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Wave propagation in an excitable medium with a negatively sloped
restitution curve

A. V. Panfilov®
Department of Theoretical Biology, Utrecht University, Padualaan 8, Utrecht, 3584, The Netherlands

C. W. Zemlin
Innovationskolleg Theoretische Biologie, Invalidenstrasse 43, 10115 Berlin, Germany

(Received 31 January 2002; accepted 21 May 2002; published 23 August 2002

Recent experimental studies show that the restitution curve of cardiac tissue can have a negative
slope. We study how the negative slope of the restitution curve can influence basic processes in
excitable media, such as periodic forcing of an excitable cell, circulation of a pulse in a ring, and
spiral wave rotation in two dimensions. We show that negatively sloped restitution curve can result
in instabilities if the slope of the restitution curve is steeper thah and report different
manifestations of this instability. @002 American Institute of Physics.
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Rotating spiral waves occur in a variety of nonlinear ex-  the diastolic interval. The diastolic intervéDl) is the time
citable media. The appearance and multiplication of spi- that has elapsed between the end of the preceding action
ral waves disturb the spatial organization of the medium  potential and the start of the next one. An alternans instabil-
and may result in turbulent or chaotic behavior. If such a jty can occur if the slope of the restitution curve is more than
regime occurs in cardiac tissue it causes cardiac fibrilla-  gne23 |n two-dimensional excitable media, an alternans in-
tion. One of the most studied instabilities which can re-  giapility can cause spiral breakup: fragmentation of one spi-
sult in breakup of spiral waves occurs if the restitution 5 wave into a spatiotemporally chaotic pattern comprising
curve of cardiac tissue, WhiC.h relates the duration of car- many wavelets of various siz&s® Spiral breakup is now one
diac pulses to the recovery Flm.e bet\{v-een the pulses, hgs @ of the most actively pursued candidates for the mechanism
slope of more than one. This instability has been studied underlying onset of ventricular fibrillation.

only in the case of_a restltunon_ curve with a pos_ltlve The theory of restitution instability was developed as-
slope. Recent experimental studies showed the existence . o . .
o . ; : suming that the slope of the restitution curve is always posi-
of restitution curves with a negative slope. It occurs in tive. Thi motion is r nabl it means that lonaer
cardiac tissue prone to atrial fibrillation. In this article, €. S assumption IS reasonable as cans that fonge
recovery times lead to longer action potential durations as

we study the effects of a negatively sloped restitution ° ) ) .
curve and the possible associated instabilities which can Nas been confirmed in numerous experimental studies. How-

occur in three different contexts: a periodically forced Ve it was shown recently that in some cases, the slope of
excitable cell, circulation of a pulse in a ring of excitable ~the restitution curve can become negative as well. For ex-

tissue, and a spiral wave rotating in two dimensions. ample, it was shown that the restitution curve has a region
with negative slope in remodeled atrial tissue, i.e., in tissue
which sustains chronic atrial fibrillatichlt was also shown
I. INTRODUCTION that there is a small region with negative slope in the resti-
_ _ _ tution curve of normal human ventricular tissté? In spite
Complicated spatiotemporal patterns play an importangs the existence of negatively sloped restitution curves this
role in excitable media of various types. If such pattemsphenomenon has hardly been studied. In the only published

occur in cardiac tissue they cause cardiac fibrillation, Wh'Canper in that area known to @it was found that the addi-

is one of the main causes of death in the industrialized. . . .
1 . ~1ion of a nonmonotonic region to the restitution curve can
world.” In many cases, complex spatiotemporal patterns arise

i i . . result in increased instability of the pulse rotating in a ring of
as a result of some type of instability. The type of instability L . . )
most studied today is the so-called alternans instability. Thi%he cardiac tissue. However, mechanisms underly.| ng t.hls ef-
instability may occur if one forces an excitable medium with ect as well _"’?S the precise role of the nonmonotonicity in the
a sufficiently short period. In this case, instead of a periodid®SS Of stability were not clear. _
response with the same period as the stimulus, the durations [N this article, we study the effects of negatively sloped
of successive action potentials begin to alterratg., short— restitution in several contexts whose study lead to a good
|Ong_short_|ong’ etﬁ:.There isa Simp]e criterion governing Understanding of the alternans |nStab|l|ty a periOdica”y
the onset of alternans, based on the restitution curve of thi9rced excitable cell, circulation of a pulse in a ring, and
tissue, which relates the action potential duratig#D) to  spiral wave rotation in two dimensions. Our main conclusion

is that negative restitution can induce instabilities if the slope
dElectronic mail: a.v.panfilov@bio.uu.nl of the restitution curve is steeper tharl.
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T=APD(DI*)+DI*, 3)

where DF is the equilibrium value of DI.

If the restitution curve is nonmonotonic and has regions

of negative as well as of positive slopEig. 1(b)], map (1)
. can have three equilibria: a stable equilibri@nan unstable
DI ' DI equilibrium B, and an equilibriumA which can be either

o o _ _ _ _ stable or unstable. If both equilibria andC are stable, we
FIG. 1. Qualitative dynamics in an excitable medium with negatively sloped . . . .
APD restitution. Points of intersection of the restitution cuftres solid ling (?an obtain two d|ﬁer§nt Stabl,e durations of the action poten-
and the dashed and dotted liresaindb, defined by the relationship APD tial at the same forcing periodNote, however, that three
=T, ,— DI give the equilibria of mag1). equilibria are possible only if the restitution curve has a re-
gion with slope steeper than 1. As in the previous case,
changing of the period of forcing results in disappearance of
either equilibriaA and B or of equilibriaB and C via a
saddle-node bifurcation.

We start with a simple analysis. Consider stimulating an ~ Therefore, our conclusion is that periodic forcing of an
excitable cell with a constant periadand denote the action €xcitable medium with negatively sloped restitution curve
potential durations of the successive pulses as ABBd  can result in instability if the slope of the restitution curve is
their diastolic intervals as QI Because the period of stimu- Steeper than-1. In this case, the APD is not alternating but
lation is constant, APP+DI,,=T. The action potential du- monotonically increasing. Note, that if due to this instability
ration of the pulse APR,, is determined by the previous the refractory period of cardiac tissue becomes longer than
diastolic interval, or the period of forcing, Wenckebach blo¢ksan occur and

roduce quite complex dynamics. These dynamics can po-

APDq.1=f(Dly) =T(T—APD,), @) Fentially bqe studied FLsing )r/na(ri). ’ P
wheref stands for the restitution properties. The dynamics of  In Sec. Il we study the effects of negatively sloped res-
this map can be easily studied. An equilibrium point of thistitution curve on propagation of periodic waves: circulation
map corresponds to a periodic response of the excitable mef excitation in a ring of excitable tissue with negatively
dium. Such an equilibrium becomes unstable, however, asloped restitution.
soon as| df/dDI|>1. The casedf/dDI>1 corresponds to
the alternans instability discussed in Refs. 2 and 3, the cagfl. CIRCULATION IN A RING
df/dDI<—1 corresponds to a new instability which is in-
duced by negative restitution. Therefore, if the slope of th
restitution curve becomes steeper thad, we can expect
instabilities in the excitable medium.

II. PERIODIC FORCING OF AN EXCITABLE SYSTEM

e Consider a pulse circulating in a ring of excitable me-
dium with negatively sloped restitution. If circulation is sta-
tionary, we can find its characteristics from the solution of

A useful graphical representation of possible dynamicd"® following:
in this case is shown in Fig. 1. The solid lines represent L . .
restitution curves. In order to obtain the dynamics of rfBp c(D—I*):APD(DI )+DI*, 4

under periodic forcing one should draw a straight line APD ) ) ) ) )
—T-DI and perform the well-known *“cobwebbing” whereL is the length of the ring, and(DlI) is the dispersion

method with respect to this lingsimilar to Refs. 2 and 73~ 'elation(dependency of the velocity on Pland APODI) is
Figure 1a) shows an example of a restitution curve with the restitution of curve cardiac tissue. _

everywhere negative slope. The dashed line represents forc- _1he only difference between E{l) and Eq.(4) is that

ing with one possible period. We see that, in this case, th¥/hile the left-hand side of Eq(1) is constant T=const),

map defined by Eq(1) has a stable equilibriurB at a long ~ that of Eq.(4) is a function of DI:(/[c(DI*)]). -

DI and an unstable equilibriur at a short DI. We see that e can easily find spatially uniform equilibria of Ee)

the solution perturbed from the stable equilibrimreturns ~ USing a graphical method similar to that of Fig. 1. For that, as

to it without oscillationsno alternansand there is a basin of N Fig. 1, we first need to draw the restitution curve. Then,

attraction of this equilibrium: if one perturbs the system to ahowever, instead of drawing the straight lines APD

DI shorter than that given by poir, the series of APDs DI, we need to draw the curves ARPDL/[c(DI)] —DlI.

goes to infinity. If we decrease the period of forcing, theBecause in normal conditions velocieyis a monotonically

dashed line shifts downward. As a result, the equiliiand ~ ncréasing function of DI, the dashed lines APD

B approach each other and the basin of attraction of equilib= L/[c(DI)] — DI become curves and their slopes become

rium B shrinks. Further decrease in the period of externafte€per at small DI. Graphically, this means that these lines

forcing results in the disappearance of the equilibria via &urve upwards from the straight dashed lines in Fig. 1. The

saddle-node bifurcation at some period which corresponds tgatterns presented in Fig. 1 will, however, remain the same

the dot-dashed line in Fig. 1. The condition for the saddledualitatively: For the monotonically decreasing restitution

node bifurcation is given by the following pair of equations: CUrve from Fig. 1a), we can expect two equilibria, for the
nonmonotonic restitution curve from Fig(t) we can expect

dAPD(DI*) _ @ three equilibria, etc. These spatially uniform solutions will
dDlI ' also disappear via a bifurcation similar to the saddle-node
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bifurcation shown in Fig. (). The following condition for 0.04
this bifurcation is, however, slightly different from E):

0.03 L %3 K3 < K3 <
dAPD(DI*) L dc(DI¥) /O/rﬁ
L ) (5) ‘ I

dDl c+(DI*) dDlI 0.02
Becausd dc(DI*)]/dDl is assumed to be positive, bi- 0.01 |
furcation in this case occurs for slopes of the restitution
curve steeper than 1. 0

Let us study the stability of these spatially uniform so- 0 2 4 k 6 8 10

lutions. Our analysis of this problem uses the method devel-

oped in Ref. 15 with some modifications to account for theF_lG' 2. Growth factors of perturbatioqs with initial amplitu'la'h;t 104 ir_] a
negative slope of the restitution curve. Assume that we hav%”ngctgntshgi\i:?]gi;h'I‘E:(llgi 'aﬁgamfli?t'ﬁlssgejri fogﬁ nﬁ?ixggnxit:ns
an excitatory pulse revolving in a ring of the length)(and e in the text.

that the velocity of the wavec] and duration of the pulse

(APD) depend on DI only. Such a pulse can be described by

the following delayed integral equation: ) .
to the pointB=1. In this case, we can assume tiga{B)

x ds =, (A,B) +iBk(A,B) is a differentiable function ofA,B
«Lc(DI(s)) DI(x)+APD(DI(x=L)), ®  and find its derivatives 8=1:

21,2
wherex is the space coordinate along the ring. Equati®n da 4k IPx 2wAk

5 A2 A 20> 5 - A2 A 22 (10)
basically equates the time of wave rotation around the ring at 9B~ A°+4m°k*’ 9B A*+47°k®
pointx: [%_, (ds/[c(DI(s))]) to the sum of the diastolic in- Ja, B
terval and APD at this point: DK) + APD(DI(x—L)). (9_Ak = (9—Ak=0. (11

Assume that this equation has a spatially uniform solu-
tion, Eq. (4), corresponding to a steady traveling pulse ofThis yields the following linear approximations close Bo
excitation. The stability of this solution can be found by =1 for the wavelengths of the perturbationg=2xL/B,

computing the growth factoR, of the perturbation and their increments,, :
DI=DI* + be?¥!, 7 Am’k*(B—1) L A(B—1) 1
W prragae . M Azl (12

which, after substitution of Eq.7) into Eq. (6), yields the
following eigenvalue problert® We see thaty, >0 if B>1, hence the pulse becomes unstable
if the slope of restitution curve becomes steeper thdnand

Q:A+ QB (8) the growth rate of perturbations near the bifurcation is fastest
A+Q" for the perturbations with the shortest wavelengths.
To validate the results of these analytical computations,
where . . .
we performed computations using E§) with
A dc DI* B dAPD - h
~cor2dpl P BET g (P APD(DI)=a+ =, ¢(Dl)=]DI (13

DI’

We study this equation in the case of a negatively slopegng parameter values= 10, h=50, j=1. DI was assumed
restitution curve B>0) and a normal dispersion curvé& ( to pe non-negative. For such choice of functions, @i has
>0). just one positive spatially uniform equilibrium point fdr
First, following Ref. 15, let us prove that ifOB<<1,the -~ gq (solving L=DI*2+10DI* +50), which becomes un-
real part ofQ cannot be positive and therefore the circulationgtgple forl < 170.71. We set DI to this fixed point of E¢6)
is stable. In fact, if we assume that R0, then, on the  eyerywhere in the ring and then imposed perturbations of the
one hand, the modulus of the left-hand side of E).is  form DI=DI* (1+Asin(kx)). Figure 2 compares the growth
greater than one|¢?|>1). On the other handA+QB|  factors of perturbations of different wave numbérsNu-
<|A+Q| and the right-hand side of E¢®) is less than 1. merical and analytical results match almost exactly.
Therefore, we have a contradiction which proves that for 0 \wnat type of bifurcation do we have Bt=1 and what is
<B<1 the circulation of the pulse in the ring is stable.  the direction of this bifurcation? Unfortunately, it was not
Now, assumé=1. In that case we have infinitely many possible to perform a nonlinear analysis similar to Ref. 15.
roots of Eq.(8) with ReQ)=0, which are This is because, for root§) of the characteristic equation
i C (8), nonlinear amplitude terms in asymptotic expansions of
Qu=t2mk; k=0.1.2.ete. © Eq. (6) disappear, which makes the problem highly degener-
and a real rooQ= — A, which for a normal dispersion curve ate. Therefore, we studied the behavior of our system around
(A>0) is negative and cannot contribute to the instability. the bifurcation point numerically using E¢6) with param-
Now let us show that iB>1, the pulse becomes un- eters as in Fig. 2. We have determined the basin of attraction
stable. To do this, we find the dependency@fon B close of the spatially uniform equilibrium point of this equation
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15 - . wheree is the transmembrane potentigl,is the gate vari-

able, ande is a function which depends on other variables
and will be specified later. In order to make the shape of the
action potential as simple as possible, we used the following

DI nonlinear functionf(e):!*® f(e)=limc_..Ce when e<0,
f(e)=—(e—0.1) if O<e<1, andf(e)=Ilimc_. C(e—1)
10 whene> 1. For this shape df(e), the excitation pulse has a
ST E plateau region a¢= 1, the rest state &= 0, and the shape of

the pulse is close to rectangular. To model the regions of
infinite slope of functionf(e) numerically, we use théf
operators stating that if the varialgds above 1 itis setto 1,

e and if e<0, it is set to 0. It was shown that this procedure
yd gives a sufficiently precise solution of E¢l4) with f as
5100 - 150 200 250 given previously® In our basic modek depended on the
L variablee as follows:e=0.067 if 0.:<xe<<0.99 ande=0.1

for other values ofe. In order to describe a medium with
FIG. 3. Bifurcation diagram of spatially uniform solution for a pulse circu- negatively sloped restitution curve, we made the function
lating in a ring of excitable tissue. is the ring length, DI is the diastolic dependent on DI. We putd/~=T(DI) (if 0.45<g=<0.55 and
interval, thin lines show the basin of attraction of the equilibri(iick line, . . . .
solid for stable, dashed for unstablsith respect to spatially uniform per- €<0-1), whereT(DI) is the function which influences the
turbations. See the text for further explanation. slope of the restitution curve and will be chosen later. In fact,
if 0.45=<9g=<0.55£<0.1, the excitable medium is in the re-

_ . ) B . fractory state and the time interval during which the variable
close to the bifurcation point at=170.71. For this, we g decreases frorg=0.55 tog=0.45 is given by

added spatially uniform perturbations to the exact solution,
and checked whether the system returns to equilibiiEim.
3). We see that the basin of attraction of the stable solution
decreases and becomes zero when we approach the bifurca- .
tion point. In all cases the solution becomes unstable without 1 herefore, a change of DI results in a change of the
alternans: we observe the successive elongation of APD unfiffractory period which is proportional t@(DI) and by
the pulse fails to propagate. choosmg the funcFloﬁ'(D_I) approprla_tely, we can construct
Thus, our conclusion is that if the slope of the restitution" €xcitable medium with any desired dependency of the
curve is steeper thar-1, a revolving pulse on a ring of réfractory period on DI. o ,
excitable tissue is unstable. By “the slope of the restitution _ N cardiac tissue the refractory period is proportional to
curve,” we mean the slope evaluated at thé Rbrrespond- APD,_ ie., the _refractory period and APD restitution curves
ing to this pulse. Note that the conditions for this instability &€ Similar. This is not the case for mod#),(15), as there
coincide with the conditions for instability of a pulse under tN€ change off(DI) affects the refractory period and does

AT=T(DI)I 0.5 15
=T( )nm). (15

periodic external forcing considered in Sec. I. not influence APD. Refractoriness is one of the most impor-
tant characteristics determining wave propagation in cardiac
IV. SPIRAL WAVES IN A TWO-DIMENSIONAL tissue. Therefore, if we want to study a characteristic of ex-
EXCITABLE MEDIUM WITH NEGATIVELY SLOPED citable medium described by moddl4) which is similar to
RESTITUTION CURVE the APD-refractoriness restitution of cardiac tissue, we need

In thi . dv h velv sloed . to study the restitution of the refractory period rather than the
n this section, we study how a negatively sloped resti- o g tion of APD. We define the refractory period as time

t“.“O” curve affect§ spiral waves dynamics na WO-5m the beginning of excitation until the time where the
dimensional2D) excitable medium. In Ref. 16 this problem variableg decreases below the valge=0.45, providede

was studied for two models qf the .exc[table medium: a cel—<0_1_ In order to stress that this refractory period is similar
lular automaton and a reaction diffusion model.

. . e . Here we, App studied in previous sections we denote it throughout
review with several modifications a part of this study regard- .« saction as APDr

ing the r_eaction-d_iffgsion model, in order to present a com- o merical modeling of Eq14), we used the explicit
prehen_swe descrl_ptlon of the effects of negative restitution INEuler method with Neumann boundary conditions and a rect-
an excitable medium. angular grid. Numerical integration was performed with a
A. Model and method of computation space stefh=0.6 and a time step;=0.03. The error in
these computations, estimated using the difference between
the numerically and analytically calculated velocities of
plane wave propagatiofi,was about 5%.
de d’e 9% To initiate the spiral wave, we used the initial data cor-
ot W+ ,9_y2_f(e)_g’ responding to a 2D broken wave front, or alternatively, an
(14) S, S, stimulation protocol, which is often used in experimen-
tal electrophysiolog¥® To find the average APDr and DI, we
first computed them at each point of the domain during sev-

We used a reaction-diffusion model of FitzHugh—
Nagumo type piecewise linear “Pushchino kinetics"”

a9
E—s(e—g),
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100— T
\ 100H—H—x—h»\
B —T
\\

5 I \\\\_________: 50 I"I\I__I\I - DI
CL RN, s
0—1.5 -1 -0.5 0
. S
00 DI 100 FIG. 5. DI and period of a spiral wave as a function of the slope of the

restitution curveS. The average values and standard deviations found for all

FIG. 4. Restitution curves and corresponding range of average DI. Restit RCINts of the domain and for 20 rotations of spiral wave.

tion curves were set up using E@.6) with S=0 (solid curve, S=—-0.7

(short-dashed curyeandS= — 1.4 (long-dashed curyeSpiral locations are

indicated by an inverted triangleSE0), a triangle 6= —0.7), and a dia-  spiral wave on the restitution cur(€ig. 4). We see that for

mond S=—1.4). slopes 0 and-0.7 the spiral is located at approximately the
same point, but for slope 1.40, it is considerably shifted to

. : . . the right.

eral rotations of a spiral wave and then determined their av- The complete dependency of average DIS(slope is

Summarized in Fig. 5. We see that f8r — 1, the DI remains

constant and independent 8f However, forS<—1 the DI

jumps to much higher values close to 50, which is the value

at which the obliqgue segment of the restitution curve ends.

B. Results We also see that fadB< — 1, DI has a larger standard devia-

First, we created a medium with a constant restitutiorfion- This reflects the nonstationarity of spiral wave rotation
curve by settingT=300 in Eq.(15) and initiated a spiral which we observe in_ this case. Figure 5 also shows the de-
wave in this medium. This spiral was rotating stably with Péndency of the period of spiral waves &nWe see that,
APDr=76 and DE20. Then, we generated a family of although the change of the period is minimal, in th_e region
piecewise linear restitution curves which all go through the?hereS<—1, we have a slight decrease of the period if the
point (APDr=76,DI=20), but have slopes at this point slope of the restitution curve becomes steeper. Note that.thls
ranging between 0 and 1.5. More precisely, we considered perled decrease occurs as the average Dl increases. This re-
the following family of functions T): sult is quite unexpected, as prolongation of DI usually results
in prolongation of the spiral period. This abnormal behavior
can, in our view, be interpreted by assuming a tendency of
the spiral wave to minimize its period. In a medium with
positively sloped restitution, this results in the selection of

T=const= 300+ SOSIn*E) for DI>50, (17) the smallest possible DI, which is determined by the excit-

0.45 ability of the mediun?! However, in a medium with nega-
where S is the parameter which modifies the slope of thetively sloped restitution curve, the minimal DI does not nec-
restitution curve for DE50. For DE>50, we putT = const to essarily mean the minimal period. In fact, for a stationary
mimic the effect of saturation of the restitution curve at longotating spiral, the dependency of period on DI can be writ-
DI. The numerically computed restitution curves for sich  t€n as the following functionP(DI) = APDr(DI) +DI. The
are shown in Fig. 4. We found that the numerically computedinimum of this function can be reached either at the point
slope of the restitution curve at the beginning of the negativé/here
interval of the curvdclose to DE50) was very close to the dpP d2p
theoretically predicted value (slopes), however for short ﬁ=0, DIz~ 0,

DI the slope was generally less negative than predicted, e.g.,
for S=0 the slope of the last part of the restitution curve wasor at an end point of the domain of this function. The deriva-
slightly positive. tive of this functiond P/dDI = dAPDr/dDI +1, and it is ob-

We see that all restitution curves closely follow theoreti- Viously positive if the slope of the restitution curve is less
cally predicted shapes and small deviations can only be seeiieep than-1. This means that if the slope is less steep than
at very short DIs. Because all restitution curves go through-1, the periodP is a monotonically increasing function of
the point APDE=76,DI=20, and we found a stationary spi- DI, and its minimum is at the smallest possible value of DI.
ral wave solution for flat restitution curve which shows only However, if the slope is steeper thanl, P becomes a de-
small variations of APDr and DI around this point, it is rea- creasing function of DI and the minimum is at the point
sonable to assume that a similar spiral wave solution exist¢/here
for aI_I s_Iopes of the restitution curve and its aver_ag_ed char-  4APDr d2APDr
acteristics are close to APBf76,DI=20. We have initiated o - -1, W> 0,
spiral waves for various values & with the restitution
curves given by Eq(16) and computed the location of the i.e., at the point where this slope equald.

variableg drops belowg=0.45 and ends at the moment of
excitation.

0.55
T:3OO+S(DI—20)In’1O—45 for DI<50, (16)

(18
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100 ~— parabolic restitution with a twofold increased coefficiéht
5 ~.‘T\ in Eq. (19). We see that the spiral completes many rotations
ar ' before an instability close to the core appddig. 7(a)] and
< , grows until it causes the fragmentation of the spiiaig.
00 DI 80 7(b)]. This process then spreads over the entire doffags.
7(c)=7(f)].
FIG. 6. Spiral in a medium with a parabolic restitution curgelid line). Thus, we conclude that in excitable media with nega-

Computations in a modefl4) with T given by Eq.(19), with R=1/6T, tively sloped restitution curve, there is a substantial change

:h53-2(;cgid cljiTﬁ)’w Th%:reﬁfé(?sst*i‘teﬂo'rﬁc ?Cglfe’tﬁf (C}";’“edT r':g‘?}t-i;(e in behavior of spiral waves if the slope of the restitution

ng\rNasged D‘IJ of a spiral wave iss irL:dicatel(Ji by a tsriangles. I\I/Ij!:dium size wasCUIVe becomes steeper tharl. Th(_a selection principle for

300x 300 elements. the DI then becomes that the spiral wave chooses a DI at
which the slope of the restitution curve is close-td, inde-
pendent of other parameters. We have also found spiral

The results shown in Fig. 5 are consistent with this ex-breakup if the rate of change of slope is sufficiently high.
planation: they show that the spiral wave selects a DI value
close to that corresponding to the minimal period for theV. DISCUSSION

give.n. restitution curve. Hoy\{ever, these computations are in- This paper discusses general effects of a negatively
suff|'C|e.nt as atest .Of condltlo(r18).becaus¢ the ;Iope of the sloped restitution curve on stability of wave propagation in
restitution curves given by E¢16) jumps dlscontlnuously a_t excitable media. The main conclusion is that instabilities oc-
DI=50 and takes on only_two value§ for each restitution,, ¢ e slope of the restitution curve is more negative than
curve. Therefore_, we StUd'ed. a medium whose_ restitution_y e manifestation of this instability is different from the
curve has a_contnjuously varying slope, by choosing the fOI'alternans instability which occurs if the slope of the restitu-
lowing functionT in Eq. (15): tion curve is positive and steeper than 1. In fact, under peri-
T=Rx*(T,—DI)?+150, DKT,, T=150, DE&T,. odic forcing, the negative slope restitution instability is asso-
(19 ciated with a saddle-node bifurcation, and results in a
We initiated a spiral wave in such a medium and found its pjmonotonic increase of APD, while the alternans instability is

(Fig. 6). We see that the spiral indeed chooses a DI close tgssociated with a supercritical flip bifurcation and results in
the point where the restitution curve has slopé (symbol APD osci_llations. F_or a pulse circulating in a ring of excit-
X). To obtain additional support for the hypothesis that in a2P!€ medium described by the delayed integral equasan
medium with negatively sloped restitution, the spiral wavenegative restitution msta'blll'ty. corresponds to an infinite di-
has a DI at which the slope of the restitution curve-is, we ~ Mensional bifurcatiorfas infinitely many roots of the char-
performed a series of computations with shifted restitutiorPCtEistic equation cross into the right half-plankinear
curves. We se€Fig. 6, the dashed and dotted linesat the analysis has also shown that the modes with the highest spa-

average DI is indeed close to the point where the slopéial frequency have the largest growth factors. The numerical
studies showed the similarity of this bifurcation with a sub-

critical Hopf bifurcation. In contrast, the alternans instability

sloped restitution curve studied in Fig. 6 is nonstationarygf:CurS ) V'?5 a supgrcrltlgal |nf|n|_te dlmen_S|on§1I Hopf
but it did not result in break-up. For restitution curves with ifurcation.” In two-dimensional excitable media with nega-

faster changing slope, however, break-up did occur. Figure yvely sloped restitution curve the breakup of spiral waves i;
shows the evolution of a spiral wave in a medium with N SOme way less pronounced than the breakup known in
media with positive restitution. The main difference is that in

media with negative restitution, breakup takes quite a long
time to develop(tens of rotations compared to just a few
rotations in the case of positive restitution cur¢@$his may
be a consequence of the effect found in this paper: shifting of
spiral DI to the region where the slope of the restitution
curve is—1. In fact, a slope of-1 is the value at which
instability first occurs and therefore the growth rate of the
instabilities is minimal, which may explain their slow devel-
opment. Quite differently, in media with positive restitution,
the shift of DI is absent and the spiral is usually located in
the region with slope much steeper thaff Which results in
faster growth of instabilities and faster breakup of spirals.
Still, the effect of DI shifting to the point where the
slope equals—-1 might in certain situations promote spiral
breakup. In fact, this shift should be observed not only for

equals—1.
The rotation of a spiral wave in media with negatively

FIG. 7. Spiral breakup for negatively sloped restitution. Computations in the

model (14), with the restitution curve given by Eq19 with R=1/3, restltutl.on'curves with everywhere' neQath_e S,IOpe,’ but also
To=53.2, after 25,34,44,53,63, and 204 spiral pericaedium size 800 for restitution curves whose slop_e is negative _Just in a small
% 800). interval. In such a case, the shift can potentially move the
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In conclusion. we have shown that the negatively SlopedgM' Wijffels, C. Kirchhof, R. Dorland, and M. A. Allessie, “Atrical fibril-
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restitution curve can result in various instabilities for periodi- o4t » Circulation92, 1954-19681995.
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propagation in excitable medium. These instabilities can be and mechanical restitution of the human heart at different rates of stimu-
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