
CHAOS VOLUME 12, NUMBER 3 SEPTEMBER 2002
Wave propagation in an excitable medium with a negatively sloped
restitution curve
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Recent experimental studies show that the restitution curve of cardiac tissue can have a negative
slope. We study how the negative slope of the restitution curve can influence basic processes in
excitable media, such as periodic forcing of an excitable cell, circulation of a pulse in a ring, and
spiral wave rotation in two dimensions. We show that negatively sloped restitution curve can result
in instabilities if the slope of the restitution curve is steeper than21 and report different
manifestations of this instability. ©2002 American Institute of Physics.
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Rotating spiral waves occur in a variety of nonlinear ex-
citable media. The appearance and multiplication of spi-
ral waves disturb the spatial organization of the medium
and may result in turbulent or chaotic behavior. If such a
regime occurs in cardiac tissue it causes cardiac fibrilla-
tion. One of the most studied instabilities which can re-
sult in breakup of spiral waves occurs if the restitution
curve of cardiac tissue, which relates the duration of car-
diac pulses to the recovery time between the pulses, has
slope of more than one. This instability has been studied
only in the case of a restitution curve with a positive
slope. Recent experimental studies showed the existenc
of restitution curves with a negative slope. It occurs in
cardiac tissue prone to atrial fibrillation. In this article,
we study the effects of a negatively sloped restitution
curve and the possible associated instabilities which can
occur in three different contexts: a periodically forced
excitable cell, circulation of a pulse in a ring of excitable
tissue, and a spiral wave rotating in two dimensions.

I. INTRODUCTION

Complicated spatiotemporal patterns play an import
role in excitable media of various types. If such patte
occur in cardiac tissue they cause cardiac fibrillation, wh
is one of the main causes of death in the industrializ
world.1 In many cases, complex spatiotemporal patterns a
as a result of some type of instability. The type of instabil
most studied today is the so-called alternans instability. T
instability may occur if one forces an excitable medium w
a sufficiently short period. In this case, instead of a perio
response with the same period as the stimulus, the dura
of successive action potentials begin to alternate~e.g., short–
long–short–long, etc.!. There is a simple criterion governin
the onset of alternans, based on the restitution curve of
tissue, which relates the action potential duration~APD! to

a!Electronic mail: a.v.panfilov@bio.uu.nl
8001054-1500/2002/12(3)/800/7/$19.00
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the diastolic interval. The diastolic interval~DI! is the time
that has elapsed between the end of the preceding ac
potential and the start of the next one. An alternans insta
ity can occur if the slope of the restitution curve is more th
one.2,3 In two-dimensional excitable media, an alternans
stability can cause spiral breakup: fragmentation of one
ral wave into a spatiotemporally chaotic pattern compris
many wavelets of various sizes.4–8 Spiral breakup is now one
of the most actively pursued candidates for the mechan
underlying onset of ventricular fibrillation.

The theory of restitution instability was developed a
suming that the slope of the restitution curve is always po
tive. This assumption is reasonable as it means that lon
recovery times lead to longer action potential durations
has been confirmed in numerous experimental studies. H
ever, it was shown recently that in some cases, the slop
the restitution curve can become negative as well. For
ample, it was shown that the restitution curve has a reg
with negative slope in remodeled atrial tissue, i.e., in tiss
which sustains chronic atrial fibrillation.9 It was also shown
that there is a small region with negative slope in the re
tution curve of normal human ventricular tissue.10,11 In spite
of the existence of negatively sloped restitution curves t
phenomenon has hardly been studied. In the only publis
paper in that area known to us,12 it was found that the addi-
tion of a nonmonotonic region to the restitution curve c
result in increased instability of the pulse rotating in a ring
the cardiac tissue. However, mechanisms underlying this
fect as well as the precise role of the nonmonotonicity in
loss of stability were not clear.

In this article, we study the effects of negatively slop
restitution in several contexts whose study lead to a g
understanding of the alternans instability: a periodica
forced excitable cell, circulation of a pulse in a ring, a
spiral wave rotation in two dimensions. Our main conclusi
is that negative restitution can induce instabilities if the slo
of the restitution curve is steeper than21.
© 2002 American Institute of Physics
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II. PERIODIC FORCING OF AN EXCITABLE SYSTEM

We start with a simple analysis. Consider stimulating
excitable cell with a constant periodT and denote the action
potential durations of the successive pulses as APDn and
their diastolic intervals as DIn . Because the period of stimu
lation is constant, APDn1DIn5T. The action potential du-
ration of the pulse APDn11 is determined by the previou
diastolic interval, or

APDn115 f ~DIn!5 f ~T2APDn!, ~1!

wheref stands for the restitution properties. The dynamics
this map can be easily studied. An equilibrium point of th
map corresponds to a periodic response of the excitable
dium. Such an equilibrium becomes unstable, however
soon asu d f /dDI u.1. The cased f /dDI.1 corresponds to
the alternans instability discussed in Refs. 2 and 3, the c
d f /dDI,21 corresponds to a new instability which is in
duced by negative restitution. Therefore, if the slope of
restitution curve becomes steeper than21, we can expect
instabilities in the excitable medium.

A useful graphical representation of possible dynam
in this case is shown in Fig. 1. The solid lines repres
restitution curves. In order to obtain the dynamics of map~1!
under periodic forcing one should draw a straight line AP
5T2DI and perform the well-known ‘‘cobwebbing’
method with respect to this line~similar to Refs. 2 and 13!.

Figure 1~a! shows an example of a restitution curve wi
everywhere negative slope. The dashed line represents
ing with one possible period. We see that, in this case,
map defined by Eq.~1! has a stable equilibriumB at a long
DI and an unstable equilibriumA at a short DI. We see tha
the solution perturbed from the stable equilibriumB returns
to it without oscillations~no alternans! and there is a basin o
attraction of this equilibrium: if one perturbs the system to
DI shorter than that given by pointA, the series of APDs
goes to infinity. If we decrease the period of forcing, t
dashed line shifts downward. As a result, the equilibriaA and
B approach each other and the basin of attraction of equ
rium B shrinks. Further decrease in the period of exter
forcing results in the disappearance of the equilibria via
saddle-node bifurcation at some period which correspond
the dot-dashed line in Fig. 1. The condition for the sadd
node bifurcation is given by the following pair of equation

dAPD~DI* !

dDI
521, ~2!

FIG. 1. Qualitative dynamics in an excitable medium with negatively slo
APD restitution. Points of intersection of the restitution curve~the solid line!
and the dashed and dotted linesa andb, defined by the relationship APD
5Ta,b2DI give the equilibria of map~1!.
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T5APD~DI* !1DI* , ~3!

where DI* is the equilibrium value of DI.
If the restitution curve is nonmonotonic and has regio

of negative as well as of positive slope@Fig. 1~b!#, map~1!
can have three equilibria: a stable equilibriumC, an unstable
equilibrium B, and an equilibriumA which can be either
stable or unstable. If both equilibriaA andC are stable, we
can obtain two different stable durations of the action pot
tial at the same forcing period. Note, however, that three
equilibria are possible only if the restitution curve has a
gion with slope steeper than21. As in the previous case
changing of the period of forcing results in disappearance
either equilibriaA and B or of equilibria B and C via a
saddle-node bifurcation.

Therefore, our conclusion is that periodic forcing of a
excitable medium with negatively sloped restitution cur
can result in instability if the slope of the restitution curve
steeper than21. In this case, the APD is not alternating b
monotonically increasing. Note, that if due to this instabil
the refractory period of cardiac tissue becomes longer t
the period of forcing, Wenckebach blocks14 can occur and
produce quite complex dynamics. These dynamics can
tentially be studied using map~1!.

In Sec. III we study the effects of negatively sloped re
titution curve on propagation of periodic waves: circulati
of excitation in a ring of excitable tissue with negative
sloped restitution.

III. CIRCULATION IN A RING

Consider a pulse circulating in a ring of excitable m
dium with negatively sloped restitution. If circulation is st
tionary, we can find its characteristics from the solution
the following:

L

c~DI* !
5APD~DI* !1DI* , ~4!

whereL is the length of the ring, andc(DI) is the dispersion
relation~dependency of the velocity on DI!, and APD~DI! is
the restitution of curve cardiac tissue.

The only difference between Eq.~1! and Eq.~4! is that
while the left-hand side of Eq.~1! is constant (T5const),
that of Eq.~4! is a function of DI:(L/@c(DI* )#).

We can easily find spatially uniform equilibria of Eq.~4!
using a graphical method similar to that of Fig. 1. For that,
in Fig. 1, we first need to draw the restitution curve. The
however, instead of drawing the straight lines APD5T
2DI, we need to draw the curves APD5 L/@c(DI) # 2DI.
Because in normal conditions velocityc is a monotonically
increasing function of DI, the dashed lines AP
5 L/@c(DI) # 2DI become curves and their slopes becom
steeper at small DI. Graphically, this means that these li
curve upwards from the straight dashed lines in Fig. 1. T
patterns presented in Fig. 1 will, however, remain the sa
qualitatively: For the monotonically decreasing restituti
curve from Fig. 1~a!, we can expect two equilibria, for th
nonmonotonic restitution curve from Fig. 1~b! we can expect
three equilibria, etc. These spatially uniform solutions w
also disappear via a bifurcation similar to the saddle-no

d
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802 Chaos, Vol. 12, No. 3, 2002 A. V. Panfilov and C. W. Zemlin
bifurcation shown in Fig. 1~a!. The following condition for
this bifurcation is, however, slightly different from Eq.~2!:

dAPD~DI* !

dDI
5212

L

c2~DI* !

dc~DI* !

dDI
. ~5!

Because@dc(DI* )#/dDI is assumed to be positive, b
furcation in this case occurs for slopes of the restitut
curve steeper than21.

Let us study the stability of these spatially uniform s
lutions. Our analysis of this problem uses the method de
oped in Ref. 15 with some modifications to account for t
negative slope of the restitution curve. Assume that we h
an excitatory pulse revolving in a ring of the length (L) and
that the velocity of the wave (c) and duration of the pulse
~APD! depend on DI only. Such a pulse can be described
the following delayed integral equation:

E
x2L

x ds

c~DI~s!!
5DI~x!1APD~DI~x2L !!, ~6!

wherex is the space coordinate along the ring. Equation~6!
basically equates the time of wave rotation around the rin
point x:*x2L

x (ds/@c(DI(s))#) to the sum of the diastolic in
terval and APD at this point: DI(x)1APD(DI(x2L)).

Assume that this equation has a spatially uniform so
tion, Eq. ~4!, corresponding to a steady traveling pulse
excitation. The stability of this solution can be found b
computing the growth factor,Q, of the perturbation

DI5DI* 1beQx/L, ~7!

which, after substitution of Eq.~7! into Eq. ~6!, yields the
following eigenvalue problem:15

eQ5
A1QB

A1Q
, ~8!

where

A5
L

c~DI* !2

dc

dDI
~DI* !, B52

dAPD

dDI
~DI* !.

We study this equation in the case of a negatively slo
restitution curve (B.0) and a normal dispersion curve (A
.0).

First, following Ref. 15, let us prove that if 0,B,1, the
real part ofQ cannot be positive and therefore the circulati
is stable. In fact, if we assume that Re(Q).0, then, on the
one hand, the modulus of the left-hand side of Eq.~8! is
greater than one (ueQu.1). On the other hand,uA1QBu
,uA1Qu and the right-hand side of Eq.~8! is less than 1.
Therefore, we have a contradiction which proves that fo
,B,1 the circulation of the pulse in the ring is stable.

Now, assumeB51. In that case we have infinitely man
roots of Eq.~8! with Re(Q)50, which are

Qk5 i2pk; k50,1,2,etc. ~9!

and a real rootQ52A, which for a normal dispersion curv
(A.0) is negative and cannot contribute to the instabilit

Now let us show that ifB.1, the pulse becomes un
stable. To do this, we find the dependency ofQk on B close
Downloaded 08 Oct 2002 to 157.193.55.192. Redistribution subject to AI
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to the pointB51. In this case, we can assume thatQk(B)
[ak(A,B)1 ibk(A,B) is a differentiable function ofA,B
and find its derivatives atB51:

]ak

]B
5

4p2k2

A214p2k2 ,
]bk

]B
5

2pAk

A214p2k2 , ~10!

]ak

]A
5

]bk

]A
50. ~11!

This yields the following linear approximations close toB
51 for the wavelengths of the perturbationsLk52pL/bk

and their incrementsak :

ak'
4p2k2~B21!

A214p2k2 , Lk'
L

k S 12
A~B21!

A214p2k2D . ~12!

We see thatak.0 if B.1, hence the pulse becomes unsta
if the slope of restitution curve becomes steeper than21 and
the growth rate of perturbations near the bifurcation is fas
for the perturbations with the shortest wavelengths.

To validate the results of these analytical computatio
we performed computations using Eq.~6! with

APD~DI!5a1
h

DI
, c~DI!5 j DI ~13!

and parameter valuesa510, h550, j 51. DI was assumed
to be non-negative. For such choice of functions, Eq.~6! has
just one positive spatially uniform equilibrium point forL
.50 ~solving L5DI* 2110DI* 150!, which becomes un-
stable forL,170.71. We set DI to this fixed point of Eq.~6!
everywhere in the ring and then imposed perturbations of
form DI5DI* (11A sin(kx)). Figure 2 compares the growt
factors of perturbations of different wave numbersk. Nu-
merical and analytical results match almost exactly.

What type of bifurcation do we have atB51 and what is
the direction of this bifurcation? Unfortunately, it was n
possible to perform a nonlinear analysis similar to Ref.
This is because, for roots~7! of the characteristic equatio
~8!, nonlinear amplitude terms in asymptotic expansions
Eq. ~6! disappear, which makes the problem highly degen
ate. Therefore, we studied the behavior of our system aro
the bifurcation point numerically using Eq.~6! with param-
eters as in Fig. 2. We have determined the basin of attrac
of the spatially uniform equilibrium point of this equatio

FIG. 2. Growth factors of perturbations with initial amplitudeA51024 in a
ring of the lengthL5168. Computations were done using Eq.~6! with
functions given in Eq.~13!, anda510, h550, j 51. Further explanations
are in the text.
P license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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803Chaos, Vol. 12, No. 3, 2002 Negative restitution
close to the bifurcation point atL5170.71. For this, we
added spatially uniform perturbations to the exact soluti
and checked whether the system returns to equilibrium~Fig.
3!. We see that the basin of attraction of the stable solu
decreases and becomes zero when we approach the bif
tion point. In all cases the solution becomes unstable with
alternans: we observe the successive elongation of APD
the pulse fails to propagate.

Thus, our conclusion is that if the slope of the restituti
curve is steeper than21, a revolving pulse on a ring o
excitable tissue is unstable. By ‘‘the slope of the restitut
curve,’’ we mean the slope evaluated at the DI* correspond-
ing to this pulse. Note that the conditions for this instabil
coincide with the conditions for instability of a pulse und
periodic external forcing considered in Sec. II.

IV. SPIRAL WAVES IN A TWO-DIMENSIONAL
EXCITABLE MEDIUM WITH NEGATIVELY SLOPED
RESTITUTION CURVE

In this section, we study how a negatively sloped re
tution curve affects spiral waves dynamics in a tw
dimensional~2D! excitable medium. In Ref. 16 this problem
was studied for two models of the excitable medium: a c
lular automaton and a reaction diffusion model. Here
review with several modifications a part of this study rega
ing the reaction-diffusion model, in order to present a co
prehensive description of the effects of negative restitution
an excitable medium.

A. Model and method of computation

We used a reaction-diffusion model of FitzHugh
Nagumo type piecewise linear ‘‘Pushchino kinetics:’’17

]e

]t
5

]2e

]x2 1
]2e

]y2 2 f ~e!2g,

~14!
]g

]t
5«~e2g!,

FIG. 3. Bifurcation diagram of spatially uniform solution for a pulse circ
lating in a ring of excitable tissue.L is the ring length, DI is the diastolic
interval, thin lines show the basin of attraction of the equilibrium~thick line,
solid for stable, dashed for unstable! with respect to spatially uniform per
turbations. See the text for further explanation.
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wheree is the transmembrane potential,g is the gate vari-
able, and« is a function which depends on other variabl
and will be specified later. In order to make the shape of
action potential as simple as possible, we used the follow
nonlinear function f (e):18 f (e)5 limC→` Ce when e,0,
f (e)52(e20.1) if 0<e<1, and f (e)5 limC→` C(e21)
whene.1. For this shape off (e), the excitation pulse has
plateau region ate51, the rest state ate50, and the shape o
the pulse is close to rectangular. To model the regions
infinite slope of functionf (e) numerically, we use theif
operators stating that if the variablee is above 1 it is set to 1,
and if e,0, it is set to 0. It was shown that this procedu
gives a sufficiently precise solution of Eq.~14! with f as
given previously.19 In our basic model« depended on the
variablee as follows:«50.067 if 0.1,e,0.99 and«50.1
for other values ofe. In order to describe a medium wit
negatively sloped restitution curve, we made the functio«
dependent on DI. We put 1/« 5T(DI) ~if 0.45<g<0.55 and
e,0.1!, whereT(DI) is the function which influences the
slope of the restitution curve and will be chosen later. In fa
if 0.45<g<0.55,e,0.1, the excitable medium is in the re
fractory state and the time interval during which the varia
g decreases fromg50.55 tog50.45 is given by

DT5T~DI!ln
0.55

0.45
. ~15!

Therefore, a change of DI results in a change of
refractory period which is proportional toT(DI) and by
choosing the functionT(DI) appropriately, we can construc
an excitable medium with any desired dependency of
refractory period on DI.

In cardiac tissue the refractory period is proportional
APD, i.e., the refractory period and APD restitution curv
are similar. This is not the case for model~14!,~15!, as there
the change ofT(DI) affects the refractory period and doe
not influence APD. Refractoriness is one of the most imp
tant characteristics determining wave propagation in card
tissue. Therefore, if we want to study a characteristic of
citable medium described by model~14! which is similar to
the APD-refractoriness restitution of cardiac tissue, we n
to study the restitution of the refractory period rather than
restitution of APD. We define the refractory period as tim
from the beginning of excitation until the time where th
variable g decreases below the valueg50.45, providede
,0.1. In order to stress that this refractory period is simi
to APD studied in previous sections we denote it through
this section as APDr.

For numerical modeling of Eq.~14!, we used the explicit
Euler method with Neumann boundary conditions and a re
angular grid. Numerical integration was performed with
space stephs50.6 and a time stepht50.03. The error in
these computations, estimated using the difference betw
the numerically and analytically calculated velocities
plane wave propagation,18 was about 5%.

To initiate the spiral wave, we used the initial data co
responding to a 2D broken wave front, or alternatively,
S1S2 stimulation protocol, which is often used in experime
tal electrophysiology.20 To find the average APDr and DI, w
first computed them at each point of the domain during s
P license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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eral rotations of a spiral wave and then determined their
erage. We define the diastolic interval to begin when
variableg drops belowg50.45 and ends at the moment
excitation.

B. Results

First, we created a medium with a constant restitut
curve by settingT5300 in Eq. ~15! and initiated a spiral
wave in this medium. This spiral was rotating stably w
APDr576 and DI520. Then, we generated a family o
piecewise linear restitution curves which all go through
point (APDr576,DI520), but have slopes at this poin
ranging between 0 and21.5. More precisely, we considere
the following family of functions (T):

T53001S~DI220!ln21
0.55

0.45
for DI<50, ~16!

T5const5300130S ln21
0.55

0.45
for DI.50, ~17!

where S is the parameter which modifies the slope of t
restitution curve for DI<50. For DI.50, we putT5const to
mimic the effect of saturation of the restitution curve at lo
DI. The numerically computed restitution curves for suchT
are shown in Fig. 4. We found that the numerically compu
slope of the restitution curve at the beginning of the nega
interval of the curve~close to DI550! was very close to the
theoretically predicted value (slope5S), however for short
DI the slope was generally less negative than predicted,
for S50 the slope of the last part of the restitution curve w
slightly positive.

We see that all restitution curves closely follow theore
cally predicted shapes and small deviations can only be s
at very short DIs. Because all restitution curves go throu
the point APDr576,DI520, and we found a stationary sp
ral wave solution for flat restitution curve which shows on
small variations of APDr and DI around this point, it is re
sonable to assume that a similar spiral wave solution ex
for all slopes of the restitution curve and its averaged ch
acteristics are close to APDr576,DI520. We have initiated
spiral waves for various values ofS with the restitution
curves given by Eq.~16! and computed the location of th

FIG. 4. Restitution curves and corresponding range of average DI. Res
tion curves were set up using Eq.~16! with S50 ~solid curve!, S520.7
~short-dashed curve!, andS521.4 ~long-dashed curve!. Spiral locations are
indicated by an inverted triangle (S50), a triangle (S520.7), and a dia-
mond (S521.4).
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spiral wave on the restitution curve~Fig. 4!. We see that for
slopes 0 and20.7 the spiral is located at approximately th
same point, but for slope21.40, it is considerably shifted to
the right.

The complete dependency of average DI onS ~slope! is
summarized in Fig. 5. We see that forS.21, the DI remains
constant and independent ofS. However, forS,21 the DI
jumps to much higher values close to 50, which is the va
at which the oblique segment of the restitution curve en
We also see that forS,21, DI has a larger standard devia
tion. This reflects the nonstationarity of spiral wave rotati
which we observe in this case. Figure 5 also shows the
pendency of the period of spiral waves onS. We see that,
although the change of the period is minimal, in the reg
whereS,21, we have a slight decrease of the period if t
slope of the restitution curve becomes steeper. Note that
period decrease occurs as the average DI increases. Th
sult is quite unexpected, as prolongation of DI usually resu
in prolongation of the spiral period. This abnormal behav
can, in our view, be interpreted by assuming a tendency
the spiral wave to minimize its period. In a medium wi
positively sloped restitution, this results in the selection
the smallest possible DI, which is determined by the ex
ability of the medium.21 However, in a medium with nega
tively sloped restitution curve, the minimal DI does not ne
essarily mean the minimal period. In fact, for a stationa
rotating spiral, the dependency of period on DI can be w
ten as the following function:P(DI) 5APDr(DI)1DI. The
minimum of this function can be reached either at the po
where

dP

dDI
50,

d2P

dDI2.0,

or at an end point of the domain of this function. The deriv
tive of this functiondP/dDI 5 dAPDr/dDI 11, and it is ob-
viously positive if the slope of the restitution curve is le
steep than21. This means that if the slope is less steep th
21, the periodP is a monotonically increasing function o
DI, and its minimum is at the smallest possible value of D
However, if the slope is steeper than21, P becomes a de-
creasing function of DI and the minimum is at the poi
where

dAPDr

dDI
521,

d2APDr

dDI2 .0, ~18!

i.e., at the point where this slope equals21.

u-

FIG. 5. DI and period of a spiral wave as a function of the slope of
restitution curveS. The average values and standard deviations found fo
points of the domain and for 20 rotations of spiral wave.
P license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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The results shown in Fig. 5 are consistent with this e
planation: they show that the spiral wave selects a DI va
close to that corresponding to the minimal period for t
given restitution curve. However, these computations are
sufficient as a test of condition~18! because the slope of th
restitution curves given by Eq.~16! jumps discontinuously a
DI550 and takes on only two values for each restitut
curve. Therefore, we studied a medium whose restitu
curve has a continuously varying slope, by choosing the
lowing functionT in Eq. ~15!:

T5R* ~T02DI!21150, DI,T0 , T5150, DI>T0 .
~19!

We initiated a spiral wave in such a medium and found its
~Fig. 6!. We see that the spiral indeed chooses a DI clos
the point where the restitution curve has slope21 ~symbol
X!. To obtain additional support for the hypothesis that in
medium with negatively sloped restitution, the spiral wa
has a DI at which the slope of the restitution curve is21, we
performed a series of computations with shifted restitut
curves. We see~Fig. 6, the dashed and dotted lines! that the
average DI is indeed close to the point where the sl
equals21.

The rotation of a spiral wave in media with negative
sloped restitution curve studied in Fig. 6 is nonstationa
but it did not result in break-up. For restitution curves w
faster changing slope, however, break-up did occur. Figu
shows the evolution of a spiral wave in a medium w

FIG. 6. Spiral in a medium with a parabolic restitution curve~solid line!.
Computations in a model~14! with T given by Eq.~19!, with R51/6,T0

553.2 ~solid line!, T0563.2 ~dashed line!, and T0533.2 ~dotted line!. X
shows the point where the restitution curve has the slope21. The time
averaged DI of a spiral wave is indicated by a triangle. Medium size
3003300 elements.

FIG. 7. Spiral breakup for negatively sloped restitution. Computations in
model ~14!, with the restitution curve given by Eq.~19! with R51/3,
T0553.2, after 25,34,44,53,63, and 204 spiral periods~medium size 800
3800!.
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parabolic restitution with a twofold increased coefficientR
in Eq. ~19!. We see that the spiral completes many rotatio
before an instability close to the core appears@Fig. 7~a!# and
grows until it causes the fragmentation of the spiral@Fig.
7~b!#. This process then spreads over the entire domain@Figs.
7~c!–7~f!#.

Thus, we conclude that in excitable media with neg
tively sloped restitution curve, there is a substantial cha
in behavior of spiral waves if the slope of the restitutio
curve becomes steeper than21. The selection principle for
the DI then becomes that the spiral wave chooses a D
which the slope of the restitution curve is close to21, inde-
pendent of other parameters. We have also found sp
breakup if the rate of change of slope is sufficiently high

V. DISCUSSION

This paper discusses general effects of a negativ
sloped restitution curve on stability of wave propagation
excitable media. The main conclusion is that instabilities
cur if the slope of the restitution curve is more negative th
21. The manifestation of this instability is different from th
alternans instability which occurs if the slope of the resti
tion curve is positive and steeper than 1. In fact, under p
odic forcing, the negative slope restitution instability is ass
ciated with a saddle-node bifurcation, and results in
monotonic increase of APD, while the alternans instability
associated with a supercritical flip bifurcation and results
APD oscillations. For a pulse circulating in a ring of exc
able medium described by the delayed integral equation~6!,
negative restitution instability corresponds to an infinite
mensional bifurcation~as infinitely many roots of the char
acteristic equation cross into the right half-plane!. Linear
analysis has also shown that the modes with the highest
tial frequency have the largest growth factors. The numer
studies showed the similarity of this bifurcation with a su
critical Hopf bifurcation. In contrast, the alternans instabil
occurs via a supercritical infinite dimensional Ho
bifurcation.15 In two-dimensional excitable media with neg
tively sloped restitution curve the breakup of spiral waves
in some way less pronounced than the breakup known
media with positive restitution. The main difference is that
media with negative restitution, breakup takes quite a lo
time to develop~tens of rotations!, compared to just a few
rotations in the case of positive restitution curves.22 This may
be a consequence of the effect found in this paper: shifting
spiral DI to the region where the slope of the restituti
curve is 21. In fact, a slope of21 is the value at which
instability first occurs and therefore the growth rate of t
instabilities is minimal, which may explain their slow deve
opment. Quite differently, in media with positive restitutio
the shift of DI is absent and the spiral is usually located
the region with slope much steeper than 1,23 which results in
faster growth of instabilities and faster breakup of spirals

Still, the effect of DI shifting to the point where th
slope equals21 might in certain situations promote spir
breakup. In fact, this shift should be observed not only
restitution curves with everywhere negative slope, but a
for restitution curves whose slope is negative just in a sm
interval. In such a case, the shift can potentially move
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spiral from the region where breakup is absent to the reg
of slope21 where breakup is possible.

In conclusion, we have shown that the negatively slop
restitution curve can result in various instabilities for perio
cally forced systems and for one- and two-dimensional w
propagation in excitable medium. These instabilities can
expected if the slope of the restitution curve is more nega
than21.
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