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Frustrated drift of an anchored scroll-wave filament and the geodesic principle
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We investigate anchored scroll-wave filaments in an excitable medium whose diffusivity matrix, including
its determinant, is spatially nonuniform. The study is motivated by cardiological applications where scroll-
wave behavior in the presence of diffusivity gradients is believed to play an important role in the development
of severe arrhythmias. A diffusivity gradient is expected to make the filament drift, unless drift is prevented
(“frustrated”) by anchoring to localized defects in the propagation medium. The resulting stationary filament is
a geodesic curve, as demonstrated here in the case of a nonzero but constant gradient. That is, the diffusivity
matrix has a determinant that varies in space, in contrast to what was assumed in earlier work. Here, we show
that the filament shape results from a metric tensor of the form (det D)D~!, where D is the diffusivity tensor.
The filament’s shape is solely determined by the diffusivity tensor and is independent of the equation’s reaction
terms. We derive the analytic solution for the filament and determine conditions for the existence of that

solution. The theory is in excellent agreement with numerical simulations.

DOI: 10.1103/PhysRevE.82.036122

I. INTRODUCTION

A remarkable feature of three-dimensional (3D) excitable
media is the existence of rotating scroll waves. In the heart
such waves are pathological and usually lethal. Laboratory
observations, as well as numerous computer simulations, are
consistent with the presence inside the scroll of an unexcited
tubular region, the filament. The scroll is organized and ro-
tates around the filament, which is sometimes compared to
the funnel of a tornado. For purposes of analysis, the fila-
ment is conveniently treated simply as a curve in space. Its
shape and behavior are an excellent indicator for the configu-
ration of the scroll as a whole [1,2].

A scroll wave can be stable or unstable. For example,
during episodes of ventricular fibrillation, scroll waves are
constantly initiated and destroyed [3]. On the other hand,
long-lived, steady-state scrolls have been observed [4],
whose filaments are well represented (in simulations) by
curves of fixed location and configuration. Such filaments
were demonstrated, analytically and numerically, to be geo-
desic curves in 3D space, a property that was proved for
steady-state filaments only. Steady state will be required in
the present paper as well and will be enforced by anchoring
the filament to small defects in the medium.

Static filaments are of particular interest in the context of
the so-called “mother-rotor” hypothesis [5], according to
which a stable scroll wave can set up and maintain ventricu-
lar fibrillation—a cause of sudden cardiac death. It is impor-
tant for our work to note that if the filament of the mother
rotor is anchored to small anatomical defects, its stability can
be explained. If unanchored, a filament can drift within the
heart tissue; here, we focus on diffusivity gradients as pos-
sible causes of drift.

Mathematically, scroll waves are of great interest as solu-
tions of nonlinear diffusion-reaction equations. Rotating
scrolls can be simulated on the computer with considerable
realism by the use of such wave equations. Closed-form so-
lutions are elusive, however, as they are for most nonlinear
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problems. Fortunately, there are nontrivial cases where the
filament itself does have a closed-form solution, and this
paper is devoted to one such example.

In earlier work we were able to characterize a static
scroll-wave filament as a geodesic curve in three-space, with
a simple formula for the relevant metric tensor. The present
model, however, differs importantly from those found in our
earlier studies. Here, an additional spatial gradient operator is
incorporated in the diffusion term of the wave equation. Such
a gradient is intended as a simplified representation of patho-
logical variations that can exist in cardiac properties [6]; it
has two special consequences. First, it causes the scroll to
drift in the medium when the anchors are omitted [7]. Sec-
ond, as explained below, even when the anchors are present
the existence of an applied gradient invalidates our original
formulation of the geodesic principle.

The reason for this lies in the diffusion term of the wave
equation. The diffusivity of the medium can be represented
by a 3 X3 matrix D. A useful feature of D is its determinant
det D; in all our previous work we had been dealing with a
det D which was constant in space. That feature was com-
patible with a static (anchored) filament and with the exis-
tence of the above-mentioned geodesic principle, including
the exact recipe for the metric tensor g, namely, g:D‘1 (the
inverse of the diffusivity matrix). However, the gradient in-
troduced here makes det D variable in space, contrary to the
earlier assumption. How should the recipe for g be modified?
At least in the model discussed here, the generalized metric
is shown to be g=(det D)D~! up to an arbitrary constant
factor. Beyond the model of the present paper, the validity of
our result is a tempting speculation that still needs to be
proved in general. It is clear, nevertheless, that the formula
automatically applies to the earlier (constant-determinant)
cases as well.

Those latter cases are now well established, exactly in a
class of models [8], and numerically in others. The geodesic
principle has also been applied to a schematic representation
of the cardiac ventricle [10]. A simple variational reformula-
tion was proposed in Ref. [11]. A very general proof of the
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geodesic principle has subsequently been given [12,13] for
filaments that are not excessively curved. We note that
Dierckx et al. [13] treated the equation of motion under non-
constant det D for a filament that is unanchored and thus
allowed to drift. A meshing of these authors’ context with
ours would be of considerable interest.

There still remains a gap in generality. Can we have static
filaments with nonconstant det D? Moreover, if we do, can a
geodesic be derived for them? The answer is that a static
filament is still easily obtained by anchoring to a small inho-
mogeneity. Furthermore, a geodesic can be derived even with
a nonconstant det D, and the geodesic includes the above-
mentioned prescription for g; our task in this paper is to
demonstrate that fact.

Our model is briefly described as follows. Since an ap-
plied gradient can cause a scroll to drift and since, as already
noted, our analysis must be confined to stationary filaments,
we anchor both ends of the filament to surface defects on the
opposite boundaries of a slab. We focus on one particularly
simple yet nontrivial case selected because it is accessible to
exact calculations; the model is described in Sec. II. Simula-
tions of the model are essentially in perfect agreement with
theory for all tested values of the gradient. There is much to
be learned from such a simple setup:

(a) Our theoretical filament solution lies in a plane and so
does the simulated filament.

(b) That plane is parallel to the gradient, contrary to what
might be expected on the basis of the unanchored (drifting)
situation, including scroll rings.

(c) A static simplified application of local filament dynam-
ics on the one hand and the geodesic result on the other hand
confirm one another in every detail.

(d) The set of solutions bifurcates with the applied gradi-
ent as the control parameter.

In short, our main result is to demonstrate that a geodesic
principle is compatible with a spatially variable determinant
for the diffusivity matrix. Perhaps equally important is an
explicit recipe for the metric in a form that preserves earlier
(constant-determinant) work.

A few technical remarks are in order at this stage. This
paper adheres to some earlier restrictions on the existence of
a geodesic. First, in the diffusion-reaction equation, the dif-
fusion operator is time independent, although not in general
space independent. Similarly, the reaction terms (membrane
kinetics) have no explicit time or space dependence, al-
though they do depend on space-time via the propagating
variables. A third essential condition, as we have seen, is that
the filament itself must be time independent; in particular, it
should not drift or meander. Subject to those restrictions, the
filament has another remarkable and perhaps unexpected fea-
ture: Its configuration is independent of the detailed reaction
term. That is to say, knowledge of the diffusion operator and
boundary conditions are in principle sufficient to determine
the filament configuration—a result already found in Ref.
[8].

In the treatment that follows, Sec. II sets up the frustrated-
drift model; Sec. III introduces the geodesic approach; Sec.
IV derives explicit solutions for the filament shape; Sec. V
shows how the set of solutions bifurcates as the strength of
the diffusivity gradient changes; Sec. VI examines the agree-
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ment between theory and simulation; Secs. VII and VIII pro-
pose a shortcut version of local filament dynamics and apply
it to confirm the geodesic results, leading to a unique choice
for the metric tensor normalization; lastly, Secs. IX and X
discuss and summarize the results.

II. MODEL

With cardiac tissue in mind, we start from generalized
FitzHugh-Nagumo equations for propagating variables

u,v;,vq,..., where u diffuses and the v’s do not,
00+ W (u,0)=0 ()

(t=time; x,,x,,x3=x,y,z=space). The reaction functions ®
and ¥ do not depend on the x; or on ¢ except indirectly
through the u and v; the matrix D;; depends on space but not
on time. It is assumed that systems (1) and (2) support scroll
waves whose filament has positive tension, as explained in
Ref. [14]; the details of ® and W are otherwise of no con-
cern. This paper deals with a stationary filament whose
shape, as mentioned in Sec. I, is affected only by the space
dependence of the D;; and by the boundary conditions.

The proposed model involves a spatially nonuniform dif-
fusivity D. A simple realization of D consists of a uniform
isotropic matrix—the unit matrix—multiplied by a constant
gradient of strength G in the x; direction; D is chosen to have
unit normalization when G=0,

Equation (3) represents the model we shall study in detail.
For the diffusion operator in Eq. (1) we then have

(9,(D,jo"j) = (1 + Gx)V2 + Gﬁx (4)

The above is patterned after Ref. [7], where Egs. (3) and (4)
are postulated in a two-dimensional (2D) version dealing
only with the x;x, plane. The result is a deformed spiral with
a drift whose direction depends on properties of the propa-
gation medium. (For a simple application, see Ref. [15].) In
two dimensions, the term (1+Gx,)V? causes a deformation
of the spiral in the x;x, plane, but no drift, while the Gd,
term is responsible for the slanted drift but does not contrib-
ute to the deformation. Physically, we expect the scalar dif-
fusivity 1+Gx in Eq. (4) to be positive. Thus, we shall con-
sider solutions only in the x>—1/G region.

In three dimensions, the above scenario is trivially repli-
cated from Eq. (4) by a solution selected with propagating
variables that are invariant in the x; direction, d;u=0, o0
=0. We then have a purely z oriented scroll whose drifting
filament keeps that same direction. (In this hypothetical case
we are not concerned about whether the filament’s rectilinear
shape is stable or not.)

Keeping the 3D diffusivity as described above, we now
“detrivialize” the x; behavior by anchoring the filament to
two points on opposite boundaries of a slab-shaped medium.
For simplicity both anchor points are in the xx; (or xz)
plane, i.e., in a plane parallel to the diffusivity gradient. No
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generality is lost since for any given pair of anchor points
such a plane exists. The shape and evolution of the filament
are now no longer obvious. The anchoring procedure and its
effects have been discussed in Refs. [4,16], where, however,
the drifting mechanism cannot be considered part of the dif-
fusion term, as it is here.

III. GEODESIC APPROACH

The present section formulates the geodesic equation in
terms of ordinary derivatives with respect to the element, d/,
of the actual path. This formulation will be used later in
order to solve for x(/) and z(I) along the geodesic curve, thus
yielding the shape of the filament.

A metric g;; is needed to calculate a geodesic. Our previ-
ous research led us to

g;=(D™); (5)

up to a constant factor; D~! is the inverse of the diffusivity
matrix. However, as mentioned above, we now relax the con-
stancy assumption for det D, thus allowing

g, det D # 0. (6)

That generalization is made possible by the postulate,
namely,

gij= (det D)(D_l)ij (7)

to replace Eq. (5). The motivations for Eq. (7), besides its
simplicity, are its reduction to Eq. (5) under the previous
assumption of a constant det D, its seemingly exact verifica-
tion in simulations, and, most conclusively, the analytic and
numerical results in Sec. VIII, Appendix D, and Fig. 9 fur-
ther on. Partial justification is also provided in Appendix A.

From here on we work within the simple model of Eq.
(3), where

det D= (1 + Gx,)? (8)

and where (D7');=(1+Gx;)"'6;. Postulate (7) reads, in
short,

8ij=f(x1)5i's 9)

where
flx)=(1+Gx)>. (10)

We are now ready to examine the consequences of hypoth-
esizing a geodesic principle for the filament. Parametrically,
in terms of a path coordinate o with element do
=\g;;dx;dx; along the curve, we have [8]

. 1 ..
8riXi = (Eakg im— 3mgj1<)x_ Ko (11)

where a dot stands for d/do, do=\g;dxdx;.

The first main consequence of postulating the geodesic is
that we find filaments with both anchors in the xz plane,
which lie entirely in that plane. Indeed, Eq. (11) has solu-
tions, i.e., filaments, with y=0 everywhere and with both
anchors in the xz plane. That result is somewhat unexpected
on the basis of unanchored filaments, whose observed drift is
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not coplanar with the applied gradient [7]. Our numerical
analysis (Sec. VI) confirms the coplanarity. We have encoun-
tered no filaments that deviate from the plane, although we
have not been able to rule out such solutions.

In order to find the full coplanar solutions of Eq. (11), we
note that §;— 0 unless i=1, that g;; is diagonal, and that the
solutions are restricted to the y=0 plane as explained. Thus,
we have from Egs. (10) and (11)

dfldx
2f

W= (-2 +2%), (12)
_ dfdx
f

for k=1 and 3, respectively. In terms of the element of ordi-
nary length di= Vdx?+dz%, we have

7= XZ (13)

d 1d
do  fdl
d* 1d* dfldxdxd
B Rt s (15)
do?  fd* 2f* didl
The result from Egs. (12) and (13) is
dfldx ,
" = ! , 16
Y=o (") (16)
dfldx
”n — r_r , 17
z Tk (17)
where the prime indicates d/dI. A parametrization constraint,
&) +E)=1, (18)

follows from the definition of dl. The form of Egs. (16) and
(17) confirms the essential role played by the function f, that
is to say, by det D.

In summary, Egs. (16)—(18) are an expression of the geo-
desic postulate. The form of f has been left open in order that
we may later find the consequence of departing somewhat
from the exact Eq. (10). The solution of Egs. (16)—(18) is
discussed next.

IV. FILAMENT SOLUTION
With f(x) as in Eq. (10), we obtain directly from Eq. (17)
A

= , 19
ST XEG (19)

where A is the integration constant. Inserting this formula for
7' into Eq. (18) gives

A2
(x")? + GrUGE" 1, (20)

whose solution is readily verified to be
x+1/G=V\P+AZ (21)

Another integration constant has been avoided here through
fixing the origin of / at x’=0. Positivity of the diffusion
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FIG. 1. Representative filament solutions. This is a plot of Eq.
(23) with G=1, zp=0, and several values of A. There are no solu-
tions for x <1. Note the wedge-shaped envelope of the filaments. Its
angle is determined by Egs. (24) and (25); no solutions anchored
simultaneously to points located like P, and P, have been found.
Note also the twofold nature of solutions with two given anchor
points.

matrix requires the positive square root in Eq. (21). From Egq.
(19) we then get

l
7=A sinh‘lz +2p. (22)

An adjustment of z, is equivalent to a shift in the origin of z,
and therefore we take z,=0 without any essential loss in
generality. Eliminating / yields

1
x=——+A coshi. (23)
G A

This is the equation for the filament according to the geode-
sic principle. Figure 1 shows a representative set of fila-
ments, with zp=0 and G=1. No filament exists where x<
—1/G, i.e., where the diffusivity in Eq. (3) is negative.

We note the envelope of solutions, a wedge composed of
two straight lines,

R ( 1 ) 24
= = + =,
‘ cosh A * G
where A= 1.20 is the solution of
tanh A = — (25)
anh \ = N

(see also Sec. V).

Two filaments with different A values intersect at two
points, and thus a given pair of anchor points, remarkably,
gives a pair of filament solutions rather than a unique one. Of
the two solutions, the one with the shorter total geodesic path
is found to be stable. Little is known at present about the
properties of the other solution.
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FIG. 2. Notation used in calculating the midpoint deflection of
the filament. One anchor point is shown at (x,z)=(xy,L). The fila-
ment’s midpoint is at x=x,,;, and its deflection is s=xy—x;,, de-
fined as a positive distance.

For some pairs of would-be anchor points, say P; and P,
in Fig. 1, we find no filament solutions, even by shifting the
z coordinate. Together, all shifts of z give rise to a family of
envelope wedges; P; and P, must be inside the same wedge
in order to produce an anchored filament. Simulations must
ensure in addition that enough turns of the scroll (at least one
or two) are included around the filament within the compu-
tational boundaries.

V. FILAMENT DEFLECTION AND ITS BIFURCATION

In preparation for Sec. VI, which compares simulation
and theory, we derive some additional properties of the so-
lution, mainly (a) dependence of the maximum filament de-
flection on the gradient G and (b) some bifurcation facts
concerning that deflection. For convenience let us consider
the symmetric geometry of Fig. 2, where the anchor points
have coordinates (x,y,z)=(xy,0, = L) for some chosen slab
thickness 2L. Under a diffusivity gradient in the x direction,
the theory is seen to be consistent with a stable filament in
the xz plane.

The filament’s midpoint deflection from rectilinear is

§=X0 = Xmin> (26)

where x;, is the minimum x coordinate on the filament (see
Fig. 2). The quantity s is a practical measure of how strongly
G affects the filament and numerically useful for comparing
theory and simulation. We assume a positive gradient G>0
without loss of generality since the system is invariant under
G— -G, xg— —xp, and s ——s. The filament is then deflected
in the —x direction.
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A brief digression will now produce, from theory, s as a
function of L, G, and x,. Equation (23), expressed at the
anchor point, reads

! +A hL 27)
=—-— cosh—.
=T A

On the other hand, at z=0, Eq. (23) reads

1
min="—" "~ +A 28
X G (28)
or, with Eq. (26),
s A L
—:—(cosh—— 1), (29)
L L A

written in dimensionless form; A depends on x,.

In the special case x;=0, the solution of Eq. (27) already
exhibits in a simple graphical way the existence of a bifur-
cation, as seen later in Fig. 5 (in that figure, G’ then reads
G). Tangency of the two curves gives the bifurcation point.

We now return to the deflection s for general values of x,.
The quantity A/L still must be eliminated from Egs. (27) and
(29). No explicit formula is available, but the desired depen-
dence s=s(L,G,x,) is readily obtained in terms of an auxil-
iary gradient,

G
G' = . (30)
1+ )C()G
Equation (27) now reads
1 A L
—— = —cosh—, (31)
G'L L A

allowing us to plot s/L against G'L parametrically from Egs.
(29) and (31) with L/A as the running parameter. The result
is a two-valued curve for s/L. Both branches are shown in
Fig. 3; they meet at the bifurcation point B,

(G)L,so/L) =~ (0.662 743,0.675 323). (32)

These are universal numbers in the sense that they do not
depend on any parameter of the model if the unperturbed
diffusivity has unit normalization. The lower branch, reach-
able by stable simulations, is displayed in more detail in Fig.
4; accessibility of the higher branch is problematical. Like-
wise, no stable scroll wave has been produced with G'L
above its bifurcation value G{L.

How the bifurcation occurs is most directly visualized
when solving Eq. (31) for L/A in terms of G'L. Plotting
(L/A)(1/G'L) and cosh(L/A) as functions of L/A but with
fixed G'L, we look for an intersection of those two curves. A
case with two intersections P, Q is shown in Fig. 5. Point P
pertains to the lower branch of s in Fig. 3 and point Q to the
higher one. With a decreasing slope, 1/G'L, of the straight
line, the two solutions merge and then disappear. At bifurca-
tion their slopes are equal,

1/(G'L) = sinh(L/A). (33)

Solving Egs. (31) and (33) for the bifurcation values A, and
G, of A and G’, we find
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FIG. 3. Dimensionless midpoint deflection s/L of the filament
as a function of the dimensionless gradient G'L. At G'L=0, the
lower branch has slope 1/2. The upper branch behaves as (G'L)™!
when s—0. The two branches meet at the bifurcation point B.
Figure 4 displays the lower branch in more detail. Solutions appear
to be stable or unstable according to whether they are on the lower
or upper branch, respectively.

tanh£ = 4 (34)
Ay L
whose solution is L/Ag=A=1.199 678 [\ from Eq. (25)],
with G(L given in Eq. (32).

In what way does the actually realized minimum (inter-
section P, smaller L/A in Fig. 5) differ from the unrealized
minimum (intersection Q, larger L/A)? The answer, illus-
trated in Fig. 6, is that, for any given GL, the smaller L/A is
associated with the shorter geodesic path length £=[do be-

0.7 4 -

0.6 - Stable branch,
S/L<0.675

0.5 4

0.4

S/L

0.3 4

0.2

0.1 4

0.0 — .
0.0 0.1 02 03 04 05 0.6 0.7

G'L

FIG. 4. Lower branch of Fig. 3. Theory, solid curve; simulation,
black squares; and theoretical bifurcation point, hollow circle at B,
with coordinates given in Eq. (32). Filament solutions are found
only to the left of the vertical dashed line.
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COSH(L/A)

(1/G' LY(LUA)

L/A

FIG. 5. Bifurcation arises when G’ becomes large enough to
make the straight-line tangent to the cosh curve. Relative to the
point of tangency, the upper segment of that curve corresponds to
the lower branch of s in Fig. 3 and vice versa.

tween the anchors. Both filaments obey the same differential
geodesic equation and both are therefore minimal under
short-wave deformations (local minima). However, in Fig. 6
the lower branch corresponds to the global minimum: it is
minimal under long-wave deformations as well. The two
branches have been verified to involve the larger or smaller
L/A, respectively. How to plot the value of L is briefly in-
dicated in Appendix C.

VI. SIMULATIONS VERSUS THEORY

This section presents in Fig. 7 the result of our simula-
tions for the filament shape, x, as a function of z [Eq. (23)]

Globally unstable,
locally stable -

Larger L/A

(PATH LENGTH) /L
©
1

4 4 u
) Smaller L/IA B
Globally and locally stable
0.0 0.I1 0.I2 O.I3 O.I4 0.I5 0.I6 0.I7

GL

FIG. 6. Total dimensionless geodesic path length as a function
of dimensionless gradient (cf. Appendix C). For the sake of illus-
tration we take the anchors at x coordinate x,=0. The main interest
of this curve is to show that, out of two filament solutions with the
same G, the physically realized filament chooses the shorter of the
two path lengths. This statement was verified from the value of A
used in the parametric plotting: the smaller of the two possible L/A
values (cf. Fig. 5) yields a point on the lower branch. That branch
starts at (0, 2) and slowly falls to (0.663, 1.81) at the cusp.
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GL=0.16 GL=0.32 GL=0.48
11 JL <
Z/L
0-
x/L

FIG. 7. The 0 <z <L half of the filament curve, displayed in the
y=0 plane. The anchor is the dark inexcitable rectangle at the bot-
tom of the figure. The simulation result is shown as a diffuse dark
curve; theory gives the white curve. The match between the two
curves is quite striking. The white dashed vertical line is the unper-
turbed filament. The horizontal and vertical scales in this figure are
the same. Details are given in the text of Sec. VL.

for three representative values of G. Only the bottom half of
the filament is shown since the top half is just its symmetric
counterpart. The white curve is plotted from Eq. (23),
whereas the more diffuse dark curve is the simulated fila-
ment. We see an excellent agreement between theory and
computation, even for GL=0.48, which is already fairly
close to bifurcation, GL — G,L=0.66, the strongest gradient
that still supports a stable filament.

Some computational details are as follows. The simula-
tions converge in a feasible amount of time with x,G<<1.
Therefore, looking back at Eq. (48), we take x,=0, that is to
say, G'=G in our computational examples. We used Bark-
ley’s [17] particular realization of Egs. (1) and (2),

edu=u(l —u)u—(v+b)la]+ d(D;ju, (35)

dv=u-v, (36)

with parameter values a=0.9, b=0.05, and €=0.02 chosen
for intermediate excitability. Computations used Euler’s
method, a 32-core Beowulf cluster, and a 120 X 60 X 120 xyz
grid. Boundary conditions were zero flux; space and time
steps were Ax=0.25 and Ar=0.006. The filament is defined
by those voxels where u changes by less than (typically) 0.65
over a full scroll rotation. By comparison, u never exceeds
about 1.00 anywhere in our simulations. Anchoring is to the
tip of a narrow cylinder (diameter =8 pixels) protruding
into the medium and without diffusive coupling to it. Such a
setup minimizes the scroll’s interaction with the boundary.
The half-distance L between anchoring points is taken to be
L=15.75.

Returning to Fig. 4, the computational maximum deflec-
tion s as a function of the gradient G has been displayed as
data points in that figure. There is, here also, striking agree-
ment with theory. The computational specifications are the
same as above.

VII. LOCAL STATICS IN A NONUNIFORM MEDIUM

For another analytic approach to filament calculation, we
use a heuristic method that simplifies local dynamics [2],
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FIG. 8. Notation scheme for /, ®, R, x, and z on an osculating
circle. The heavy curve is the filament, which lies in the plane of the
figure.

here specialized to a static filament in a two-dimensional
plane. The main purpose is to provide support other than
computational for the choice of f(x) in Eq. (10). Section IX
discusses in what way the present method constitutes a short-
cut to the theoretical solution. We just require that, at any
point on the filament, the diffusion operator should not in-
clude first-order differentiation perpendicular to the filament.
This simple rule presupposes a diffusion matrix which is
locally isotropic, i.e., proportional to the unit matrix, as in
Eq. (9) (see Sec. IX).

For implementation, we use polar coordinates (r, 6) in the
plane of the filament, with x=r cos 6, z=r sin . We repre-
sent the filament locally by its osculating circle, whose cen-
ter is taken for now to be the origin of coordinates. The circle
has radius R and is tangent to the filament at some point,
(r,0)=(R,0); the radius R equals the filament’s curvature at
that point. The notation is illustrated in Fig. 8.

In the diffusion operator, we isolate the term in d/dr, i.e.,
the term involving the first derivative normal to the filament.
At the filament (r=R) the overall perpendicular differentia-
tion term must be absent. Absence of d/dr is a rule motivated
as follows: In a small vicinity of a filament point and in the
coordinates of Fig. 8, the diffusion operator should have the
form that is known to produce a nondrifting scroll. This
means zero gradient except possibly in the direction of the
filament. In short, local dynamics requires that d/dr have
zero coefficient: both contributions to the convection, one
due to filament curvature and the other due to diffusion,
should mutually cancel. We are dealing here with an intuitive
working assumption that will be treated as exact in what
follows.

We rewrite the diffusion operator in polar coordinates as

9{(D;jd;) = D;j0;0; + (9;Dy) ;5 (37)

where

Dljé’l(?j = Drrﬁf + Dr(’ﬁré’e"' DGGOI%"' DrO')r + D(_)a(’ + T,
(38)
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(&iDij)8j=5,z9r+ 50(90"' U (39)

Here, T and U involve &% but no first derivative d,; therefore,
the x,(=y) dimension is of no interest in most of what fol-
lows.

The D’s and &’s are polynomials in cos € and sin 6. Along
a fixed circle, here r=R, we have 6=-[/r in the geometry of
Fig. 8, and therefore cos #=—z' and sin #=x’, where the
prime still indicates d/dl.

Returning to Egs. (38) and (39), we only need expressions
for D, and &, at the osculating point; for completeness all
seven D’s and &’s are listed in Appendix B. We have

1
D,zE[D”(x’)2+2Dl3x’z' +D33(Z')2]’ (40)

where 1/R is the local positive curvature of the filament.
Equation (40) gives the curvature-induced convection. Simi-
larly, Eq. (39) involves

E== (D)7 + (9:D)x". (41)

This is the diffusivity-induced convection. The relative signs
of Egs. (40) and (41) are as they occur in the coefficient of
d/ dr. Zero convection means

D,+&,=0 (42)

at the filament. This equation, amounting to local statics, will
next be enforced at all points of the filament. Based on con-
firmation from the geodesic equation as well as from the
numerical results of Sec. VI further on, we shall treat Eq.
(42) as exact. We make no claims of validity, however, for
any D;; of more general form than Eq. (3). Section IX has an
additional comment on that limitation. In summary, Eq. (42),
with details from Egs. (40) and (41), is the main result of this
section.

VIII. LOCAL STATICS OF FRUSTRATED DRIFT

This section applies Eq. (42) to derive the filament shape.
We start with Eq. (40), in which we use the standard formula
for the curvature,

1 r.n r_n (43)
R =7 X X Z .

Also in Eq. (40), we have

Dy =D33=1+Gx, D;3=0. (44)
Thus, we have
D,=(1+Gx)(z'x"=x'7")(x"*+z7'%) (45)
or, since the last factor is unity,
D,=(1+Gx)(z'x"-x'7"). (46)
In Eq. (41) we have
dD; =d.(1+Gx) =G, (47)
dD;3=0, (48)

giving
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E=-G7. (49)
In conclusion, Eq. (42) reads
(1+Gx)(z'x"-x'7") -Gz’ =0, (50)
with the constraint
xPa?=1 (51)

But this last pair of equations is precisely equivalent to the
geodesic result, as can be seen by combining Eqgs. (16)—(18).
The equivalence is contingent on f(x)=(1+Gx)? [Eq. (10)].
In short, if the geodesic principle is exact, so is local filament
statics; their results coincide for the appropriate normaliza-
tion of g;;.

IX. DISCUSSION

The original analytic derivation of the geodesic principle
for scroll-wave filaments, namely, in deformed anisotropy
[8,9], made use of a transformed coordinate system X;
=X;(x,x2,x3) (i=1,2,3) in which the filament is manifestly
linear provided only that it is stable and unique under the
boundary conditions employed; the inverse transformation
then yields the actual filament. What is the outlook for that
type of proof in the present context? Linearity of the trans-
formed filament would arise from one of at least two possi-
bilities:

(a) There is a flat X space, with metric &;;; it implies the
existence of cylindrical scrolls, each with its rectilinear fila-
ment. In order for a flat X system to be possible, the original
system must already have zero intrinsic (Riemann-
Christoffel) curvature. However, such is not the case in frus-
trated drift. Figure 1 shows pairs of filaments involving two
intersections—a property of geodesics in curved spaces only.
A single Riemann-Christoffel tensor element [18], Ry, # 0,
already confirms the nonzero curvature. Therefore, we fall
back on the assumption that

(b) the X space is sufficiently symmetric with respect to a
straight line, e.g., a coordinate axis; case (a) is a special
instance of this. Symmetry was used in the original proof of
the geodesic principle under deformed anisotropy. There, the
metric has nonzero intrinsic curvature, and in particular it
can be verified that, in the coordinate system of that article,
R3131 #0. A symmetrizing transformation may well exist in
the present case as well.

Is the present treatment mathematically exact? The an-
swer must recognize that a scroll-wave filament cannot, in
general, be defined precisely—it is a “diffuse” concept. In
contrast, the filament as conceived in the present research is
a curve, i.e., it has perfect sharpness. In addition, it is time
independent. In practice, a time-independent filament is a
tube rather than a line. For example, as analyzed in Ref. [8],
the tube’s thickness changes along its length and, more im-
portantly, depends on its definition in terms of the propagat-
ing variables (see also Sec. VII above). We conclude that, in
general, the theoretical filament is a representation rather
than an exact description of the actual filament. Here, that
representation has been calculated exactly.

As concerns this paper’s shortcut to local filament statics,
we note that even in the nonmeandering periodic case, there
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exist many ways to define a time-independent filament. This
is in contrast to the 2D case, where a nonmeandering peri-
odic spiral has a clear-cut rotation center. Therefore, it seems
reasonable to make the following conjecture: Since the va-
lidity of a filament curve can be determined only within the
approximate filament tube, our local filament dynamics pro-
vides as good a representation as any that one might, in
principle, expect.

It should be noted, incidentally, that in Refs. [8,9] the
filament’s curvature has not been an issue: theory accommo-
dates up to infinite curvatures (sharp corners), and simula-
tions do so as well so far, to voxel precision.

Finally, we caution that local statics as described in Sec.
IV breaks down in a locally anisotropic medium—not a con-
cern in the present model. Indeed, the osculating-circle con-
struction of Fig. 8 would need to be amended in that general
case. Such a consideration in no way precludes the general
validity of the geodesic principle in the form of Eq. (11).

X. SUMMARY

We have examined a scroll wave that propagates in a
parallel slab whose diffusivity matrix has a constant gradient
parallel to the boundaries. An added feature to this otherwise
well-known model is filament anchoring to the slab’s bound-
aries. No twist of the scroll has been considered since it
would be expected to decay with time in the present setup.
Our purpose has been to extend the geodesic principle for the
filament to the nonconstant determinant case. We wanted to
know whether a steady-state filament exists, and if so,
whether it lies in a plane and whether that plane is in the
direction of the unanchored drift, the direction of the gradi-
ent, or any other alternative. Our work demonstrates that

(a) There exists a steady-state filament whose shape is
calculable exactly;

(b) That filament lies in the plane of the diffusivity gradi-
ent;

(c) Tt obeys a geodesic principle whose metric has the
(nonconstant) determinant of the diffusivity as a factor;

(d) In the present case at least, geodesic and local dynam-
ics (local statics) agree in their results; and

(e) Our numerical study shows excellent agreement with
theory.

In conclusion, three independent approaches, namely, the
geodesic principle, numerical simulation, and local statics,
converge to the same filament configuration and frustrated-
drift behavior.

In addition, we unexpectedly found the following:

(a) The deflection of the filament from a straight line dis-
plays a bifurcation in the strength of the diffusivity gradient;
one branch, which is not studied in detail here, appears to be
unphysical.

(b) Fundamental upper bounds exist for the filament de-
flections and for the gradient.

(c) The bifurcation implies the existence of two geodesic
paths between the anchor points and applies to the total geo-
desic path length. The shorter path is associated with the
stable solution.
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FIG. 9. A reexamination of Fig. 4, showing filament midpoint
deflection versus applied gradient. The points are from computer
simulations of the scroll wave. The curves are from a family of
geodesic theories, in which the metric normalization is (det D)" for
various values of n. The present study postulates n=1 (heavy
curve); the figure confirms that n is between 0.98 and 1.02.
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APPENDIX A: NORM OF THE METRIC TENSOR
FROM SCALING

The basic postulate [Eq. (7)] is a special case of

g =(det D)"D7!, (A1)

a form that will now be derived analytically. The special
value n=1 is obtained in Sec. VIII, Appendix D, and Fig. 9.

We start from the previous result, where det D=const and
where we had g=(const)D~! or equivalently

g=[F(det D)]D7", (A2)

with F being an arbitrary nonzero function. We take (without
loss of generality so far) the form of F to be model indepen-
dent. In this paper we ask what is the result of keeping Eq.
(A2) as written even if det D is no longer constant. This
assumption has the virtue of enforcing consistency with pre-
vious work. Within that choice, it is now possible to show
that F is restricted to some power of det D [Eq. (Al)]. A
strategy that leads to Eq. (A1) is as follows:

(a) As D is varied, let Eq. (A2) remain valid;

(b) Require the diffusion-reaction equation [Eq. (1)] to
keep its form; and

(c) Require the geodesic equation to keep its form.
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Here, we shall not consider a general transformation that
varies D. Rather, we limit ourselves to only one family of
modified D’s, obtained through scale transformations. Con-
sider such a transformation, involving an arbitrary parameter
A,

(x,y,2) = (N)(x,,2),

31d(x,y,z) — (1/N) 13(x,y,2).

In order to preserve the diffusion-reaction equation [Eq. (1)]
we must scale D and therefore its determinant according to

D —\’D, det D — \°det D.
Therefore, Eq. (A2) scales to
g — [F(\® det D)](\*>D)". (A3)

Next, we require that the geodesic equation [Eq. (11)] be
preserved as well. In that equation we see that g can be
scaled by a constant, say g— ug. Then, Eq. (A2) reads

wg =[F(\° det D)]J(\*D)~".

Inserting Eq. (A2) in the above and multiplying by D, also
denoting N?u by A, \° by B, and the variable det D by X, we
have

AF(X) = F(BX). (Ad)

This is a functional equation for F, to be solved as follows:
Eq. (A4), being an identity in X and B, implies that A is a
function of B. Thus, Eq. (A4) can be written as

In A(B) +In F(X) =1n F(BX).
Differentiating with respect to B,
A'(B)/A(B) = XF'(BX)/F(BX).
Changing variable by setting X=Y/B,
(A'B/A)IY =F'(Y)/F(Y).

Integration with respect to Y yields the desired solution up to
a constant factor

F(Y)=Y"

for some constant exponent n. Setting Y=det D, we obtain
Egs. (A2) and (Al) as claimed. In summary, from scaling
covariance we have narrowed down acceptable metrics to the
choices [Eq. (A1)] with unspecified exponent 7.

APPENDIX B: DIFFUSIVITY COEFFICIENTS
IN POLAR COORDINATES

The seven D and & coefficients introduced in Egs. (38)
and (39) are listed here for completeness. Evaluated at r=R,
they are

D,.=D,(z')*=2D3x'z' + D33(x')?, (B1)

2
D,p= I_Q{DHX'Z' +Dp[(2') = (x')’]-Dyx'z'}, (B2)
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1
D90=P[D11(X')2+2D13X’Z’ +Dy3(z')?], (B3)
Dr=RD90, (B4)
Dy=—1p (BS)

60— R ré»
E,==(3:D;))z" + (d:D;3)x’, (B6)
1 ! !

Ep=- I_e[(&iDil)x +(9Dp)z"]. (B7)

APPENDIX C: PLOTTING THE GEODESIC
PATH LENGTH

In this appendix we take the anchor points at x,=0 (G’
=G) for the sake of illustration. From Egs. (10), (14), and
(21), we find the geodesic path length

L£=2 f Vfdl=2G f VP + A2dl (1)

between [=[0,A sinh(L/A)] [cf. Eq. (22) for z=(0,L)]. The
result is

£ A'hL/A C2
L—Lsm( )+ (C2)

cosh(L/A) "
To eliminate L/A in favor of GL, we use Eq. (31) with x,
=0,
1 A L
— = —cosh—. (C3)
GL L A
We then plot £/L parametrically from these two formulas

with L/A as the running parameter; the result is displayed in
Fig. 6.
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APPENDIX D: NORM OF THE METRIC TENSOR
FROM SIMULATIONS

The metric tensor, as postulated in Eq. (7), can be written
somewhat more generally as

gij= (det D)n(D_l)ij- (D1)

The exponent n has been specialized to n=1 in the postulate.
How strong is the evidence for that value? As we have seen,
local filament statics requires n=1; in addition, this choice
produces excellent agreement between theory and simula-
tion. However, it would desirable to have a quantitative error
estimate around the value of n. This is the purpose of the
present appendix, which reexamines the curve and points of
Fig. 4. A family of theoretical s/L versus G'L curves is dis-
played in Fig. 9 for several values of n; the simulation points
of Fig. 4 are shown for comparison. Agreement is seen to
require n=1 within 2%.

The recalculation of the curve for alternative n values
uses Eq. (10), modified to read

fx)=(1+Gx)* . (D2)

In the geodesic calculations [Egs. (16) and (17)] the right
sides then only need to be multiplied by the factor (3n
—1)/2. Taking x,=0 for simplicity and following the proce-
dure of Sec. V, we find the following approximate modifica-
tions to Egs. (29) and (31):

s A L 2/(3n-1)
Z = Z COShZ -1], (D3)
1 A L 2/(3n-1)
a =7 COShX . (D4)

Parametric plotting of these two equations, with A as the
running parameter, yields the curves of Fig. 9. From the fig-
ure we conclude that n=1.00=*0.02.
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