1 Simple Projectile Motion

In the simplest case (with no air resistance) the 2D motion of a projectile is describe by a system of equations

$$
\begin{align*}
& x_{f}=x_{i}+\left(v_{0} \cos \theta+v_{\text {ship }}\right) t \tag{1}\\
& y_{f}=y_{i}+\left(v_{0} \sin \theta\right) t-\frac{g t^{2}}{2} \tag{2}
\end{align*}
$$

where x and y are the projectile positions, v_{0} is the projectile initial speed, θ is the initial shooting angle, and $v_{\text {ship }}$ is the speed of a ship. From the system above it is straightforward that

$$
\begin{equation*}
t=\frac{x_{f}-x_{i}}{v_{0} \cos \theta+v_{\text {ship }}} \tag{3}
\end{equation*}
$$

Then from equations (1-3) follows that

$$
\begin{equation*}
y_{i}-y_{f}+v_{0} \sin \theta \frac{x_{f}-x_{i}}{v_{0} \cos \theta+v_{\text {ship }}}-\frac{g}{2}\left(\frac{x_{f}-x_{i}}{v_{0} \cos \theta+v_{\text {ship }}}\right)^{2}=0 \tag{4}
\end{equation*}
$$

Solving this non-linear equation for the angle θ would give the right shooting angle to hit a target.

The problem can be solve analytically when $y_{i}=y_{f}$ and $v_{\text {ship }}=0$. Then from equation (4) follows

$$
\begin{equation*}
v_{0}^{2} \sin \theta \cos \theta=\frac{g\left(x_{x}-x_{i}\right)}{2} \tag{5}
\end{equation*}
$$

or using identity $2 \sin \theta \cos \theta=\sin 2 \theta$ one has

$$
\begin{equation*}
\theta=\frac{1}{2} \operatorname{asin}\left(\frac{g\left(x_{f}-x_{i}\right)}{v_{0}^{2}}\right) \tag{6}
\end{equation*}
$$

