations in Table II and Table III show clearly that
most of the differences in vertical height between type 2

Table III. Amount of vertical height and elapsed time difference between
pitched type 2 and type 3 balls which accrue in final 6.1 m of trajectory.

Initial speed Height difference Time difference
(m/s) (cm) {s)
42.67 34 0.007
35.66 3.7 0.007
26.21 9.2 0.011
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and type 3 pitches accrues over the final 6.1 m of the balls’
trajectories. Indeed, for pitches with initial velocity of
26.21 m/s, 9.2 cm of the total of 12.1-cm vertical height
difference between type 2 and type 3 balls developed in the
last 6.1 m (Table III). However, at all speeds less than half
of the difference in elapsed time occurred in the last 6.1 m.

Note that in the range of Reynolds numbers appropriate
for baseball, there is almost no difference between the be-
havior of a smooth ball (type 4) and a ball with a constant
drag coefficient of 0.5 (Table II). It is probably for this rea-
son that previous studies, such as that of Erickson,'” felt
justified in using a constant drag coefficient to calculate
baseball trajectories.

IV. TRAJECTORY CALCULATIONS FOR BATTED
BASEBALLS

To investigate the effect on batted baseballs of variations
of C, and velocity, the author calculated the minimum val-
ues of initial velocity (Fig. 4) that permitted a ball to travel
distances ranging from 300 to 500 ft (91.4 to 152.4 m). This
is identical to a calculation of the maximum distance that a
ball can travel for a particular initial velocity. For all calcu-
lations it was assumed that the batter made initial contact
with the ball 1.5 m above the ground.

The results (Fig. 4) show clearly that the maximum dis-
tance a ball travels depends strongly on the drag regime.
For example, a batter can hit a type 2 ball 300 ft when the
initial velocity is only 35.2 m/s, but for a type 4 ball the
initial velocity must be 44.5 m/s, or 26% higher. To bat a
ball 500 ft, a type 3 ball must have an initial velocity of only
46.9 m/s, whereas a type 5 ball must have an initial velocity
of 78.9 m/s, or 68% higher.

There is also a striking difference in the initial take-off
angle associated with the maximum range (Fig. 5). For ex-
ample, to reach 300 ft the optimum take-off angle varied
from 34.5° (type 2 ball) to 43.5° (type 1 ball). To reach 500 ft,
the optimum take-off angle varied from 29.5° (type 3 ball) to
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Fig. 4. Calculations of the maximum distance traveled for various types of
balls hit at various initial speeds. The calculations assume that the balls
begin their trajectory with the speed indicated at a point 1.5 m above home
plate. Symbols as in Fig. 2.

43° (type 2 ball). Except for the type 2 ball, over the range
considered the take-off angle necessary for optimum per-
formance decreases as the initial velocity increases (Fig. 5).
Other investigators have noted that air resistance causes a
decrease in take-off angle to be associated with increasing
velocity if maximum distance is to be reached.'®**

In general, the effect of the drag crisis is to produce a
regime where the aerodynamic drag force actually de-
creases as the velocity increases. This can produce behavior
which at first seems uncharacteristic of a drag force. For
example, the optimum release angle for a type 2 ball actual-
ly increases as the initial speed increases over the range of
values shown in Figs. 4 and 5. Calculations showed that for
all the type 2 trajectories in Figs. 4 and 5, the speed of the
ball reached the speed of minimum drag or about 25 m/s
(see Table IV) slightly before it reached the highest point in
its trajectory. Thus it experienced very low drag forces
while traveling most of its distances horizontally. For type
2 balls, the optimum batting strategy is to get the ball as
high as possible before it enters the horizontal, low drag
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Fig. 5. Optimum take-off angles necessary to obtain given distances with
minimum initial speeds for various types of balls, i.e., take-off angles asso-
ciated with trajectories described in Fig. 4. Symbols as in Fig. 2. For
example, Figs. 4 and 5 indicate that to hit a type 3 ball 400 ft, the minimum
initial velocity is 42.67m/s, and the associated take-off angle is 31.5°.
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Table IV. Calculated terminal velocity and velocity of minimum drag for
various types of ball. Ball diameter is that of a baseball and as discussed in
the text; for ball types 14 the terminal velocity is stable only if it occurs on
the upward-sloping portion of the drag curve. For the type 4 ball, there
exist one unstable and two stable terminal velocities.

Velocity of
Ball Terminal Reynolds minimum Reynolds
type velocity  number drag number
(m/s) (X 10%) (m/s) (X 10%)
1 37.39 1.82 17.41 0.85
2 38.62 1.88 25.40 1.24
3 52.84 2.58 40.98 2.00
4 (stable) 85.80 4.19 81.96 4.00
(metastable) 81.33 397
(stable) 31.86 1.55
5(C,; =0.5) 32.36 1.58
measured by
42.67 2.08

Briggs

portion of its trajectory. In contrast, because the speed at
which the minimum drag occurs is significantly higher for
type 3 balls, they experience minimum drag during the ini-
tial portions of their trajectory, and not at the apex. For
type 4 and type 1 balls, speeds are quite different from the
speeds of minimum drag over their entire trajectory, and
thus like a type 5 ball, their optimum release angle de-
creased as the initial velocity increased.

V. DISCUSSION

It is interesting to speculate as to which of the drag
curves in Fig. 2 is most appropriate for baseballs. Although
the drag curve for golf balls has been reported by several
investigators,'!'* the author is unaware of a published C,
curve for a baseball. Briggs’” data suggest that C;, = 0.29
for R = 2.08 X 10° when a baseball was supported in a ver-
tical wind tunnel at terminal velocity. Presumably at termi-
nal velocity the airstream supported the baseball at a stable
equilibrium where

oF,
v

because otherwise small fluctuations in the airstream ve-
locity would result in rapid acceleration or deceleration of
the baseball. This will nearly always occur when

ac,
v

A C, of 0.29 on the upward sloping part of the C, curve
corresponds roughly to a type 2 ball (see Fig. 2). The calcu-
lations of terminal velocity (Table 1V) and the measure-
ments of Briggs’ suggest that the drag curve for a baseball
falls somewhere between a type 2 and a type 3 ball.

However, in 1969 Watts (personal communication)
made measurements of C, for a baseball between the
ranges of R = 0.25x 10* and 1.6 X 10° and found no clear
evidence of the onset of the drag crisis. In particular, all of
the measured C,; were between 0.41 and 0.56 with values
between 0.49 and 0.56 occurring for 7in the range 3 X 10* to
8 10*. Slightly lower values of C, occurred at higher R.
These measurements could be observed if a baseball were a
type 3 ball.

<0

>0.
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Unfortunately, the measurement of C, for a baseball or
any sphere is a more difficult experiment than it might first
appear. For spheres, the measured C, has been shown to
depend on the width of the wind tunnel used,'® on the type
of turbulence damping used upstream in the tunnel, and on
the type of support structure used to hold the sphere in the
tunnel. It also depends on whether the sphere is free to
rotate, on the spin velocity of the sphere, and on small
changes in the surface roughness. ¢ For a baseball, since its
seams (Fig. 3) provide a relatively gross and asymmetric
surface roughness feature, it also depends on the orienta-
tion of the ball.

A. Drag crisis and pitched baseballs

If, as we suggest above, the drag crisis for baseballs oc-
curs in the range of Reynolds numbers appropriate for
pitched and batted baseballs (approximately 1x10° to
3% 10%), then this may affect and/or explain several fea-
tures of the game of baseball. In particular, for pitched
baseballs, it may help explain the trajectories of fastballs,
curves, and knuckleballs.

. For fastball pitches, the drag crisis may affect both the
trajectory of the ball in space and the time when it reaches
the plate. In particular, a type 3 ball thrown at 35.66 m/s
will arrive 0.03 s earlier and 9.75 cm higher above the plate
than a type 5 ball (Table II). For batters or catchers used to
adifferent drag regime, the fact that a fastball arrives sever-
al centimeters above its expected position contributes to its
appearance of rising. Indeed, Selin* measured six fastballs
with high-speed cameras and found that they arrived at
home plate from 9 to 82 cm above the height expected for a
ball affected by gravity alone. Generally the apparent rising
is attributed to the fact that the ball is released with a signif-
icant backspin, which causes it to curve in the upward di-
rection. However, the present study suggests that a signifi-
cant fraction of the apparent rise that was observed by Selin
could be explained by the reduction of drag associated with
the drag crisis.

For curve ball pitchers, the original question of whether
curves actually curve® has now been replaced by the ques-
tion of whether the apparent suddenness of curves is real,
or merely an illusion. For example, the measurements re-
ported by Allman® suggest that the ball curves regularly at
a constant rate over the entire path, but this is viewed as a
sudden curvature by the batter. However, many exper-
ienced batters would vehemently contest this, arguing that
“slow” curves curve at a regular rate but that sharp curves
change paths abruptly. The author of the present article
suggests that a curve thrown with a velocity slightly higher
than the onset of the drag crisis might slow down along its
path, and experience a sudden increase of force as the drag
coefficient changed from about 0.1 to 0.5. For a type 3 ball,
the ratio a/g changes from 0.14 to 0.41 as the velocity
changes from 35.9 to 28.7 m/s. Since presumably the lift
forces associated with spinning also change significantly
during the drag crisis, the ball’s trajectory would be
changed by the increases in both the drag and lift forces.

Knuckleball pitches experience the most erratic trajec-
tories of all, and are typically thrown with little or no rota-
tion at velocities of about 25.6 m/s (Ref. 4). Often, neither
the catcher nor the pitcher knows which way the pitch will
break, or if it will break at all. The present author suggests
that the onset of the drag crisis provides the kind of chaotic

330 Am. J. Phys., Vol. 52, No. 4, April 1984

turbulence regime that might help to produce a typical
knuckleball trajectory. For example, for a type 2 ball a ve-
locity of 25.6 m/s corresponds almost exactly to the mini-
mum of the C, curve. Tiny changes in the velocity, the
wind conditions along the trajectory, and the relative posi-
tion of the seams with respect to the airstream could affect
whether all or only a part of the ball experienced the turbu-
lent forces associated with boundary layer separation, or
the high drag forces associated with laminar flow in the
boundary layer.

In his study of flow past roughened spheres, Achen-
bach'® noted that near the onset of the drag crisis, spheres
behaved in a fashion that sounds distinctly like knuckleball
behavior:

“Finally, an unexpected result should be mentioned.
At critical flow conditions the sphere was pushed by
lift forces towards the wall of the tube [wind tunnel].
This movement grew more and more intense as the
critical Reynolds number was approached .... The
phenomenon described could not be studied in detail.
However, an attempt will be made to explain its initia-
tion. In the critical flow range a small variation in the
Reynolds number causes a drastic change in the drag
coefficient. This change is due to a downstream shift
of the boundary separation point accompanied by a
recovery of the static pressure at the rear of the sphere.
The flow state is rather unstable and therefore any
slight asymmetry of the geometry due to eccentricity
of individual surface roughness would cause a prema-
ture transition of the boundary layer. The resulting
three-dimensional pressure distribution yields a force
perpendicular to the mean flow direction which drives
the sphere towards the wall.”

Clearly, a pitcher who wished to use the drag crisis to
advantage would like to be able to change the aerodynamic
properties of the baseball so that different pitches could be
affected by entirely different drag curves (as in Fig. 2). In
fact, there is undeniable evidence that pitchers go to a lot of
trouble to change the aerodynamic properties of the ball for
different pitches. The most well-known example is the so
called “spitball” which was outlawed in 1920, but which
numerous pitchers are accused of throwing each season.?®
For example, in the 1982 season Gaylord Perry of the Seat-
tle Mariners was suspended for ten days because he “doc-
tored the ball.” In practice a ball’s performance character-
istics can be altered by cutting or scuffing part of the
surface, by applying grease to a part of the surface, or by
applying saliva or perspiration. There are also legal ways of
changing the character of the ball, such as working up the
surface of part of the ball with the palms and fingers, and
roughening the strings along part of the seams with the
fingernails.

In practice, baseball pitchers trying to throw particular
pitches always grip the ball in the same orientation relative
to the seams. Thus each time the pitch is released the spin
magnitude and axis orientation is uniform. This insures
that the torques and forces applied by the air to the ball are
always the same, at least over the initial portion of the ball’s
trajectory. By this means a pitcher can control when a pitch
will “break’ because as it travels towards the plate the spin
axis will change in a regular manner due to precession or
due to aerodynamic torques. This continues until the orien-
tation of the strings and spin axis relative to the airstream
changes; separation stops occurring in the boundary layer.
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This causes a sudden change in the forces affecting the ball,
which means that the pitch “breaks.”

Presumably it is by controlling the spin axis that a
pitcher makes a curve or slider break in the same way each
time that it is thrown. Because the pitcher can control the
spin axis, he is in effect controlling how and when different
aerodynamic forces affect the ball. In this way it is possible
for him to throw different pitches which have the same
initial speed but which are affected by significantly differ-
ent drag regimes.

It is not clear to the author whether the pitcher controls
the spin axis primarily by using aerodynamic torques, or
rather by utilizing the natural free precession of the ball
which will occur if it is slightly aspherical. An interesting
experiment would be to measure the principal axes and
moments of inertia of a collection of unused baseballs to
determine if nonspherical features of the balls had the same
magnitude and orientation relative to the trademark and
seams. If so, this would help to explain the remarkable de-
gree of control that some pitchers have over the trajectory
of pitched baseballs.

Finally, it is worth noting that if gross changes were
made on the surface of the regulation baseball, this would
undoubtedly change the game significantly even if the
ball’s mass and diameter were unchanged. For example, if
the ball’s cover were seamless and smooth like a type 4 ball,
it would be significantly more difficult to hit home runs
(Fig. 4). However, a seamless ball would curve less, making
it easier to hit. Were the ball to become smooth, knuckle-
ball pitchers would disapper from the major leagues over-
night. The net result would be that significantly more sin-
gles would be hit and more runs scored, but there would be
fewer extra base hits and home runs. As discussed by
James,”>?” this would create a game favoring the steal and
the sacrifice bunt.

B. Drag crisis and batted balls

The existence of the drag crisis clearly affects the initial
velocity that is necessary for a batter to hit a home run—a
ball that travels on the fly over the outfield fence. In major
league stadiums at the present time, the distance to the
outfield fence ranges from 302 to 355 ft (92 to 108 m) along
the foul lines to between 400 and 440 ft (122 to 134 m) in the
center of the outfield.

Unfortunately, the author has been unable to find any
paper which reports measurements of the initial velocity of
baseballs hit as home runs. Bryant et al.?® measured the
velocity of line drives hit to the outfield by batters taking
pitches from a pitching machine. For pitches of 25.3 m/s
speed, the initial velocity off the bat was 39.6 m/s. Briggs’
noted without explanation that some batted balls must be
hit with initial velocities considerably in excess of the ter-
minal velocity (42.67 m/s). This is undoubtedly so, as we
can see if we model the bat/ball interaction as a simple
collision. For example, suppose a ball with a velocity of 40
m/s interacts with a 0.91-kg (32-0z) bat moving with a
speed of 30 m/s in such a fashion that the coefficient of
restitution is 0.3. Then if the ball is hit straight back at the
pitcher its speed will be 53 m/s. However, this is a relative-
ly conservative calculation, as bat speeds of 40 m/s have
been measured for a small sample of college players,?? and
the coefficient of restitution of a baseball has been mea-
sured to be between 0.5 and 0.6.2%2%-3! If the bat and ball
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Fig. 6. Number of home runs per team per game hit in the major leagues
each year since 1900.

both have velocities of 40 m/s and if the coefficient of resti-
tution is 0.5 it would be hit straight back at the pitcher with
a speed of 78 m/s. Of course, balls hit at angles different
from horizontal will have lower speeds.

The author’s calculations (Fig. 4) show that the distance
that a ball travels depends strongly on the drag regime in
effect, i.e., on the type of ball hit. For example, a type 4 ball
(smooth sphere) with initial velocity near the terminal ve-

. locity of 42.67 m/s will travel a maximum distance of 87.6

m, whereas a type 3 ball would travel 122.1 m, or about
39% further. In a vacuum, the sphere would travel 187.3
m. These calculations suggest that if a batter desiring home
runs can hit a ball hard enough to “punch through” the
drag crisis, he can hit the ball considerably further than
would be expected if C,; were constant. In effect, small in-
creases in initial velocity can produce a large increase in
distance. Although the precise velocity of batted home
runs is not known, it is clear from the above discussion that
balls of the type 2 and type 3 variety must be commonly hit
at speeds exceeding the minimum in the drag curve (Table
Iv).

The question of the effect of material changes in the base-
ball on the ease of hitting home runs has produced a contro-
versy which has concerned some baseball enthusiasts for
more than 50 years. The key problem in the “lively ball
controversy” concerns why the number of home runs hit in
the major leagues increased so sharply beginning about
1920 (Fig. 6), and has varied so greatly since that time.
Many knowledgeable baseball experts®>** firmly believe
that the coefficient of restitution of the baseball has been
changed numerous times, either unintentionally by the ball
manufacturers or intentionally at the request of the major
leagues. Both the ball manufacturers and the major leagues
have denied that the ball has changed significantly, and
instead attribute the obvious changes in the number of
home runs to other factors, such as the presence of general-
ly faster pitchers, the existence of bigger, stronger, better
trained hitters, and changes in managerial strategy which
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encourage home runs. Although the “lively ball” propon-
ents do not deny that the physical characteristics of ball-
players and baseball strategy have changed since 1920,
they consider it impossible that these changes could affect
home run production so significantly. Unfortunately, mea-
surements of the characteristics of baseballs, and especially
the coefficient of restitution, have been made only irregu-
larly.29‘3 1,34-37

With one exception®® none of the participants in the live-
ly ball controversy has realized that the aerodynamic prop-
erties of the ball will affect the hitting of home runs as
greatly as does the coefficient of restitution. As previously
noted, for baseballs hit at velocities near the onset of the
drag crisis, a small increase in velocity will make the ball
travel much further. Thus the drag crisis means that slight-
ly stronger athletes will be disproportionately more effec-
tive at hitting home runs, or that slightly faster pitchers will
give up disproportionately more home runs. In addition, it
is possible to change the distance that baseballs travel sim-
ply by making subtle changes in the ball’s aerodynamic
properties without affecting the coefficient of restitution.
For example, if the surface were slightly roughened orif the
seams were raised slightly, the velocity of the onset of the
drag crisis would be reduced and a ball would travel further
for a given initial velocity. Any investigators wishing to
resolve the lively ball controversy with experiments should
carefully study the characteristics of the cover and seams as
well as the ball’s mechanical properties.

One of the most comprehensive reports concerning the
mechanical properties of baseballs was commissioned by
Popular Mechanics in 1961. These investigators analyzed
the composition of both old and new balls, studied the ef-
fects of aging on baseball properties, and measured seam
heights as well as coeflicients of restitution on balls manu-
factured in 1927, 1930, and 1961. They found that seam
heights did indeed differ for different baseballs, and that
even for baseballs manufactured in the same year coeffi-
cients of restitution could vary more than 20%. Simple
measurements of the drag coefficient suggested that the
1961 balls had drag coefficients 10% to 15% lower than
the older balls. Changes in the compositions and the manu-
facture of the baseball occur quite regularly,*® indeed, the
cover of the official baseball was changed in 1974 from
horsehide to cowhide. Clearly, any scientist wishing to in-
vestigate the aerodynamic properties of the baseball should
be prepared to study the differences between balls as well as
the properties of a particular ball.

C. Relative importance of aerodynamic effects in various
ball games

To evaluate how aerodynamic forces influence a particu-
lar ball game, it is useful to calculate both the Reynolds
number R and the ratio a/g of aerodynamic forces to gravi-
tational forces in typical situations {Table I). In addition,
the surface roughness of the ball is a factor as it affects at
what Reynolds number the drag crisis begins. The com-
parisons in Table I are only approximate. Although infor-
mation concerning the dimensions and masses of balls are
available in any encyclopedia, measurements of velocities
are difficult to find. It is sometimes difficult to determine
whether the reported values are measurements or guesses,
whether they are for typical or exceptional players, and
whether they are for typical or exceptional situations.
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When careful measurements of ball speed are available,
they sometimes differ markedly from commonly quoted
speeds. For example, whereas Ortiz* quotes a table tennis
magazine to the effect that ping pong balls in play may
travel “in excess of 70 mile per hour” (31.3 m/s), her own
measurements of the speed of typical returns for expert
players do not exceed 4.27 m/s. Comparisons between re-
ported measurements are difficult, as many reported mea-
surements are not accompanied by information about how
the measurements were made, or what portion of the tra-
Jjectory was measured. This is a critical subtlety, because
calculations suggest that at the higher reported speeds the
initial, average, and final speeds may differ significantly.
For example, a type 3 softball pitched with an initial speed
of 29.6 m/s and released 12.6 m from the plate will cross
the plate at a speed of 25.7 m/s, and its average speed over
the entire path would be 27.4 m/s. A table tennis ball with
an initial speed of 31.3 m/s will cross a standard 8-ft (2.43-
m) table with final and average speeds of about 22 and 26
m/s, respectively.

A potentially useful research project that might appeal
to undergraduate physics students would be to determine
accurately the speeds of balls used in various sports by
players at different skill levels under various conditions. To
be most valuable, measurements should be made as nearly
as possible under actual game conditions. It probably
would be possible to determine speeds reasonably accurate-
ly using only a movie camera, if care were taken in the
selection of film and if the observer took notes concerning
the approximate distance, etc. between the camera and the
subject.

One ball game which must be influenced strongly by
aerodynamic effects is fastpitch softball. The rules of soft-
ball are quite similar to those of baseball, however, the
ball’s diameter is 9.7 cm and its mass is 0. 188 kg, about one-
third larger than the diameter and mass of a baseball. Soft-
ball pitchers throw the ball from a distance of 46 ft (14.0 m)
with an underhand motion and without any pitcher’s
mound. However, the few available measurements suggest
they achieve speeds comparable to those of baseball pitch-
ers. Miller and Shay*® measured the speeds of five male
college softball pitchers and four male town league pitch-
ers, and found that the average speed between release and
the plate was as high as 29.6 m/s. They review the results of
previous studies of professional players which report initial
velocities as high as 44.2 m/s. Popular articles report even
higher speeds.*!

The softball and baseball illustrate an interesting para-
dox concerning the aerodynamic effects on objects of simi-
lar shape but different sizes. Since the Reynolds number is
proportional to the diameter, for any given speed

Rsoftball — 133’

baseball
and so the softball will be affected by the drag crisis at
significantly lower speeds than a baseball. If we rewrite Eq.
(1) in terms of the Reynolds number R, and recall that
A = 7wd */4, we find that the drag force is independent of the
ball diameter and depends only on the Reynolds number,
ie,

F, = — (7/8)pv*C,R>.

Since a softball is more massive than a baseball, for the
same Reynolds number its trajectory will be less strongly
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influenced by aerodynamic forces. Because a softball looks
just like an overgrown baseball, we assume that the drag
coefficients are the same, although the author is unaware of
any measurements whatsoever of the drag coefficients of a
softball. In other words, for the same Reynolds number R

(a/g)softball _

(@/8)basebant

However, if a softball and a baseball have the same speed
and are in a regime where their drag coefficients are about
the same, e.g., well below or well above the drag crisis, then

(@/8)softwan _ (d%/M ) tivan
(a/ g )baseball (d 2/ M )basebal]

Thus at the same speed the softball’s trajectory will be af-
fected more strongly by aerodynamic forces than a base-
ball’s. Thus one can justify the argument that softballs are
affected more strongly, and also affected less strongly than
baseballs by aerodynamic forces. However, athletes who
are experienced batters in both baseball and softball sug-
gest that aerodynamic effects are probably more pro-
nounced for pitched softballs than baseballs (Jack Cald-
well, personal communication).

In spite of the difficulties with the data in Table I, it is
quite clear that aerodynamic forces are especially impor-
tant in several other sports, including table tennis, golf,
volleyball, jai alai, and tennis. However, the amount of re-
search available concerning the importance of aerodynam-
ic forces differs greatly for these sports. Although there
exist several papers on golf'"'>!44? and a few on base-
ball,*>”8 the author is unaware of any published work on
the others. With jai alai, for example, the author has been
unable even to find any original source where the speeds of
balls in play were measured, although the value of 150 mph
used in Table I is quoted in several encyclopedias. Mehta
and Wood*’ suggest that aerodynamic forces are important
in cricket. In contrast, aerodynamic forces are less signifi-
cant in sports such as basketball* and bowling.*>*¢ Surpris-
ingly, papers estimating aerodynamic effects have been
published for the shot put®**’ and for the hammer,**4°
even though the relative aerodynamic effects for these
events are remarkably small. This may be because there has
been considerable interest in the effect of aerodynamics on
other field events, such as discus'®>*>? and javelin,>*>*

There also exist significant differences concerning the
extent that lift caused by rotation of the ball is important to
various sports. For golf, it is all important; indeed, much of
the distance obtained from driving is permitted only be-
cause of the lift caused by the ball’s rotation. In spite of
their dislike of the hook and slice, golfers would drive the
ball significantly less far in a vacuum than is possible in air.
For baseball and softball, the fact that the trajectory is af-
fected significantly by spins applied by the pitcher is re-
sponsible for much of the character of the game, especially
its relatively low scoring. For tennis and table tennis, the
use of spin is a pervasive strategy because it allows players a
larger selection of trajectories for which balls are hit in
bounds.

Mbasebnll =0.77

M softball

= 1.36.

VI. SUMMARY

(1) The trajectories of baseballs traveling at air speeds
appropriate for both thrown or batted balls are likely to be
influenced by the “drag crisis,” the decrease in aerodynam-
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ic drag which occurs at Reynolds numbers above about
10°. Previous investigators have ignored the effects of the
drag crisis on baseballs, probably because for very smooth
spheres the crisis occurs at air speeds higher than typical
speeds of pitched and batted balls.

(2) Unfortunately, detailed measurements of the aerody-
namic drag force on a baseball are not available. Such mea-
surements are difficult because the drag coefficient may
depend critically on the orientation of the ball and the spin
as well as the air speed.

(3) The author speculates that baseball pitchers can con-
trol the air velocity where the drag crisis occurs by chang-
ing the spin of the ball, the orientation of the ball, or by
other means. If so, this may affect the arrival time of the
ball at the batter by several hundredths of a second, and the
vertical height of the ball upon arrival by several cm.

(4) The erratic behavior of so-called knuckleball pitches
can be explained if knuckleballs are pitched with a speed
near the onset of the drag crisis.

(5) Calculations show that the distance traveled by bat-
ted baseballs depends strongly on the velocity of the onset
of the drag crisis. Unlike most projectiles undergoing aero-
dynamic drag, in some cases the batter obtains maximum
distance by increasing the take-off angle as initial ball ve-
locity increases.

(6) For more than half a century, baseball enthusiasts
have argued about the significance of changes in the num-
ber of home runs hit by major league baseball players. Gen-
erally, they have ignored the possible influence of the aero-
dynamic drag crisis on the number of home runs hit.
Because of the drag crisis, small changes in the initial veloc-
ity of the ball can result in a disproportionately large
change in the distance traveled. Also, for any particular
initial velocity, small changes in the characteristics of the
surface of the baseball could make large changes in the
distance traveled.

(7) Calculations suggest that aerodynamic forces play an
important role in several ball games and sports, including
baseball, softball, and golf. However, little or no research is
available concerning the importance of aerodynamics on
tennis, ping-pong, or jai alai. Surprisingly, a number of
studies are available concerning field events such as shot
put, hammer, discus, and javelin.
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