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We present a stable regime of asymmetric bound states for spiral pairs in a generic numerical model of a
homogeneous excitable medium. In this regime, one spiral tip (slave) rotates around the other (master).
Master-slave dynamics occur for both same-chirality and opposite-chirality spiral pairs in a range of
parameters and initial conditions. We study the dependency of master-slave characteristics on the
medium’s excitation threshold and present a phenomenological model that accounts for the qualitative

properties of master-slave dynamics.
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Spiral waves in excitable media are a remarkable ex-
ample of self-organization. They have been observed in the
Belousov-Zhabotinsky reaction [1,2], electrical activity in
cardiac tissue [3], aggregation of starving slime mold
amoeba [4], and catalytic reactions on platinum surfaces
[S].

Intriguing analogies have emerged between spiral waves
and particles. The most obvious analogous feature is nar-
row localization in space: In this Letter, as well as in much
of the literature, the spatial coordinate of a spiral is taken to
be that of its wave front’s tip. This definition allows one to
speak of spiral-spiral interactions in particlelike terms.
Bound states of spiral waves have characteristic features,
like their wave emission frequency [6,7], and rules of
interaction with other bound states [7].

Two kinds of bound spiral pairs may be distinguished
according to their components’ chiralities. If both spirals
have the same chirality (a state of topological charge *=2)
the system is seen at asymptotic distances from the cores as
a single double-armed spiral. If the chiralities are opposite
(topological charge zero), we only see concentric circular
waves at large distances.

All bound states of spiral pairs reported so far exhibit
either axial symmetry (for opposite-chirality pairs) or point
symmetry (for same-chirality pairs). Axially symmetric
pairs have been observed in virtually every known excit-
able medium [8,9], most importantly in the heart [10],
where they are known as figure-of-eight reentry. Point
symmetric pairs, also known as double-armed spirals,
spontaneously occur in dictyostelium discoideum [11]
and a variety of numerical models [12]; they have been
induced in the Belousov-Zhabotinsky reaction [6,13], as
well as in the rabbit heart [14] and in two-dimensional
cultured heart tissue [15].

Here we report the first observation of stable bound
spiral pairs with broken symmetry in a homogeneous
excitable medium. The interspiral distance can exceed
both the wavelength and the core size of a single spiral
wave. A striking feature of these asymmetric bound pairs is
that one spiral (“master’) is almost unaffected by the
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other, while the dynamics of the other (“‘slave”) are radi-
cally altered by the interaction. By modifying the medi-
um’s excitability, we can break and recover symmetry, and
we observe hysteresis in the dependency of the system’s
symmetry on the medium’s excitability.

All observations were made in numerical simulations
using the Barkley reaction-diffusion model [16] of a ge-
neric excitable medium. It consists of an activator variable
u and an inhibitor variable v, which evolve according to

du/ot = (q/e)u(l — u)[u — (v + b)/a] + V?u,
ov/ot=u— v.
The constant ¢ is the ratio of characteristic time scales of
the activator and inhibitor variables. The parameters a and

b represent the slope of the u nullcline and the excitation
threshold.

FIG. 1. Spontaneous breaking of axial symmetry and forma-
tion of an asymmetric bound state (b = 0.2135). Thick white
lines show the excitation waves (u# = 1); thin white lines show
the tip trajectories. Arrows indicate the drift direction of the tips.
Dashed line is the axis of symmetry. (a) Axially symmetric spiral
pair before perturbation. (b) Spontaneous symmetry breaking
after the medium was perturbed in one pixel. Tip trajectories are
continued from panel (a). View is slightly zoomed and centered
on the right spiral tip. (c) Steady state spiral tip trajectories [same
view as panel (b)]. One spiral (master) is rotating almost un-
affected by the other (at the center of the panel), while the other
spiral (slave) precesses around the master. The master-slave
distance significantly exceeds the core radius of an isolated
spiral in the same medium.
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We solved the model equations on a 320 X 320 or 640 X
640 grid using Euler’s method with zero-flux boundary
conditions and space and time steps dx = 0.1826 and dt =
0.003. We chose typical values € = 0.02 and @ = 1.1, and
varied b. All computations were performed on a 32-node
Beowulf cluster. We created same-chirality and opposite-
chirality spiral pairs using established methods [17], and
defined spiral tips to be pixels satisfying 0.45 < u < 0.57
and 0 < du/dt < 10.

Figure 1 shows the symmetry breaking of an opposite-
chirality pair and the resulting asymmetric bound state,
caused by a small one-time perturbation (lasting one time
step). Before the perturbation [Fig. 1(a)], the spiral arms
drifted linearly in perfect symmetry. At the instant shown
in Fig. 1(a), we set the activator variable at one pixel at the
right wave tip to zero. This immediately triggered a break-
ing of symmetry, shown in Fig. 1(b). The upward motion of
the right spiral tip slowed down while the left spiral tip
started to drift away from the right tip in a spiral fashion
(no picture shown), until it stabilized at a larger distance
[see Fig. 1(c)]. The same phenomenon occurred for a
variety of small perturbations located sufficiently close to
the spiral’s tip.

A close inspection revealed that the radius of the inner
spiral’s core was modulated, with the frequency at which
the outer spiral revolved; thus the trajectory in Fig. 1(c)
appears thicker. Both tip trajectories can be described as a
combination of a simple spiral rotation (as that of a single-
armed spiral in the same medium) and a low-frequency
precession, caused by the interaction. The two precessions
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FIG. 2. Characteristics of spiral pairs with opposite chirality at
different excitation thresholds (b). The gray area marks the range
of b that supports asymmetric bound states. Circles (O) show the
radii of precession of the master (r,) and the slave (7). The filled
circles correspond to the simulation shown in Fig. 1(c). The solid
lines show fits of the diverging segments of r; and r, with
hyperbolic curves of the form ¢ + ¢, /(b — b,.); the dashed lines
mark the asymptotes (b, = 0.2057 and b, = 0.2185).

are characterized by the precession radii r; and r, (with the
convention ry > ry).

The prominent feature of Fig. 1(c) is the asymmetry of
the interaction: The inner spiral is almost unaffected (r, =
0), while the outer spiral precesses strongly (r; is large
compared to the core radius of an isolated spiral). For r, =
0, we call the unaffected inner spiral the master and the
strongly precessing outer spiral the slave; in this situation
r1 can be interpreted as the average master-slave distance.

Figure 2 shows how r; and r, depend on excitability
over the whole range that allows asymmetric bound states.
For sufficiently low excitation threshold (b), we observe
master-slave pairs with large interspiral distances (r; >
r, = 0). In this range, r; diverges as b decreases. A
1/(b — b,) singularity is strongly suggested by the excel-
lent fit shown in Fig. 2. If we increase b, the slave ap-
proaches the master while the master remains largely
unaffected. When b is increased beyond b = 0.2158, r;
and r, both grow to infinity, corresponding to a linearly
drifting symmetric pair. Close to the singularity, both ry
and r, are hyperbolic curves with essentially the same
asymptote (b. = 0.2185). This reflects the fact that both
spirals drift in concentric circles and that their radii are
coupled as they grow. Above the singularity, only symmet-
ric pairs are stable.

Same-chirality spiral pairs also exhibit spontaneous
symmetry breaking into master-slave pairs (see Fig. 3).
Fig. 3(a) shows a snapshot of a point symmetric double-
armed spiral, for a parameter b similar to that from Fig. 1.
As for the axially symmetric case, we added a minimal
perturbation, which triggered symmetry breaking
[Fig. 3(b)]. The right tip slows down while the left tip
begins to orbit around the right tip. After a transition
period, we observed master-slave dynamics [Fig. 3(c)],
similar to Fig. 1(c).

Figure 4 shows the bifurcation diagram for same-
chirality spiral pairs. As in the axially symmetric case, r;
diverges as 1/(b — b,), with a very similar location of the
singularity. As we increase b, r| decreases and r, increases
until, at b = 0.223, they become equal and a transition to
point symmetric dynamics occurs.

FIG. 3. Spontaneous breaking of point symmetry and forma-
tion of an asymmetric bound state (b = 0.21). (a) A point
symmetric spiral pair. The center of symmetry is marked +.
(b) Symmetry breaking after a minimal perturbation. (c) Steady
state tip trajectories after symmetry breaking.
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FIG. 4. Bifurcation diagram showing bistability and hysteresis
for the dynamics of same-chirality spiral pairs. The gray area
marks the range of b that supports asymmetric bound states.
Circles (O) show the radii of precession of the master (r,) and
the slave (r;), triangles (A) the common average precession
radius for the symmetric state. Black arrows indicate which
stable branch the system follows if b is increased or decreased.
The solid line shows a fit of the diverging segment of r; with a
hyperbolic curve (as in Fig. 2), and the dashed line marks the
corresponding asymptote (b. = 0.2049). The filled circles cor-
respond to the simulation shown in Fig. 3.

It is interesting that for the same-chirality case, there is a
broad range of parameters where both symmetric and
asymmetric pairs are stable (0.216 < b < (.223). In this
parameter range, we observed hysteresis. Indeed, if we
start with a symmetric pair and gradually decrease b,
symmetric dynamics persist until b = 0.216; afterwards,
an abrupt transition to master-slave dynamics occurs.

Figure 5 illustrates the transitions between stable asym-
metric and symmetric states following abrupt changes in b.
A system in the master-slave regime [Fig. 5(a)] switches to
axial symmetry with linear drift [Fig. 5(b)] as soon as we
increase b, and it returns to master-slave dynamics as soon
as the original value of b is restored [Fig. 5(c)]. Note that
master and slave have switched roles from Fig. 5(a) to 5(c);
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FIG. 5. Reversibility of symmetry breaking. (a) Master-slave
pair (b = 0.2135). (b) When we change b to 0.22 and continue
the simulation, the spiral pair becomes symmetric and starts
drifting linearly. (c) After b is set back to 0.2135, symmetry
breaks again, turning the system back into a master-slave pair.

in general, which spiral becomes the master and which
becomes the slave depends on minimal asymmetries in the
initial conditions.

We conducted several tests to assess the robustness of
master-slave pairs. We tested the sensitivity to initial con-
ditions, including initial conditions that can be reproduced
experimentally (“‘vortex shedding’ [18]). We furthermore
applied one-time global perturbations of varying amplitude
and spatial frequency and, in separate simulations, contin-
uously added random noise. All these tests demonstrated
the robustness of master-slave pairs. The pairs persisted up
to considerable perturbation amplitudes (90% of the exci-
tation threshold for one-time perturbations, 7.5% for con-
tinuously added random noise). Medium size and boundary
conditions were relevant only if the slave got close to the
boundary.

The mechanisms by which master-slave pairs are formed
and sustained can be understood qualitatively with the fol-
lowing considerations. Master-slave pairs form after the
symmetry breaking induces a difference in the rotation fre-
quencies of the spirals; the faster spiral becomes the mas-
ter. The subsequent dynamics can be described in terms of
induced drift, which has been reported for spiral waves
exposed to a train of plane waves [8,19,20]. The fact that
the periodic wave train emitted by the master is curved
rather than planar causes the slave to drift in a circular
rather than linear path and ensures the existence of a stable
steady state, as we show below. Figure 6 sketches a simple
phenomenological model that accounts for the stability of
master-slave pairs and the qualitative dependency of r; on
b.

The model is based on the following assumptions de-
rived from numerical experiments: The master, whose core
center is at C, periodically emits circular wave fronts,
which hit the slave tip (S). Between successive hits, the
trajectory of S is circular and has the same radius r; as the
core of an isolated spiral. The slave front right after a
collision is identical to a section of the incoming master
front. The periodic collisions increase the slave’s rotation
period such that between two successive collisions, it

FIG. 6. Evolution of the slave’s tip (S). The thick lines show
the wave fronts shortly after a collision. At the moment of
collision, the distance from S to the center C of the master
was r| ,. After the collision, the S moves along a circular arc of
radius r,, covering an angle « before colliding with the master
again at distance ry ;.
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rotates by an angle « that is typically slightly larger than 7
[see Fig. 1(c)].

Under these assumptions, the distance r, from S to C
evolves according to

(rl,n+l)2 - (rl,n)2 = 2rs[rs(1 + COS(CV - 7T))
— ry,sin(a — m)]. 2

If we assume that « — 7 is small, take a first-order ap-
proximation, and set the left side of Eq. (2) to zero, we
obtain the condition for a steady state,

ry = 2r,/(a — ). 3)

A stability analysis of Eq. (2) shows that the steady state is
stable.

Equation (3) predicts that r; grows as « approaches
from above and has a singularity at « = 7, independent of
the relative chirality of master and slave; this is consistent
with our numerical simulations. However, the simulations
also show that r; is consistently larger for opposite-
chirality than for same-chirality pairs for a given b (com-
pare Figs. 2 and 4). This difference can be accounted for if
the master wave front is taken to be spiral-shaped rather
than circular. In this case, an analysis similar to that carried
out above for circular master wave fronts predicts r; to be
larger for opposite-chirality pairs.

Our finding of asymmetric bound states represents a
major shift from the common views that there is no long-
range interaction between and that in a homogeneous
medium, all spirals are equal. In our model system, we
can reversibly adjust the spiral pair tip distance or, if we
change the excitability beyond the limit of the master-slave
domain, switch from asymmetric to symmetric bound
states.

Bound states of spirals are a robust phenomenon; it is
therefore likely that they can also be observed in experi-
ments. A possible candidate medium is the Belousov-
Zhabotinski reaction, in which symmetry breaking of ax-
ially symmetric pairs was found [21,22], although it re-
sulted in expulsion of one of the spirals rather than in a
bound state. Our results suggest a bound state could have
been observed in these experiments if the medium had a
higher excitation threshold. It would be interesting to re-
visit these experiments with our results in mind.

The existence of bound states of spiral waves may have
important implications in cardiology. Animal experiments
have demonstrated both the presence of multiple rotors
during fibrillation [23] and the possibility of inducing
double-armed spirals [14] in the mammalian heart. It is
therefore not unlikely that bound pairs of spirals occur in

the mammalian heart; in this case the best treatment of
them becomes an important question.
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