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Abstract

ECG alternans is commonly held to be an indicator of electrical instability of the heart, but the development of

alternans has not yet been fully understood theoretically. We investigate the onset of alternans and 2:1 rhythms for

stimulation at increasing frequencies in the Beeler�/Reuter model, a simple ionic model of cardiac tissue. We find

hysteresis and bistability at the onset of alternans; well-timed stimuli can switch between the two limit cycles. We

determine quantitatively the effect of blocking specific ionic currents. Moreover, we find that calcium buffers generally

promote alternans.

# 2002 Elsevier Science Ireland Ltd. All rights reserved.
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1. Introduction

Nonlinear dynamics have been used success-

fully to understand biological rhythms (see Win-

free, 1987; Glass and Mackey, 1988; Goldbeter,

1996, for nonlinear dynamics in the heart in par-

ticular, see Glass et al., 1991; Panfilov and

Holden, 1997). A common rhythm in biological

signals is alternans , in which a signal consists of

two alternating segments. Alternans often develop

out of a periodic signal when a parameter is

changed; it is then an example of a period doub-

ling bifurcation.

Mechanical alternans in the heart has been

observed already more than a century ago

(Gaskell, 1882). ECG alternans has been

connected to malignant arrhythmias and has

become accepted as a predictor of forthcoming

arrhythmic events (Rosenbaum et al., 1994).

Consequently, numerous experiments and some

numerical simulations investigating alternans

have been carried out (Guevara et al., 1989;

Lewis and Guevara, 1990; Vinet et al., 1990;

Chialvo et al., 1990; Vinet and Roberge, 1994;

Brandt et al., 1997; Hall et al., 1997; Yehia et al.,

1999; Hall et al., 1999), for a review refer to Euler

(1999).

Alternans has been shown to exist in single cells,

in experiment as well as in theory (Guevara et al.,

1989) (see Section 2). Single heart cells and fibers
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are the smallest units to exhibit alternans and
understanding the development of alternans

should be most feasible in them.

In the context of paced systems, alternans is also

called a 2:2 rhythm, as two stimuli lead to two

action potentials of different shape. Likewise, a

rhythm in which only every other stimulus induces

an action potential is called a 2:1 rhythm. We

study in detail the development of 2:2 and 2:1
rhythms in the paced Beeler�/Reuter (BR) model

of myocardial tissue as the stimulation frequency

is increased. Previous experimental studies have

shown that the 1:10/2:2 transition exists in

bullfrog tissue (Guevara et al., 1989) and chicken

tissue (Hall et al., 1999). Model studies showed

that the 1:10/2:2 transition occurs in the BR

model (Jensen et al., 1984; Guevara et al., 1989),
a cable of BR cells (Lewis and Guevara, 1990) and

a sheet of cells of the more detailed Luo�/Rudy

model (Arce et al., 1977). Besides, transitions from

1:1 to other rhythms than alternans and further

bifurcations have been described in several studies

(Anderson et al., 1972; El-Sherif et al., 1977; Yehia

et al., 1999).

We find and study hysteresis and bistability in
the onset of alternans in the BR model. Then we

quantify how blocking individual ionic currents

can inhibit the development of alternans. Finally,

we extend the BR model to include scalable

calcium buffers and see how calcium buffers

efficiency influences the onset of alternans.

2. The stimulated Beeler�/Reuter model

Ionic cell models were invented by Hodgkin and

Huxley in 1952. Since then, many new ionic

currents have been found and studied, and heart

cell models aiming at completeness have become

very complex (Lou and Rudy, 1994; Courte-

manche et al., 1998; Priebe and Beuckelmann,

1998). Because we are not interested in a precise
reconstruction of all cell properties but in an

understanding of the mechanisms that lead to

alternans, we chose the simple BR model as a

starting point (Beeler and Reuter, 1977). It is the

simplest ionic model that accurately reproduces

the action potential of myocardial tissue (see Fig.

1) and is widely used to model ventricular cells
(Lewis and Guevara, 1990; Chay, 1996; Pumir and

Krinsky, 1999).

We add a periodic extra current to the BR

model to simulate periodic excitation. Then we

study the effect of increasing stimulation fre-

quency.

2.1. The model equations

In the BR model (Beeler and Reuter, 1977), the

transmembrane voltage V (always in mV) changes

according to

dV

dt
��

�
1

Cm

�
(Iion�Istim); (1)

where Cm is the membrane capacitance (in mF);

Iion is the sum of the ionic currents (in mA) and

Istim is the stimulus current. The ionic current Iion

consists of

Iion�INa�Is�IK1
�Ix1

: (2)

The fast inward sodium current INa is given by

INa�(gNam3hj�gNaC)(V�ENa); (3)

where, gNa is the maximal sodium conductivity;

gNaC, the sodium leak conductivity; ENa, the

sodium equilibrium potential and m , h , and j are
gating variables. Similarly, the slow inward current

Is is given by

Is�gsdf (V�Es); (4)

where, gs is the maximal calcium conductivity; Es,

the calcium equilibrium potential (Beeler and

Fig. 1. Action potential (left) and ionic currents (right) in the

BR model. Note that the sodium current is very short and very

strong (it leaves the plotted range and goes down to �/150 mA

cm�2).
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Reuter, 1977) and d and f are gating variables.
The potassium current IK

1
is simply a function of

transmembrane voltage:

IK1
�IK1

(V ); (5)

and the time-activated outward current Ix
1
,

Ix1
�x1Īx1

(V ); (6)

has a gating variable x1. The functions IK
1

and IK
2

are given in Beeler and Reuter (1977). The gating

variables m , h , j , d , f , and x1 follow the dynamics

dy

dt
�

�
y�(V ) � y

ty(V )

�
; y � fm; h; j; d; f ; x1g: (7)

The individual expressions for in y� andty are

given in Beeler and Reuter (1977). Finally, the

intracellular calcium Cai, (always in mm) changes

according to

d

dt
Cai��kiIs�

1

tCa

(Cai;eq�Cai); (8)

where the second term on the right hand side

implements a restoring force that drives intracel-

lular calcium towards Cai,eq�/0.1 mM. For inte-

gration, we use a forward Euler scheme with Dt�/

0.02 ms.

2.2. Stimulation

The BR model has an attractive fixed point at

(V , Cai, x1, m , h , j , d , f )�/(�/84.6, 0.178, 0.0056,

0.011, 0.99, 0.97, 0.0030, 1.00), corresponding to

the rest state of heart tissue. Stimulation is
simulated by means of a short extra current Istim.

The duration of this current is taken to be 2 ms,

which is a typical value used in experiments

(Elharrar et al., 1984; Guevara et al., 1989; Lewis

and Guevara, 1990; Murphy et al., 1996), and the

amplitude is set at two times the threshold value

necessary to induce an action potential (this

threshold was 26 mA).
We consider the model’s response to a stimulus

an action potential whenever the sum of the ionic

currents is negative at the end of the stimulus, i.e.

if there is further depolarization due to the cell’s

own dynamics. For every action potential, we

define the action potential duration (APD) by

the time between stimulus and the moment where

transmembrane voltage goes back below �/20 mV.

To get an overview of the behavior at different

stimulation frequencies, consider the sequence of
APDs produced by stimulation at a certain

frequency as plotted in Fig. 2. Alternans sets in

at a frequency of about 3.55 s�1. The duration of

the shorter action potential drops quickly to below

50 ms and continues to decline. At 3.63 s�1, there

is a transition 2:20/2:1. This remains stable for a

wide range of stimulation frequencies, and only at

about 6.65 s�1 there are further bifurcations and
irregular behavior, in good agreement with experi-

mental results (Hescheler and Speicher, 1989).

Note that we restarted the system from rest state

for every frequency. The result is significantly

different if the system is not restarted, as shown

below.

3. 2:1 Development in the BR model

Fig. 3 shows in detail how a 2:1 rhythm sets in.

It appears that the first signs of the transition are

in the closing variable j of the sodium current. A

simple explanation for the onset of 2:1 at high

frequencies is that ever faster stimulation leaves
less and less time for recovery, and at some point, j

is no more reset to 1. In this situation, a newly

given stimulus cannot initiate a sodium current,

and the resulting voltage signal is much smaller

than in a full action potential. In the following

period, there is plenty of time for relaxation; thus,

Fig. 2. Bifurcation diagram of the stimulated BR model. For

every stimulation frequency we let 100 stimulations pass

unrecorded and plot the following 20 APDs. Ineffective stimuli

are assigned an APD of 0 ms. Right panel zooms into the first

bifurcation, here we let 500 stimulations pass unrecorded.
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the next stimulus can easily initiate a full action
potential. The result is an alternation between full

action potentials and small/no action potentials.

However, this explanation is somewhat simplis-

tic. While it is true that alternation can be

inhibited by letting j and h relax at higher

voltages, one can inhibit 2:1 rhythms and alternans

even better by changing other model features, as

will be shown in Section 3.2.

3.1. Hysteresis and bistability

There is hysteresis in the onset of 2:1 in the BR

model (see Fig. 4). We first increase the stimula-

tion frequency in steps of 0.01 s�1, this time

without resetting the variables to rest state at each

new frequency. Alternans sets in not before 3.7 s�1

and soon afterwards develops into a 2:1 rhythm.

For decreasing stimulation frequency, a 2:1
rhythm persists down to 3.63 s�1, followed by

alternans down to 3.55 s�1, where it is replaced by

a 1:1 rhythm. Hysteresis has been reported re-

cently in the Luo�/Rudy model (Yehia et al., 1999)

as well. Thus, in any study of alternans onset, the

initial conditions have to be specified.

The presence of hysteresis shows that, at certain

frequencies, there are at least two attractors in

phase space, the 1:1 attractor and the 2:2/2:1

attractor. The 1:1 attractor disappears for suffi-

ciently high frequencies, whereas the 2:2/2:1 at-

tractor disappears for sufficiently low frequencies.

To understand this effect in more detail, we study

the development of the basins of these two

attractors with changing frequency. As the system

is eight-dimensional, a complete determination of

the basins is impractical, so we take two different

approaches.

In our first study, we consider not full phase

space but a physiologically especially important

subset, i.e. the set of states traversed during a

standard action potential (from 1 s�1 stimulation).

This subset can be parameterized by the phase of

the action potential, which we normalize to range

from 0 to 1. Our question thus becomes which

phases of the standard 1 s�1 action potential as

initial condition lead to a 1:1 rhythm and which to

a 2:2/2:1 rhythm; this depends on stimulation

frequency. Fig. 5 shows the results. As expected,

Fig. 3. All model variables and ionic currents as a 2:1 rhythm

sets in. Stimulation frequency has been increased in steps of

0.01 s�1 without initializing, so that 2:1 has not yet set in at

3.67 s�1. We show the last four stimulations at 3.67 s�1 and

then switch to 3.83 s�1 stimulation (arrow), again without

initializing. After some transients, there is a stable 2:1 rhythm.

Units are mV for V , mM for Cai and mA for the currents.

Fig. 4. Hysteresis in the onset of alternans. Solid circles show

the onset of alternans for increasing frequency, empty squares

for decreasing frequency. We changed stimulation frequency in

steps of 0.01 s�1, using the final state of one frequency as the

initial state of the next.
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the basin of the 1:1 attractor becomes progres-

sively smaller with frequency. A phase close to one

drops out of the 1:1 attractor already at a rather

low frequency. This is because the first stimulation

will produce a long action potential and the second

stimulation is likely to meet un-recovered tissue;

this is a good starting point for alternans. Note

that stimulation from rest state leads to alternans

easily for the same reason. Indeed, the bifurcation

frequency in Fig. 2 almost coincides with the

frequency at which the 1:1 basin starts getting

smaller (ca. 3.55 s�1 in both cases), and also with

the frequency of the 2:20/1:1 transition in Fig. 4.

On the other hand, in two small intervals of initial

phases around 0.07 and 0.343, the 1:1 rhythm is

stable almost as long as in the hysteresis protocol.

This shows that our chosen subset gets close (in

phase space) to the 1:1 attractor over the whole

range of frequencies considered.

In a second study, we studied how results of our

original hysteresis protocol change if we add

uncorrelated equally distributed noise to the

transmembrane voltage in every time step. This is

a way of testing how close to the boundary of the

basin the system is as it moves along the attractor.

Fig. 6 shows that the increasing noise shifts the

transition 1:10/2:1 to lower frequencies. In much
the same way, increasing noise shifts the backward

transition 2:20/1:1 to higher frequencies (no

picture shown), but the shift is much smaller.

This indicates that the basin of 2:2 disappears

much more abruptly.

Finally, we use the insight we gained to demon-

strate how accurately placed extra stimuli can

induce switching from one attractor to the other
in the bistable regime. In Fig. 7, the cell is paced at

3.56 s�1 and is initially in a 2:2 rhythm. By putting

an extra stimulus at phase 0.5, we induce a switch

to a 1:1 rhythm. After eight beats in 1:1 rhythm,

we set another stimulus at phase 0.8. This induces

a switch back to the 2:2 rhythm. The placement of

both stimuli is not critical, the switching occurs for

a range of phases.

3.2. Alternans inhibition

To inhibit alternans while retaining the basic

action potential shape, either the relaxation has to

be accelerated or the rest state has to be moved so
Fig. 5. Basins of the 1:1 and the 2:2/2:1 attractor as a function

of stimulation frequency. We consider as initial conditions

states from a standard 1 s�1-stimulation limit cycle (para-

meterized by its phase). Each vertical section of the figure shows

which of these initial conditions lead to 1:1 and which to a 2:1/

2:2 rhythm. Reading the figure from left to right, for low

frequencies, any initial condition from the standard cycle leads

to a 1:1 rhythm, while for faster stimulation, an ever smaller

part does so; for frequencies above 3.7 s�1, any initial condition

from the standard cycle leads to a 2:2/2:1 rhythm. For phases

between 0 and 0.15, V reaches values outside our tabulation

range, so for these phases, we performed calculation without

tabulation. For a given phase, the alternans onset frequency

rises by about 0.01 s�1 if tabulation is turned off.

Fig. 6. The effect of noise on the stability of rhythms. The

protocol is as in Fig. 4, but at each time step, we add

uncorrelated equally distributed noise to V . In the left panel,

the amplitude of this noise is 9/2 mV, in the right panel 9/4 mV.

Fig. 7. In the bi-stable regime, a single well-timed pulse can

switch rhythms. Starting from a 2:2 rhythm, an extra stimulus

indicated by the first arrow induces a transition to a 1:1 rhythm.

This transition is reversed by a second extra stimulus indicated

by a second arrow.
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that it is reached earlier. Acceleration of the

relaxation via modification of ionic currents is

promising, because drugs to modify the channel

behavior are known (Elharrar et al., 1984; Singh,

1999). We quantify the effect of altering an ionic

current by introducing a constant cmod by which

the current is multiplied. For several values of

cmod, we determine the frequency of alternans

onset. Note that this setting is also a valid

description of natural deviations of current ampli-

tudes, e.g. due to genetically caused differences in

ion channel densities.

Fig. 8 shows the effect of modifying the sodium,

calcium, and potassium currents.

Amplification of the sodium current inhibits

alternans, because a strong initial peak in the

action potential lifts x1 so that repolarization is

strong from the beginning. A stronger repolarizing

potassium current also shifts the alternans onset

frequency to higher values. A strong calcium

current promotes alternans, because calcium is

the main depolarizing current.

The onset of alternans is most sensitive to

changes in the calcium current and the potassium

current iK
1
. It is rather insensitive to iNa, because

no matter by which factor iNa is multiplied, it is

turned off by h soon after V becomes positive. The

dependency on ix
1

is not strong either, because ix
1

is ‘self-inhibiting’. A strong ix
1

inhibits excitation

and that way prevents x1 from becoming large at

the initial peak. As a consequence, ix
1

does not

grow as much as might be expected from the

increase in x1.

Moving the recovery threshold to higher trans-

membrane potentials obviously inhibits alternans,

but the inhibition is significant only if the thresh-
old is moved strongly (not shown).

4. Alternans and calcium buffering

Another mechanism in heart cells that might be

effective in the development of alternans is calcium

buffering. We will introduce simple calcium buf-

fers with adjustable efficiency and study how the
efficiency influences the onset of alternans. An

overview of recent calcium buffer models can be

found in Goldbeter (1996).

In the BR model, there is a ‘restoring force’ that

drives Cai towards its resting value Eq. (8). This

restoring force does not reflect calcium buffering

adequately. In fact, the most important effect of

the restoring force is that it drives the calcium back
out of the cell, as there is no other outward

calcium current. Therefore, when we introduce

more realistic calcium buffering, we cannot just

drop the restoring force, and we will keep it with

the calcium buffers we introduce. We interpret the

restoring force as an outward calcium current that

serves to maintain equilibrium calcium concentra-

tion.
The structure in the cell that stores calcium is

the sarcoplasmic reticulum (SR), a network of

tubes that pervades the cell. Parts of the surface of

the SR contain pumps that transport calcium from

the myoplasm into the SR; the corresponding

parts of the SR are called uptake compartments.

In other parts of the SR, ion channels for calcium

release dominate, they are called the release
compartments. This structure suggests two-com-

partment calcium buffers, which are in fact used in

detailed modeling of calcium dynamics (Lou and

Rudy, 1994). The compartments and calcium

currents between them are shown in Fig. 9. The

dynamic equations are:

Fig. 8. Effect of modifying the ionic currents in the BR model

on the development of altenans. For each ionic current, we

introduced a global modification factor. We changed this

modification factor from 0.35 to 2.0, where a, factor of 1

corresponds to the original current.
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d

dt
Cai� j3� j1

d

dt
Cau�

(j1 � j2)

Vu

d

dt
Car�

(j2 � j3)

Vr

; (9)

where, Cai, Cau and Car are the calcium concen-
trations (in mM) of the intracellular medium, the

uptake, and the release compartment, respectively;

Vu, the volume of the uptake compartment, and Vr

is the volume of the release compartment, the

volume of the myoplasm has been normalized to 1.

We chose the currents ji in the simplest possible

way compatible with physiology. The calcium

uptake j1 is caused by pumps, which are usually
modeled using Michaelis�/Menten kinetics. We

further simplify j1 by assuming linear operation,

jI�/d1Cai. The translocation of the calcium from

uptake to release compartment is brought about

by diffusion and modeled here (as usual) by j2�/

d2(Cau�/Car) Calcium release j3 increases with Cai

as well as with Car (‘calcium-induced calcium

release’). Physiologic models often use compli-
cated formulations for this current. We chose the

simplest term that includes the basic dependency

on both Cai and Car, j3�/d3CaiCar.

The resulting model still has the free parameters

d1, d2 and d3 (Vu and Vr are known (Lou and

Rudy, 1994)). We think the best way to get
realistic values for the free parameters is to impose

conditions on important physiological quantities

that can easily be measured and functionally

depend on d1, d2, and d3. We consider the steady

state values of Cai, Cau, and Car in the absence of

calcium current from the extracellular medium, i.e.

we disconnect the BR model from the calcium

dynamics. Setting j1�/j2�/j3 in Eq. (9) becomes:

d1Cai�d2(Cau�Car)�d3CaiCar: (10)

Therefore,

Car�
d1

d3

; and Cau�
d1

d3

�
d1

d2

Cai: (11)

Two conditions are imposed on d1, d2, and d3 if

Cai, Cau, and Car are required to take on

physiologically realistic values (the order of those

given in Lou and Rudy, 1994), Cai:/0.17 mM,

Cau:/1800 mM, and Car:/1800 mM). We use the

last free parameter for the adjustment of the time

constant t with which perturbations of the steady
state relax. The functional dependency of t on d1,

d2 and d3 is gained by linearizing the dynamics

(Eq. (9)) at the steady state and calculating the

eigenvalues of the Jacobi matrix. Setting t�/180

ms, a typical time-constant of Ca-relaxation (Lou

and Rudy, 1994), yields after some calculation.

d1�8:67�10�2; d2�1:56�10�4;

d3�50:98: (12)

We now consider the model as shown in Fig. 9.

The BR equations and the calcium buffer equa-

tions are linked at the intracellular calcium, whose

rate of change is:

d

dt
Cai��kiIs�

1

tCa

(Cai;eq�Cai)

�d1Cai�d3CarCai: (13)

The basic structure of the bifurcation diagram
of the BR model is not changed by the new Ca-

buffering mechanism (Fig. 10).

To assess the effect of calcium buffers quantita-

tively, we simultaneously vary the strength j1 and

j3 by multiplying them with an identical factor and

determine the corresponding alternans onset fre-

quencies. As shown in Fig. 10, the stronger the

Fig. 9. Structure of the proposed model for calcium buffers in

the cell. The Cae compartment represents the extracellular

medium, the Cai compartment the myoplasm and the Cau and

Car compartments the calcium uptake and release parts of the

sarcoplasmic recticulum.
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uptake pump, the earlier alternans sets in, which

means that calcium buffering promotes the devel-

opment of alternans.

To understand this effect, consider how the net

calcium inflow d/dt(Cai) is modified by the

buffers. The effect of the calcium buffers has two

components, which can clearly be seen in Fig. 11.

On the one hand the calcium release, which is fast

but small, produces an extra initial peak in Cai. On

the other hand, the calcium uptake considerably

decreases Cai over the second part of the action

potential. The lower Cai causes the equilibrium

potential for calcium to rise and that way increases

the calcium current slightly Eq. (4). As the calcium

current is depolarizing, repolarization is delayed.

The balance of de- and repolarizing currents

during an action potential is delicate, so that the

slight change in calcium current leads to a sizable

shift of alternans onset frequency.

5. Discussion

Alternans is linked to dangerous arrhythmias

and understanding its mechanisms is of great

clinical importance. We studied the onset of

alternans in a simple model. In this simple model,

we were able to understand hysteresis and bist-

ability at the onset of alternans, the potential for

inhibiting alternans by blocking specific currents,
and the influence of calcium buffers on alternans

development. We believe that similar mechanisms

apply to more detailed models and the real cell,

where the existence of hysteresis and bistability has

already been shown (Hall et al., 1999; Yehia et al.,

1999).

We are not aware of any experimental study

that investigates the effect of calcium buffers on
alternans genesis. Methods for blocking of calcium

buffers are, however, available (Asano and No-

mura, 2000; Kabbara and Stephenson, 1997), so it

can be tested if the mechanisms we describe are

indeed effective, or if the relationship between

calcium buffering and alternans genesis is more

complex in real cells.

Appendix A: Full list of modifications in the calcium

buffer model

New state variables

Cau

(mM)

calcium concentration in the uptake

compartment

Car

(mM)

calcium concentration in the release

compartment

New dynamic equations

d

dt
Cai��0:1iCa�0:07(0:1�Cai)� j1� j3

d

dt
Cau�

(j1 � j2)

Vu

d

dt
Car�

(j2 � j3)

Vr

(A:1)

Fig. 10. The effect of the calcium buffers on the onset of

alternans. Left panel shows the slight shift towards lower

frequencies in the bifurcation diagram. The protocol is as in

Fig. 2. Right panel shows the shift of alternans onset frequency

as a function of calcium buffer efficiency; here we restarted

from rest state for each frequency.

Fig. 11. The effect of the calcium buffers on calcium concen-

tration and calcium current. In both panels, model cells were

stimulated at low frequency (1 s�1) and transient have passed.
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Calcium currents in the cell

j1�d1Cai

j2�d2(Cau�Car)

j3�d3CaiCar; (A:2)

New constants

Name Meaning Value Unit

d1 strength of calcium

uptake pump

0.0867 s�1

d2 strength of diffu-

sion from uptake

to release

1.56�/10�4 s�1

d3 strength of
calcium-induced

calcium release

50.98 s�1

Vu volume of the cal-

cium buffer uptake

compartment

(relative to the

cytoplasm volume)

0.06

Vr volume of the cal-
cium buffer release

compartment

(relative to the

cytoplasm volume)

0.006
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