
Sample report

 1

Project 1: A simple projectile motion (no air resistance)

by Alex
February 6, 2010

Introduction.

A motion of a projectile without air resistance is a common theme for introductory physics courses. The
only force on the projectile is the gravitational force.

Theory.

The projectile motion without air resistance is well described by the following four equations (2D case)

gtvv

gttvyy

vv
tvxx

y

i

x

i

−=

−+=

=
+=

00

2

00

00

00

sin
2

)sin(

cos
)cos(

θ

θ

θ
θ

where we use very common notations for any introductory physics book.

For the project we need to find the initial shooting angle for the given initial and finial positions, and the
magnitude of the initial velocity. Eliminating time from the first and third equations gives a non-linear
equation for the initial angle, namely

0
cos2cos

sin
2

0000
00 =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −
−

−
+−

θθ
θ

v
xxg

v
xx

vyy ifif
fi

The effect of the moving ship during shooting can easily be incorporated into the equation by modifying
the horizontal velocity as

shipx vvv += 00 cosθ

When the initial and final vertical positions are the same, the non-linear equation has a simple analytic
solution

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
= 2

0

)(
arcsin

2
1

v
xxg ifθ

This solution can be used for the verification of the program.

Method.

The brute force method based on the bisectional scheme has been used for solving the non-linear
equation. There are following reason to use this approach: 1) from the physics of the problem we expect
up two possible solutions between 0 and 90 degrees for the shooting angle, 2) using the bisectional
scheme we do not count the same root twice, as it may happen using Newton’s scheme.

Sample report

 2

Verification of a program.

For the initial conditions: xi=0.0 m, yi=0.0 m, xf=1952.0 m, yf=0.0 m, v0=200.0 m/s the program gives two
following solutions: 14.301 and 75.699 degrees. The analytic equation gives the same 14.301 and 75.699
degrees.

Results.

For 200 m/s initial speed.

 Question 1: Solutions for the moving ship

 root angle(deg) t(sec) cannonball

 1 15.796 10.089 hits the wall

 2 75.921 39.290 clears the wall

 Question 2: Solutions without ship motion

 root angle(deg) miss(m)

 1 15.872 10.440

 2 75.595 40.366

Analysis.

There are two solutions (angles) for the given conditions. However, only the second solution clears the
wall. If the motion of the ship is not taken into account, then for the second (accepted) angle, the
overshoot will actually be much more (40 meters) than the size of the armory (8 meters).

From the presented results we can see that a small variation in the angle (change in less than 0.5
degrees) results in shoot well away from the target. However, for old Navy ship the accuracy in the
shooting angle was not as good, to say nothing about rough see conditions. Therefore, a chance to hit the
armory from one short would be very slim.

Let’s evaluate the effect of the air resistance. For fast moving projectiles the aerodynamic drag force can
be evaluated as Fdrag=-0.5Cρ0Av2, where ρ0 stands for air density (ρ0=1.25 kg/m3 at sea level), and A is
the cross section. The drag coefficient C depends on an object shape and for many objects it can be
approximated by a value within 0.05 - 0.5. Assume that the horizontal speed stays the same, we may
evaluate what fraction of kinetic energy will be spend to overcome air resistance. Assume that C=0.2, and
the diameter of the cannonball is 0.2 m with mass of about 10 kg. Then the initial kinetic energy of the
cannonball is 200KJ. The energy required to overcome air resistance maintaining the same speed would
be more than 200KJ! Thus, the effect or the air resistance can not be ignored, or even considered as a
small correction.

Some advice to the captain

1 I am pretty sure that in 17th century sailors didn’t calculate trajectories using algebra based physics,
but rather used their experience. Most cannons had attached tables for shooting (factory calibrations),
where the effect of the air resistance was incorporated.
(Thus, the advice “don’t use algebra based physics” would not have much value.)

2 Shooting multiple projectiles (or simultaneous fire off from a few cannons) would increase chances to
hit the target.

3 Selecting a position for shooting or the initial projectile speed in a way to have less sensitivity to the
initial condition would also increase chances for success.

Sample report

 3

Program:

This is Fortran.90 program for the project.

module physics

implicit none

double precision, parameter:: g=9.81, pi=3.1415926, rad=57.2958

double precision:: xi, xf, yi, yf, xw, yw, v0, vs

end module physics

 program main

!==

! Project 1. Simple projectile motion (no air resistance)

! "A British navy ship ..."

!==

use physics

implicit none

integer, parameter:: n=100

double precision f,x1,x2,eps

double precision roots(n)

double precision t, x, y, tflight

integer key, nroots, i

character(16) message

character(16), dimension(2), parameter:: wall=&

(/" hits the wall "," clears the wall"/)

external f

!

! initial data

!

xi = 0.0

yi = 0.0

xw = 1852.0

yw = 50.0 + 60.0

xf = xw + 100.0

yf = 50.0

v0 = 200.0

vs = 2.0*(1.852*1000.0/3600.0)

! print initial data

write(*,*) ' Initial Data'

write(*,*) ' xf yf xw yw v0 vs'

write(*,100) xf, yf, xw, yw, v0, vs

100 format(6f9.2,/)

! Part 1: find angles between 0 and 90 deg to hit the target at (xf,yf)

key = 1

x1 = 0.0

x2 = pi/2.0

Sample report

 4

eps = 1.0e-7

 call BForce(f,x1,x2,eps,roots,key,n,nroots)

!

! Part 2: check condition: cannon ball should NOT hit the wall

!

write(*,*) ' Question 1: Solutions for the moving ship'

write(*,*) ' root angle(deg) t(sec) cannonball'

do i=1,nroots

 t = (xw-xi)/(v0*cos(roots(i))+vs)

 y = yi+v0*sin(roots(i))*t-0.5*g*t**2

 if (y.le.yw) then

 message = wall(1)

 else

 message = wall(2)

 end if

 tflight = (xf-xi)/(v0*cos(roots(i))+vs)

 write (*,101) i, roots(i)*rad, tflight, message

end do

!

! Part 3: The effect of the moving ship

!

vs = 0.0

 call BForce(f,x1,x2,eps,roots,key,n,nroots)

write(*,*) ' '

write(*,*) ' Question 2: Solutions without ship motion'

write(*,*) ' root angle(deg) miss(m)'

do i=1,nroots

 tflight = (xf-xi)/(v0*cos(roots(i))+vs)

 x = 2.0*(1.852*1000.0/3600.0)*tflight

 write(*,102) i, roots(i)*rad, x

end do

101 format(i5,2f12.3,a18)

102 format(i5,2f12.3)

end program main

 Function f(x)

!==

! the equations of the project

!==

use physics

implicit none

double precision f, x, t

t = (xf - xi)/(v0*cos(x)+vs)

Sample report

 5

f = yi - yf + v0*sin(x)*t - 0.5*g*t**2

end function f

 Subroutine BForce(f,x1,x2,eps,Roots,key,n,nroots)

!==

! Multiple roots of equation f(x)=0 on [x1,x2] interval

! Method: Brute force with one of closed domain methods

! Close domain methods: bisectional or false position

! Alex G. January 2010

!--

! input ...

! f - function - evaluates f(x) for any x in [x1,x2]

! x1 - left endpoint of initial interval

! x2 - right endpoint of initial interval

! eps - desired uncertainity of the root as |b-a|<eps

! key - select a method

! 1 - bisectional method

! 2 - false position method

! n - number of subintervals for [x1,x2]

! output ...

! Root(n) - roots of the equation f(x)=0 on [x1,x2]

! nroots - number of roots (nroots<=n)

!

! Comments:

! The program divide [x1,x2] into n subintervals

! Max number of iterations for every subinterval - 200

!==

implicit none

integer n, nroots

double precision f, x1, x2, eps, Roots(n)

double precision a, b, c, dx, root

integer i, j, key

integer, parameter:: iter=200

! initialization

dx = (x2-x1)/real(n)

nroots = 0

! loop over subintervals

do j=1,n

 a = x1 + real(j-1)*dx

 b = a + dx

! check the closed domain condition f(a)*f(b)<0

 if(f(a)*f(b)>0) cycle

! Iterative refining the solution

 do i=1,iter

 if(key == 1) then

Sample report

 6

 c=(b+a)/2.0

 else

 c = b - f(b)*(b-a)/(f(b)-f(a))

 end if

 if(f(a)*f(c).le.0.0) then

 b = c

 else

 a=c

 end if

! condition(s) to stop iterations)

 if(abs(b-a)<= eps) exit

 end do

! check if it is a root or singularity

 root = (b+a)/2.0

 if (abs(f(root)) < 1.0) then

 nroots = nroots+1

 Roots(nroots)=root

 end if

end do

end subroutine BForce

Sample output

 Initial Data

 xf yf xw yw v0 vs

 1952.00 50.00 1852.00 110.00 200.00 1.03

 Question 1: Solutions for the moving ship

 root angle(deg) t(sec) cannonball

 1 15.796 10.089 hits the wall

 2 75.921 39.290 clears the wall

 Question 2: Solutions without ship motion

 root angle(deg) miss(m)

 1 15.872 10.440

 2 75.595 40.366

