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We describe the dynamics of bound states of same-chirality spirals in a generic numerical model of an
excitable medium. For each bound state, we analyze its tip trajectory patterns and determine its characteristic
frequencies. We report two previously unidentified bound states: for spiral pairs, a state that exhibits alternating
cycles of small and large distances between collisions �A2�; for triplets, the first example of a meandering
bound state �M3�. In parameter space, A2 lies in between the previously described oscillating pairs �O2� and
master-slave pairs �MS�. We present numerical evidence that the transition O2→A2 occurs via a supercritical
period-doubling bifurcation, while the transition A2→MS occurs via a symmetry breaking secondary Hopf
bifurcation. A classification of all regimes according to dynamical systems theory exposes the wealth of
phenomena exhibited by multiarmed spiral waves.
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I. INTRODUCTION

Spiral waves occur in a variety of physical, chemical, and
biological systems. Examples include the Belousov-
Zhabotinsky reaction �1,2�, electrical ativity in cardiac tissue
�3�, aggregation of starving slime mold amoeba �4�, and cata-
lytic reactions on platinum surfaces �5�. At the same time,
analytical and simulation studies have greatly advanced our
understanding of spiral wave dynamics �6–10�.

Two or more spirals can form bound states, i.e., stable
ensembles of spiral arms that interact and remain within a
limited distance from each other. They have characteristic
features, like their frequency �11,12�, and rules of interaction
with other bound states �12�.

An important example of bound states are multiarmed spi-
ral waves, ensembles of same-chirality spiral waves whose
tips are separated by less than a core diameter. They have
been observed in chemical media, like the Belousov-
Zhabotinsky reaction �11�, and in biological media, e.g., Dic-
tyostelium discoideum �13�, two-dimensional cultured heart
tissue �14�, the whole rabbit heart �15�, and a variety of nu-
merical models of excitable media �16�.

The simplest type of same-chirality bound states are os-
cillating multiarmed spirals �On� �17�. They are characterized
by an n-fold rotational symmetry and periodic collisions of
their arms. Recently, our group discovered another bound
state of two same-chirality spirals in which one spiral rotates
around the other �master-slave pairs or MS� �18�. This state
exhibits no symmetry, and the spiral tips are separated by a
distance which can be large compared to the diameter of the
core of the spiral. Finally, multiarmed spirals rotating around
a common core can persist for a considerable time �13�; how-
ever, they have been shown analytically to be unstable for
several FitzHugh-Nagumo type media �9� and are not in-
cluded in our discussion.

While many papers have commented on the complex dy-
namics of bound states �11,12,14�, these dynamics have not
yet been analyzed. In this paper, we study the dynamics of
bound states of same-chirality waves in a generic excitable

medium. We report a previously unidentified stable regime of
spiral pairs, in which the spiral arms alternate between larger
and smaller separations between collisions �A2�. A second
regime we found are triple-armed meandering spirals �M3�.
We characterize the bifurcations that mark the transitions be-
tween bound states. We classify all observed regimes in
terms of the theory of dynamical systems with symmetry and
determine for each regime the parameter region in which it is
stable. Table I summarizes the properties of the bound states
of same-chirality spiral waves.

II. METHODS

A. Numerical methods

All observations were made in numerical simulations in
the widely used Barkley reaction-diffusion model �19� of a
generic excitable medium. It consists of an activator variable
u and an inhibitor variable v, which evolve according to

�u/�t = �1/��u�1 − u��u − �v + b�/a� + �2u ,
�1�

�v/�t = u − v .

The constant � is the ratio of characteristic time scales of
the activator and inhibitor variables. The parameters a and b
represent the slope of the u-nullcline and the excitation
threshold. We chose a typical value of �=0.02 and varied b
from 0.15 to 0.3. We set a=1.1 unless stated otherwise �a
was always between 0.9 and 1.25�. All of the regimes we
describe can be observed in the parameter region for which
single-armed spirals rigidly rotate, so the complexity ob-
served here is truly a consequence of the interaction of the
spiral arms.

We solved the model equations on a 320�320 or 640
�640 grid using Euler’s method with zero flux boundary
conditions, dx=0.1826 as our space step, and dt=0.003 as
our time step. The tips of spiral waves were defined to be the
pixels satisfying 0.45�u�0.57 and 0�du /dt�10. All
computations were performed on a 32-node Beowulf cluster.
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To create bound states of spiral waves, we used two dif-
ferent methods. In the first method, we initiated two consecu-
tive plane waves, let them advance halfway through our me-
dium. We then reset half of our medium, creating two broken
wave fronts. In the second method, we superimposed snap-
shots of a single-armed spiral in equally spaced phases �we
summed the values of each variable over the different snap-
shots, at each point of the medium�. When we initiated
bound states of three or more arms, we used the second
method.

The stability of a bound state was assumed if it showed no
sign of decay after at least 100 spiral rotations.

We defined the center of mass of a configuration as the
center of mass of the tips. The minimal and maximal tip
distances from the center were determined by automatically
detecting the minimal and maximal distances for at least 10
periods and then taking the average.

To determine angular velocities in the tip trajectories ��1,
�2, and �3; see definitions in the Results section�, we mea-
sured the time needed for a large number of rotations �at
least 10�, and divided the covered angle by that time.

When we ramped b to study the dependence of the sys-
tem’s behavior on excitability, we used the final condition of
each value of b as the initial condition for the next value of
b and allowed transients to pass for at least 15 spiral rota-
tions after each change in b. The boundaries of the regimes
in parameter space were established with an accuracy of
0.001 in the value of b for any given a.

B. Classification of multiarmed spiral waves

A convenient language to describe the qualitative features
of dynamic regimes is that of the dynamical systems theory
�20�. However, this language cannot be directly applied to
reaction-diffusion systems, because these systems have spa-
tial symmetry �they are equivariant with respect to the Eu-
clidean group, i.e., translations, rotations, and reflections�.
An efficient method to deal with this symmetry is to consider
the space of group orbits of the system �21�, which do not
exhibit spatial symmetry. In this section, we explain this
method without any attempt of mathematical rigor.

Consider a dynamical system defined in a phase space V
and equivariant with respect to a symmetry group G. Any
point v�V may have its own symmetry group H

=H�v��G which is called the isotropy group of point v. The
isotropy subgroup is the same for all points of a trajectory.
The union of all points with similar isotropy subgroups is
called a stratum. The phase space V is a disjoint union of
strata. Asymmetric solutions have the trivial isotropy sub-
group �id�, consisting only of the identical transformation.
For the system �1�, the asymmetric solutions are single-
armed spirals or asymmetric multiarmed spirals.

We also consider here n-armed spiral waves, which are
symmetric with respect to rotation by a multiple of 2� /n.
Their isotropy groups are isomorphic to the group Zn. A
group orbit is a set of points of V obtained from each other
by applying various elements of G. By identifying all points
belonging to the same orbit, we reduce the phase space V to
the orbit space V /G. The part of the V /G corresponding to
one stratum has a structure of a manifold, and is called an
orbit manifold. Any trajectory in V generates a trajectory in
V /G. The dynamical system in V /G is called the reduced
dynamical system. It is generic in the sense that its dynamics
are devoid of the original symmetry of the problem; so we
can expect to find standard types of attractors and bifurca-
tions on that system, unlike the original.

For system �1� and G the Euclidean group, in some cases
the reduced dynamical system can be understood as system
�1� rewritten in a moving frame of reference, say attached to
the tip of a spiral �22�. Thus we will sometimes refer to �1� as
dynamics in the laboratory frame of reference.

An important technical comment in �23� is that any coor-
dinate on the orbit manifold is a group-invariant function of
the phase space of �1�, and vice versa, any such function can
be used as a coordinate on an orbit manifold unless it is a
constant for that manifold.

To summarize, the implications important for our present
study are:

�1� The understanding of the dynamic regimes of multi-
armed spiral waves should be in terms of dynamics on the
orbit manifolds by the Euclidean group, and this can be
achieved by using Euclidean invariant functions of such so-
lutions.

�2� The structure of the orbit manifold depends on the
symmetry �the isotropy subgroup� of the solutions in ques-
tion, and as long as the solutions in question are within one
stratum, i.e., have the same symmetry, the dynamics on the
group manifold is generic, in particular, should be expected

TABLE I. Bound states of same-chirality spiral waves. Gray background indicates bound states that are
described in this paper for the first time.
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to demonstrate attractors and bifurcations typical for generic,
nonsymmetric systems.

Moreover, by Takens’ embedding theorem �24�, just one
such coordinate is almost certainly sufficient to reconstruct
qualitatively the dynamic attractor. In our simulations, the
symmetry of solutions was always evident, so no special
technique for its detection was needed. As the Euclidean-
invariant characteristic of two-armed spiral wave solutions
we have used the distance d�t� between the two tips, which
was easy to measure and interpret. Then we applied to d�t�
the standard delayed embedding technique to reconstruct the
attractors.

For symmetric three-armed solutions, we used the dis-
tance between one of the tips and the center of symmetry as
the Euclidean-invariant characteristic, which is also group-
invariant and practical inasmuch as the center of symmetry
can be found with sufficient accuracy.

III. DYNAMICS OF THE MULTIARMED SPIRAL
REGIMES

A. Oscillating pairs „O2…

Figure 1 shows the detailed dynamics of O2. The two
spiral tips approach each other �Fig. 1�a��, collide �Fig. 1�b��,
and move apart again �Fig. 1�c��. Between collisions, both
tips follow a circular trajectory of the same radius of an
isolated single spiral wave �Figs. 1�c� and 1�d��, until they
collide again at their tips �Fig. 1�e��. The relative positions of
the spiral arms at each collision are identical �Figs. 1�b� and
1�e��, but from one collision to the next, both arms are ro-
tated around the center of symmetry. This second rotation
explains the petal pattern �Fig. 1�f�� that the tip trajectories
form over several rotations. Figure 1�g� shows the distance
between the tips as a function of time. It is strictly periodic
with period T.

The tip trajectories can thus be described as a combina-
tion of a steady rotation of each spiral arm around its core
and periodic discrete rotations, at each collision, of the whole
pair. To quantify the steady rotation, we define the petal fre-
quency �1=2� /T. The periodic rotation of the whole pair
can be interpreted as a second, slower rotation: We name the
angle of deflection �2 and define the meandering frequency
�2=�2 /T. After head-on collisions, we always assumed that
the tips exchange their spiral arms. The reason for this con-
vention is that for collisions away from the tip, the tips mani-
festly exchange arms, and with our convention, we treat all
collisions equally.

The sign of �1 was the same as that of �2 in all our
simulations, and we set �1, �2�0 without loss of generality
�taking the mirror image of the medium changes the sign of
both �1 and �2�. From the definitions of �1 and �2 it follows
immediately that �1��2. We describe in the Methods sec-
tion how we measure �1 and �2.

Figure 1�h� shows a recurrence map for the Poincaré cross
section defined by the local maxima of d�t�. Since there is no
discernible structure in the recurrence map and the changes
in the maxima of d�t� are minimal, we conclude that the
attractor of O2 in orbit space is a limit cycle, i.e., we have a

periodic solution of the reduced system. In the laboratory
frame of reference, this generates a biperiodic solution. This
is similar to the classical flower-pattern meander of single-
armed spirals, only here both tips describe the same flower
patterns symmetrically.

Figure 1�i� shows �1 and �2 as a function of b. The de-
pendency of �1 on b is in good approximation linear. Ex-
trapolating the b for which �1 is 0 leads to good agreement
with the largest b that supports spiral pairs �as well as single
spirals�. This should be expected, because the single spiral
radius grows to infinity as we approach the boundary of the
spiral pair domain, and consequently �1 should vanish. Our
extrapolation of �2 reaches zero at practically the same value
of b; this can also be expected because �1��2 �see above�.
As b is decreased, �2 grows, but the growth saturates to-
wards the end of the O2 regime.

FIG. 1. Representative example of O2 dynamics �b=0.2303�.
Thick white lines show the excitation waves �u�1�, dotted white
lines show the tip trajectories. Arrows indicate the drift direction of
the tips. �a�–�e� Evolution of O2 over 1.5 periods. �f�: Tip trajecto-
ries of O2 over four periods. �g�: The distance d between the tips as
a function of time. �h�: Recurrence map for the Poincaré cross sec-
tion defined by the local maxima of d�t�. �i� Petal frequency �1 and
meandering frequency �2, as a function of b. The O2 region is
marked gray, the adjacent regimes �A2 ,SE� are discussed below.
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The observed O2 regime corresponds to the stable spiral
pairs described by Ermakova et al. for a different FitzHugh-
Nagumo medium �17�.

B. Alternating pairs „A2…

Figure 2 shows a previously unidentified, alternating re-
gime of spiral pairs, which we call A2. As in the case of O2,
the two spiral arms maintain perfect center �Z2� symmetry
�Figs. 2�a�–2�e��. However, A2 exhibits two different types of
collisions that occur alternatingly. The first type of collision
is “sideways.” The initial contact between the two arms oc-
curs at some distance from the tip �Fig. 2�c��. The second
type is “head-on,” i.e., collision occurs close to the tip �Fig.
2�e��, as for O2. Figure 2�f� shows that the tip trajectories in
the two types of intercollision periods also differ: They form

a petal pattern that contains two different petal sizes.
Figure 2�g� shows the distance between the tips as a func-

tion of time, where alternans can also clearly be seen. Figure
2�h� shows the recurrence map for the Poincaré section de-
fined by the local maxima of d�t�.

The empirical attractor consists of two clusters, neither of
which has any further discernible structure. We conclude that
the attractor in orbit space of A2 is a limit cycle; but this
time, the period is about twice that of an isolated spiral in the
same medium.

Figure 2�i� shows that the linear increase of �1 with de-
creasing b continues throughout the A2 domain, while �2
begins to decrease. Note that for A2, the period T between
collisions is alternating �say, between T1 and T2�. Thus, our
definitions of �1 and �2 need to be modified to �1
=4� / �T1+T2� and �2=�2� / �T1+T2�, where �2� is the angle
that the whole pair rotates during the time T1+T2.

From the formal viewpoint, the orbit space dynamics here
are periodic, as for O2, although the shape of the oscillations
is more complicated. We will discuss the relationship be-
tween A2 and O2 orbit space dynamics in more detail below.

C. Master-slave pairs „MS…

Figure 3 shows a third regime of double-armed spiral
waves �MS�, in which the central symmetry is broken. The
spiral tip that is to the left in Fig. 3�a� rotates apparently
unaffected by the collisions through the entire sequence
shown in Figs. 3�a�–3�f�. At the same time, the other tip is
annihilated in every collision �Figs. 3�b� and 3�e�� but devel-
ops again afterwards �Fig. 3�c��. We call the spiral that be-
longs to the unaffected tip “master” and the other spiral
“slave.” The master takes over the slave arm after each col-
lision, and the slave redevelops from the truncated master
arm. Panel �f� shows master and slave tip trajectories. The
distance between master and slave, averaged over one colli-
sion period, converges to its steady state within a few revo-
lutions of the slave around the master.

Figure 3�g� shows that the distance between the tips is in
a good approximation periodic, but that the extrema vary
slightly from beat to beat.

This variation is further analyzed in Fig. 3�h�, which
shows the recurrence map for the Poincaré section defined by
the local maxima of d�t�. The recurrence map forms a closed
loop, and we conclude that the attractor in orbit space of MS
is a torus. In Fig. 3, we show the recurrence map for b
=0.2214, because the loop is more pronounced for larger b,
for which master and slave are close together �Fig. 3�i� sug-
gests that b=0.2214 does not support MS, but there is actu-
ally MS /A2 bistability for b=0.2214, as we discuss below, in
Fig. 9�.

In Fig. 3�i�, we see that �1 continues to grow as b de-
creases. On the contrary, �2 approaches zero as we approach
the left end of the MS domain. This is because the master-
slave distance diverges towards the left end of the MS do-
main while the petal size �like the radius of an isolated spi-
ral� decreases.

D. Meandering triplets „M3…

We now turn to spirals with three arms. Figure 4 shows
the dynamics of a triple-armed, meandering spiral wave

FIG. 2. Representative example of A2 dynamics �b=0.2177�.
�a�–�e� Evolution of A2 over one period. �f� Tip trajectories of A2

over one period. �g� The distance d between the tips as a function of
time. �h� Recurrence map for the Poincaré cross section defined by
the local maxima of d�t�. �i� Petal frequency �1 and meandering
frequency �2 as a function of b. The A2 region is marked gray, the
adjacent MS regime is discussed below.
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�M3�. Apart from its meandering, the configuration is analo-
gous to A2: Between collisions, the individual tips move
along circular trajectories, as independent single arms. There
are two types of collisions that occur alternatingly: head-on
�Figs. 4�a� and 4�e�� and sideways �Fig. 4�c��. The tip trajec-
tories also form a pattern analogous to that of alternating
spiral pairs, characterized by a small petal radius and a big
petal radius �Fig. 4�f��.

Figure 4�g� shows the tip distance over time, reflecting the
alternating motion. Figure 4�h� shows the recurrence map for
the Poincaré section defined by the local maxima of d�t�. The
recurrence map shows two closed loops, so it provides evi-
dence that the attractor in orbit space of M3 is a torus. How-
ever, the structure of the loops is not clear enough to rule out
a more complicated attractor, e.g., a 3-torus, which is sug-
gested by the observation of meander discussed below.

Figure 4�i� shows the petal frequency ��1� and the mean-
dering frequency ��2� as a function of b. Both �1 and �2

remain almost constant over the A3 domain �which is rela-
tively small�.

Figure 5�a� shows that the whole triplet meanders on a
circular path. The amplitude of the meandering is compa-
rable to the core diameter of an isolated spiral. We define the
angular meandering velocity �3=2� /T3, where T3 is the pe-
riod of the meandering �see Fig. 5�b��. The frequency �3
depends on b �such as �1 and �2�, and it is consistently
lower than �2 by an order of magnitude �we have not deter-
mined the detailed dependency of �3 on b because of the
very long duration of the corresponding simulations�. Figure
5�b� shows the x and y coordinates of the center of mass
�xCOM and yCOM� for a representative example of M3. Despite
some noise from tip misdetections, Fig. 5�b� shows that both
coordinates oscillate sinusoidally with great accuracy.

FIG. 3. Representative example of MS dynamics �b=0.2087�.
�a�–�e� Evolution of MS over one period. �f� Master and slave tip
patterns for one complete revolution of the slave around the master.
�g� The distance d between the tips as a function time. �h� Recur-
rence map for the Poincaré cross section defined by the local
maxima of d�t�. For this panel, we used b=0.2214 �see text�. �i�
Petal frequency �1 and meandering frequency �2 as a function of b.

FIG. 4. Representative example of M3 dynamics �a=1.25, b
=0.27488�. �a�–�e� Evolution of stable triple-armed spirals over two
periods. We observed two types of collisions, which alternate every
rotation cycle: head-on collisions �frames �a�,�e��, and sidearm col-
lisions �frame �c��. �f� Tip trajectory of a triple-armed spiral over
two periods. The alternating tip and sidearm collisions form two
concentric patterns. �g� Distance d from the tips to the center as a
function of time �equal for all three arms�. �h� Recurrence map for
the Poincaré cross section defined by the local maxima of d�t�. �i�
Petal frequency �1 and meandering frequency �2 as a function of b.
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Different from the previously discussed regimes, M3 was
stable only for a narrow range of parameters and initial con-
ditions. In the vicinity of this narrow range, M3 can persist
for a long time ��50 rotations� before developing asymme-
tries and finally decaying. This raises the possibility that M3
is nowhere truly stable, but only has very large decay times
for certain parameters. While we cannot rule out this possi-
bility, we ran simulations with up to 500 spiral rotations
without seeing any sign of breakup. Even if M3 should not be
analytically stable, it persists for so long that it can be con-
sidered stable for many practical purposes.

E. Parameter regions of the dynamic regimes

Figure 6 shows the parameter regions of all dynamical
regimes discussed in this paper. They all lie inside the region
in which a single spiral is stable �marked “SS”�. O2 occurs at
highest b �lowest excitabilities�, A2 at lower b, and MS at

still lower b. Figure 6 shows that stable bound pairs cover a
large portion of parameter space, i.e., more than 50% of the
stable spiral �SS� domain shown in Fig. 6 �but note that the
SS domain extends beyond the part of the model’s parameter
space shown in Fig. 6 �25��. The domain of symmetric triple
armed spirals is much smaller �about 2% of the SS domain
shown in Fig. 6�.

We also looked for stable bound states with four arms, but
they consistently broke up after a short time �10 rotations�.
Stable bound pairs also occurred for parameters outside the
range shown in Fig. 6 �e.g., for a=0.6, b=0.08�. We never
observed them, however, for parameters at which a single
spiral meanders �25�.

IV. TRANSITIONS BETWEEN THE REGIMES

A. Transition O2\A2

Figure 7 shows the transition from O2 to A2. Figure 7�a�
shows that starting from the largest value shown �b=0.234�,
decreasing b decreases r1 �maximal distances of the spiral
tips from the center of symmetry, see Fig. 7�b�� and increases
r2 �minimal distances of the spiral tips from the center of
symmetry, right before a collision, see Fig. 7�b��. The de-
crease in r1 reflects the decrease of a single spiral’s radius
with b, and the growth in r2 indicates that the spirals are
meeting less and less exactly head on.

FIG. 5. Representative example of a meandering multiarmed
spiral �a=1.2, b=0.262�. �a� Tip trajectories and meandering. The
dotted gray lines mark the tip trajectories of all three tips, the solid
white dot marks the corresponding center of mass of the tips. Over
time, the center of mass moves along the circle marked by a dashed
white line, with angular velocity �3. �b� Coordinates of the center
of mass as a function of time. The black trace shows the x coordi-
nate of the center of mass �xCOM�, the gray trace the y coordinate
�yCOM�. Noise in both traces is due to tip misdetections.

FIG. 6. Parameter regions of the dynamic regimes of the Bark-
ley model. Light gray area marks the O2 regime, medium gray area
the A2 domain, and black area the MS domain. The hatched area
marks the overlap of the A2 and the MS domain. Previously iden-
tified regimes are labeled in gray: NW �no waves�, SE �subexcit-
able�, SS �stable spirals�, and BI �bistable�.

FIG. 7. Transition from O2 to A2 as b is changed �a=1.1�. �a�
Bifurcation diagram. The symbols r1, r2, r3, and r4 correspond to
the external points of the tip trajectories �see panels �b� and �c��.
The dark gray area marks the range of b supporting O2, the medium
gray area the range of b supporting A2. The light gray area marks
the region of b that supports MS but not A2 �see Fig. 8�. The dotted
line indicates the average distance of the spiral tips from the center
of symmetry. �b� Tip trajectories of both spiral arms �gray and
black� for O2. Maximum and minimum distances between tips and
the center of symmetry are labeled r1 and r2. �c� Tip trajectories for
A2. Additional local maxima and minima are labeled r3 and r4.
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At bO2→A2�0.229, a period doubling bifurcation occurs
in the base system. For b�bO2→A2, during one period, r does
not simply oscillate between r1 and r2, but it increases from
r2 to r1, then decreases to r4, increases to r3 and decreases
back to r2 �see Fig. 7�c��. The average radius �r1+r2+r3

+r4� /4, shown by a dotted line in Fig. 7�a�, decreases mono-
tonically down to the end of the alternating pairs domain
�bA2→MS�0.216�.

Figure 8 gives evidence that the transition O2→A2 is in-
deed a period doubling bifurcation. Figure 8�a� shows the
delay-embedded distance between the tips for b=0.233, i.e.,
in the O2 domain but close to bO2→A2. The trajectory is a
closed loop. Figure 8�b� shows the corresponding trajectory
for b=0.226, in the A2 domain. The closed loop has split in a
double loop, but the shape is still very similar to that of Fig.
8�a�. This strongly suggests that a period-doubling bifurca-
tion occurred.

B. Transition A2\MS

Figure 9 shows the transition from A2 to MS. In order to
characterize the change in MS dynamics for different b, we
introduce the slave precession radius rs and the master pre-
cession radius rm �Fig. 9�b��. Figure 9�a� shows that as b is
decreased below bMS→A2�0.223, the medium begins to sus-
tain MS �the name bMS→A2 will become clear in the next
paragraph where we discuss hysteresis�. The values of rs and
rm are on either side of the corresponding average tip-center
distance of the A2 regime �dotted line�. While rs grows
monotonically and eventually diverges at b=0.2057, rm de-
creases monotonically and approaches zero as rs diverges
�18�.

Note that there is an overlap of the A2 and the MS do-
mains. In the bistable region, the initial condition determines
whether A2 or MS develops. If b is varied continuously, there
is hysteresis: Starting with A2 and decreasing b slowly, the
alternating pair persists down to bA2→MS�0.216, while start-
ing with MS and increasing b slowly, MS persists up to
bMS→A2�0.223.

Below bA2→MS, MS is the only stable formation. For de-
creasing b, the slave precession radius increases and eventu-
ally diverges around b=0.2057 �18� while the master preces-
sion radius converges to zero.

Note that the transition from A2 to MS is a transition from
a limit cycle to an invariant torus in the reduced system.
Recall that such a transition is a typical codimension one
event in generic dynamical systems, marked by a secondary

Hopf bifurcation, also known as Neimark-Sacker bifurcation.
In our case this is a symmetry-breaking bifurcation, as dif-
ferent branches correspond to different strata: A2 has central
symmetry Z2, whereas MS has the trivial symmetry �id�. Be-
sides, this bifurcation appears subcritical, which gives rise to
the “hard” birth of the 2-torus and the hysteresis.

V. ROBUSTNESS OF MULTIARMED SPIRAL REGIMES

We performed additional simulations to demonstrate that
the regimes described are robust against noise and perturba-
tions and independent of initial conditions.

Figure 10 illustrates the reversibility of the effect of pa-
rameter changes. Figure 10�a� shows the tip trajectories for a
value of b that corresponds to O2. Then b is abruptly in-
creased such that the spiral pair remains in the O2 regime,
but the resulting tip trajectory pattern has a smaller radius
�Fig. 10�b��. Afterwards, we set b back to its original value
and get the original tip trajectory, up to a shift and a rotation
�Fig. 10�c��.

Transitions between different pairs of regimes are revers-
ible in the same manner. Figures 10�d�–10�f� illustrate this
finding in the case of the regimes MS and O2 Figure 10�d�
shows a MS tip trajectory. When we abruptly increase b, the
system converges to the O2 tip trajectory pattern shown in
Fig. 10�e�. When we set b back to its original value, the
system evolves back to the MS regime and the original tip
pattern �Fig. 10�f��.

We conducted further tests of the robustness of all re-
ported regimes. Figure 11 shows the effect of noise on MS.
Figure 11�a� shows the tip trajectories of a master-slave pair
before noise is switched on. In Fig. 11�b�, the noise is off
initially, but it is switched on when the slave tip is at the
point indicated by the arrow. As soon as the noise is turned
on, the slave trajectory becomes irregular; but qualitatively,
the MS dynamics are preserved. The master trajectory is also
affected: As soon as the noise is switched on, the master tip
starts to meander randomly on top of its circulating motion.
In Fig. 11�c�, the noise has been turned off again, and a
regular MS tip pattern sets in immediately. We show in gray
the original MS tip pattern �from Fig. 11�a��, and see that the
only lasting effect of the noise application is a small shift of
the entire tip trajectory pattern.

We found that the steady state to which the system
evolves is generally not sensitive to the initial conditions
�exceptions to this rule are discussed below�. Initiating any
of the reported regimes in two different ways �see Methods

FIG. 8. Delay-embedded trajectories before
�panel �a�, b=0.233� and after �panel �b�, b
=0.226� the period doubling bifurcation. The de-
lay 	 was chosen to be T /4 �T measured before
the bifurcation�.
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section� resulted in an identical steady state �up to a shift and
a rotation�. Ramping the parameter b led to the same result.
Triple-armed spirals did not develop from a train of three
consecutive broken waves.

We further applied one-time global additive perturbations
of varying amplitude and spatial frequency to the activator
variable. These perturbations did not destroy the regimes’
dynamics and had a negligible effect on their phase, even for
perturbation amplitudes of 0.9 activation thresholds �no fig-
ure shown�.

The size of the medium and boundary conditions were
relevant only if one of the tips got close to the boundary
�when the distance became less than the core diameter of an
isolated spiral�.

While the steady state is generally not sensitive to initial
conditions, there are some exceptions. One example is the
bistability shown in Fig. 7; in this part of parameter space,
some initial conditions lead to A2 and others to MS. Another
example is shown in Fig. 12: MS will develop from a pair of
wave breaks only if they are sufficiently close together �Figs.
12�a�–12�c��, but not if their separation is above a certain
threshold �Figs. 12�d�–12�f��.

Figure 12�g� shows the evolution of the tip distance for
different initial separations. For initial separations below a
threshold 
 �
�15�, the tip distance relaxed monotonously
to that of a MS pair, dMS �dMS�10�. For initial separations
larger than 
, we observe qualitatively different dynamics:
The tip distance first drops below dMS �“undershoot”�, and
then relaxes to dMS. Interestingly, the relaxation to MS oc-
curs faster for an initial separation that lies slightly above 

than for one that lies slightly below 
. However, as the initial
separation is further increased, the formation time for a MS
pair grows dramatically. Figure 12�h� shows how the forma-
tion time of a MS pair depends on the initial separation in a
semilogarithmic plot. Formation was considered to occur
when the tip distance enters the interval dMS±5% and stays
in this interval. The data points deviate upwards from a
straight line; therefore, the formation time either grows su-
perexponentially or there is some threshold separation above
which the two spiral arms do not interact.

VI. DISCUSSION

In a generic numerical model of an excitable medium, we
discovered two alternating bound states �A2 and M3� of spiral
waves. We observed the time meandering in multiarmed spi-
rals �M3�. We showed the detailed dynamics of A2, M3, and
the two other types of bound states that occur in this model
�O2 and MS�. We scanned the parameter space and deter-

FIG. 9. Transition from A2 to MS as b is changed �a=1.1�. �a�:
Bifurcation diagram for r as b is changed. The symbols used are
explained in panels �b� and �c�. The solid lines show rs and rm as
function of b. The dotted line indicates the average distance of the
spiral tips from the center of symmetry �copied from Fig. 7�. Ar-
rows indicate which stable branch the system follows for increasing
and decreasing b. There is hysteresis in the transition. The dark gray
area marks the range of b supporting O2, the medium gray area the
range of b supporting A2, and the light gray area the region b that
supports MS; note the overlap of the MS and A2 domains �hatched
area�. �b�: Precession of the slave and master. Left panel shows the
tip trajectories of slave �gray� and master �black�. The motion of the
slave tip is a combination of a single spiral rotation and a low-
frequency precession of amplitude rs caused by the interaction. The
dashed circle marks the precession component of the trajectory. The
trajectory can be recovered by moving the core center along the
dashed circle as the tip rotates around the core. In the right panel,
we show the magnified master tip trajectory, which appears thick
because the motion of the master tip is also a combination of a
single spiral rotation and a low-frequency precession of �low� am-
plitude rm. The dashed circle in the center of the master tip trajec-
tory �radius rm� shows the precession component of the master tra-
jectory. The thickness of the slave trajectory is 2rm because this is
how much the instantaneous center of the master rotation changes
due to precession.

FIG. 10. Reversibility of the effect of parameter changes. �a�–�c�
Parameter changes within a dynamic regime �O2�. �a� O2 tip trajec-
tory �b=0.2338�. �b� Steady-state tip trajectory of the same spiral
pair after b is decreased to 0.2303. �c� After b is decreased to its
original value, the original tip pattern is restored. �d�–�f�. Parameter
changes across regimes. �d� MS tip trajectory �b=0.2149�. �e� In-
creasing the value of b to 0.2303, we obtain O2 �f� After decreasing
the value of b back to 0.2149, the original O2 is restored.
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mined the domains of A2, O2, and MS. Each domain occu-
pies a significant portion of parameter space.

We have presented numerical evidence that the transition
O2→A2 occurs via a supercritical period-doubling bifurca-
tion in the reduced system, while the transitions A2→MS
occurs via a symmetry breaking secondary Hopf bifurcation
in the reduced system, from the Z2 stratum to the �id� stra-
tum. The O2→A2 period doubling bifurcation is supercriti-
cal, thus the birth of the alternating spirals is “soft.” On the
contrary, the A2→MS secondary Hopf-bifurcation is sub-
critical, thus the small 2-tori are born unstable, the transition
to the new regime is hard, and there is hysteresis.

While we analyzed the prevalence of bound states in a
large portion of the parameter space, our analysis was limited
to states that exhibit strict synchronization of the arms. There
are other regimes in our model as well as in other models
that lack such synchronization �12,16�. The detailed dynam-
ics of these regimes have not yet been studied and are likely
to be more complex.

Our simulations were naturally limited in time, and the
regimes that persisted in our simulations may not be analyti-
cally stable but decay at a later time. This possibility seems
most likely in the case of M3 which was stable in our simu-
lations only in a narrow range of parameters and initial con-
ditions. In any case, the bound states presented here persist
over very long periods and can be considered stable for
many practical purposes.

Experimental data on multiarmed spirals exhibit a striking
overall resemblance with our numerical simulations. In the
Belousov-Zhabotinsky reaction, double- and triple-armed
spirals have been observed to periodically move apart and
back together �11�, much like our double-armed �Figs. 1–3
and triple-armed �Figs. 4 and 5� spirals. Unfortunately, avail-
able experimental data do not yet include detailed tip trajec-
tories or bifurcation analyses, and we do not know whether

the regimes and transitions we described here occur in ex-
perimental systems as well.

Our data suggest, however, that at least some of the bound
states we described and the transitions between can be ob-
served in experiments. On the one hand, most of them oc-
cupy a significant portion of parameter space, on the other
hand, they are robust against various types of perturbations.
The chances may be particularly good in media whose ex-
perimental parameters can be controlled, as the Belousov-
Zhabotinsky reaction. In this reaction, the excitation thresh-
old is perfectly controllable and multiarmed spirals have
already been observed �11�.
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FIG. 11. Effect of random noise on MS. �a� Tip trajectories of
master and slave before noise was switched on. �b� Transition from
noise-free to noise MS dynamics. The arrow marks the position in
the slave trajectory where the noise was turned on. The master
trajectory deviates visibly from its original circular path as soon as
the noise is switched on. �c� Tip trajectories after the noise has been
turned off. In the background �gray� we show the original trajecto-
ries from panel �a� �notice the shift of the entire trajectory pattern�.
The noise applied consisted of uniformly distributed random num-
bers with amplitude of ±7.5% of the activation threshold, added in
every time step.

FIG. 12. Initiation of MS from two closely spaced wave breaks.
�a�–�c� If the distance between the wave breaks is below some
critical value, they develop into MS. �d�–�f� If the wave breaks are
too widely spaced, they develop into two independent spirals. �g�
Evolution of tip distance for different initial distances. The dashed
line marks the single spiral wavelength. �h� Time for MS formation
as function of initial separation of the wave fronts.
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