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     Abstract - This paper introduces the application of particle 
swarm optimization techniques to generalized adaptive nonlinear 
and recursive filter structures.  Particle swarm optimization 
(PSO) is a population based optimization algorithm, similar to 
the genetic algorithm (GA), that performs a structured 
randomized search of an unknown parameter space by 
manipulating a population of parameter estimates to converge on 
a suitable solution.  These types of structured stochastic search 
techniques are independent of the adaptive filter structure and 
are capable of converging on the global solution for multimodal 
optimization problems, which makes them especially useful for 
optimizing nonlinear and infinite impulse response (IIR) 
adaptive filters.  This paper outlines PSO for adaptive filtering 
and provides a comparison to the GA for various IIR and 
nonlinear filter structures.     
 

1. INTRODUCTION 
 

It is well known that many systems employing adaptive 
signal processing, such those used in as communications, 
speech recognition, bio-systems, acoustics, etc. are recursive 
or nonlinear in nature and would greatly benefit from 
implementing IIR or nonlinear adaptive processing.  The 
prime obstacle impeding the development of IIR and nonlinear 
adaptive processing is the lack of practical, efficient, and 
robust global optimization algorithms.  This paper introduces 
a novel algorithm named particle swarm optimization (PSO) 
for nonlinear and IIR adaptive filtering.  PSO is a population 
based search similar to the genetic algorithm (GA).  But, 
unlike the GA, PSO has yet to emerge in adaptive filtering 
literature.  Population based algorithms, such as PSO and the 
GA, are envisioned to receive increasing attention as parallel 
computing technology continues to progress to the forefront of 
information processing.  As will be shown, PSO demonstrates 
several advantages over other global optimization algorithms 
for IIR and nonlinear adaptive filtering.   
 
1.1 Preliminaries 

For adaptive filtering problems such as system 
identification shown in Figure 1, the adaptive filter (AF) 
attempts to iteratively determine an optimal model for the 
unknown system (PLANT) based on some function of the 
error between the output of the AF and the output of the plant.  
The optimal model or solution is attained when this function 
of the error is minimized.   

In cases where the unknown plant is nonlinear or contains 
feedback, a simple FIR adaptive filter of reasonable length 
may not be sufficient to provide an adequate model of the 
system. In these cases, it is only natural to model the unknown 
system using an IIR or nonlinear adaptive filter such as a 
neural network or polynomial filter.   

 
 
 
 

 
 
 
 
 
 

Fig. 1. Adaptive System Identification Configuration  
 

The drawback to IIR and nonlinear adaptive filter 
structures is that they produce error surfaces that inherently 
tend to be multimodal.  When the error surface is multimodal, 
local optimization techniques that work well for FIR adaptive 
filters, such as versions of gradient descent (GD) including the 
Least Mean Squares (LMS) algorithm and backpropagation 
for neural networks, are not suitable because they are likely to 
get trapped in the local minimum and never converge to the 
global optimum.   

 
1.2 Global Optimization Approaches to Adaptive Filtering 

Whereas the gradient approaches rely on the AF structure 
to update the filter parameters, a structure independent global 
optimization approach is a structured stochastic search of the 
error space.  In structure independent optimization, a gradient 
is not calculated and the structure of the AF does not directly 
influence the parameter updates – aside from the error 
computation.  Due to this property, these types of algorithms 
are capable of globally optimizing any class of adaptive filter 
structures or objective functions by assigning the parameter 
estimates to represent filter tap weights, neural network 
weights, and even exponents of polynomial terms in the model 
of an unknown system.  There are several different structured 
stochastic search approaches in the adaptive filtering 
literature, most notably simulated annealing (SA) [4] and 
evolutionary algorithms such as the genetic algorithm (GA) 
[4,5,7,8,9].  
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2. PARTICLE SWARM OPTIMIZATION 
 

Particle swarm optimization was first developed in 1995 
by Eberhart and Kennedy [3], rooted on the notion of swarm 
intelligence of insects, birds, etc.  It has previously been 
presented as a batch processing type algorithm for numerical 
optimization, but, as will be shown, can be modified to 
operate iteratively on windowed input data for on-line 
adaptation. 

Similar to the GA, PSO begins with a random population 
of individuals; here termed a swarm of particles.  As with the 
GA, each particle in the swarm is a different possible set of 
the unknown parameters to be optimized.  Each particle 
represents a point in the solution space that has a relative 
fitness determined by evaluating the parameters with respect 
to a predetermined fitness function that has an extremum at 
the desired optimal solution. As with the GA, the parameters 
can be real-valued or encoded depending on the particular 
circumstances.  The goal is to efficiently search the solution 
space by swarming the particles toward the best fit solution 
encountered in previous iterations with the intent of 
encountering better solutions through the course of the 
process, eventually converging on a single minimum error 
solution.  The difference between PSO and the GA is in the 
method that the population is manipulated and the space is 
searched.   

The standard PSO algorithm begins by initializing a 
random swarm of M particles (an adequate M is dependent on 
the dimensionality of the problem), each having R unknown 
parameters to be optimized.  Unless there is prior knowledge 
about the parameter space, the initial particles are typically 
distributed uniformly about the space to facilitate a global 
search.  At each iteration, the fitness of each particle is 
evaluated according to the selected fitness function.  The 
algorithm stores and progressively replaces the most fit 
parameters of each particle (pbesti, i=1,2,...,M) as well as a 
single most fit particle (gbest) as better fit parameters are 
encountered.  The parameters of each particle (pi) in the 
swarm are updated at each iteration (n) according to the 
following equations: 
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)(nveli =velocity vector of particle i             
er=random values ∈  (0,1) 
acc1=acceleration coefficient toward gbest 
acc2=acceleration coefficient toward pbesti 
w=inertia weight 

 
It can be gathered from the update equations that the 

trajectory of each particle is influenced in a direction 
determined by the previous velocity and the location of gbest 
and pbesti.  The acceleration constants are typically chosen in 

the range 0-1 and serve dual purposes in the algorithm.  For 
one, they control the relative influence toward gbest and pbesti 
respectively by scaling each resulting distance vector, as 
illustrated for a 2-dimensional case in Figure 2.  Secondly, the 
two acceleration coefficients combined form what is 
analogous to the step size of an adaptive algorithm.  Selecting 
each coefficient to be relatively small will produce fine 
searches of a region, while larger coefficients will give a 
lesser search and faster convergence.  The random ei vectors 
have R different components, which are randomly chosen in 
the range 0-1.  This allows the particle to take constrained 
randomly directed steps in a bounded region between gbest 
and pbesti, as shown in Figure 2.   

 
 

Fig. 2. Example of the scaling and random direction bounds for the vectors 
 

The random ei components are typically selected using a 
uniform distribution to provide a high degree randomness to 
the search, but can be assigned a distribution with a greater 
density near 1 for a faster, more direct search.  The inertia 
weight controls the influence of the previous velocity.  It is 
typically set to decay from 1 to 0 during some adequate 
interval in order to allow the algorithm to converge on gbest.  
A single particle update is graphically illustrated in two 
dimensions in Figure 3.  The new particle coordinates can lie 
anywhere within the bounded region, depending upon the 
weights and random components associated with each vector.  
The particle update bounds in Figure 3 are basically composed 
of all of the bounded regions for each vector as shown in 
Figure 2, with the addition of the non-random velocity 
component. 

 
 

Fig. 3. Example of the possible search region for a single particle  
 
When a new gbest is encountered during the update 

process, all other particles begin to swarm toward the new 
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gbest, continuing the directed global search along the way.  
The search regions continue to decrease as new pbestis are 
found within the search regions.  When all of the particles in 
the swarm have converged to gbest or a suitable minimum 
error condition is met, the gbest parameters characterize the 
minimum error solution determined by the algorithm.  

 
2.1 PSO for Adaptive Filtering 

Commonly in numerical optimization problems, the 
particle fitness is evaluated at each iteration using the entire 
input data.  In typical on-line adaptive filtering problems, the 
entire input data is not available or is too lengthy to process in 
an efficient manner.  Therefore, the input data must be 
processed and evaluated in blocks.  In this case, at each 
iteration, the fitness or cost function will only provide an 
estimate of the actual error due to the entire input data.  The 
quality of this estimate is dependent on the statistical nature of 
the input data and can be improved by averaging the error 
estimates over a window of previous input data. 

 In adaptive filtering, the mean squared error (MSE) 
between the output of the unknown system and the output of 
the AF is the typical cost function, and will hence be used for 
the fitness evaluation of each particle in the on-line form of 
PSO.  For an adaptive system identification configuration as 
shown in Figure 1, the windowed MSE cost function is as 
follows: 

 

)](),(),...,2(),1([)(

))()((1)(

,

0

2
,

npLknxknxknxfny

nyknd
N

nJ

iik

N

k
iki

−−−−−−=









−−= ∑

=
 

 
where f is a nonlinear operator, N is the length of the window 
over which the error is averaged, and L is the amount of delay 
in the filter.  The AF output yk(n) may also be a function of 
past values of itself if it contains feedback, or also a function 
of intermediate variables if the AF has a cascaded structure. 
When J(n) is minimum, the AF parameters provide the best 
possible representation of the unknown system.   
 
2.2 Modifications and Variations 

PSO, in its most simplistic form described previously, can 
be made more efficient.  In order to improve the efficiency of 
PSO, its weaknesses must be recognized.  The following are a 
few of the concerns with standard PSO: 

 
1) When a particle is found to be the new gbest of the swarm, 

all of the other particles begin to move toward it.  If the 
new gbest particle is an outlying particle with respect to 
the swarm, the rest of the swarm can tend to move toward 
the new gbest from the same general direction.  This may 
potentially leave some critical region around the new 
minimum excluded from the search.      

 
2) Particles closer to gbest will tend to quickly converge on it 

and become stagnant while the other more distant particles 
continue to search.  A stagnant particle is essentially 

useless because its fitness continues to be evaluated but it 
no longer aids the search. 

 
3) The initial stages of the algorithm tend to give a broad 

search where key points can be missed because the 
individual search regions typically decrease in size rather 
quickly as new bests are found.  If gbest is at a local 
minimum and continues to be after sufficient iterations, 
which would likely be caused by an inadequate swarm size 
or large initial acceleration, the swarm can undesirably 
converge on the local minimum. 

 
4) To a lesser extent, the efficiency of the algorithm may be 

improved because particles closer to gbest may have 
already searched nearly the same region as more distant 
particles, which can be unnecessarily redundant. 

 
These four concerns can be effectively combated with the 
following simple modifications: 
 
1) When a new gbest is encountered, random particles can be 

re-randomized about the new gbest.  This will act to ensure 
that the region around gbest is searched from all directions, 
while still keeping a portion of the swarm searching 
somewhat globally. 

 
2) Stagnancy of particles can be eliminated by slightly varying 

the random parameters of each particle at every iteration, 
similar to mutation in the GA.  This will have little effect 
on particles distant from gbest because this random 
influence should be relatively small compared to the 
random update of equation (1).  However, this will 
eliminate any stagnant particles and generate a finer search 
about gbest. 

 
3) The issue of premature convergence on a local minimum is 

occasionally inevitable, depending on the characteristics of 
the error surface or other constraints, but its likelihood can 
be decreased by continually re-randomizing a random 
portion of the particles over the entire parameter space and 
allowing them to converge.  This will in effect continually 
generate unique search paths, which can increase the 
probability of finding the global optimum.  This 
continuous probing of the space is also beneficial for 
tracking a non-stationary input or dynamic plant. 

Another alternative to better facilitate the search 
includes swarming particles toward centers of mass 
defined by groups of particles or previous bests rather than 
a single point, or using multiple sub-swarms that swarm 
toward separate centers.  These two modifications can add 
more diversity and better distribute the swarm, decreasing 
the likelihood of converging on a local minimum.   

 
4) The re-randomization procedures described previously can 

be planned such that the space is searched more efficiently 
and redundancy is kept to a minimum.  One technique for 
accomplishing this is to re-randomize according to an 
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appropriate distribution.  By the nature of the algorithm, 
the region close to the gbest is more efficiently searched 
because the density of the particles has been greatest in 
that region by the time of convergence.  It may be 
unnecessarily redundant to uniformly redistribute some of 
the particles around gbest or the entire space, because all 
particles will traverse the inner perimeter eventually.  Re-
randomizing with a distribution that is sparse about gbest 
would be more effective in terms of reducing unnecessary 
redundancy. 

 
In order to ensure convergence of the swarm, the variance 

of the mutation and selected re-randomization distributions 
must decrease according to some schedule.  A reasonable 
variance decay curve, shown in Figure 4, is given in equation 
(5). 

 
 
 
 
 
 
 
 
 

Fig. 4. Variance schedule  
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M: transition midpoint 

S: transition slope adjustment 
 
This schedule specifies a wide search (large variance) 

initially, and then decays toward a finer search (small 
variance) at a suitable interval after which the space is 
presumed to be searched sufficiently.  The slope of the 
transition region and search intervals can be tuned for the 
specific problem.  This schedule may also be applied to the 
acceleration coefficients to further tune the search.  The re-
randomization and acceleration schedules can be coordinated 
to optimize the convergence speed and search efficiency.  

If the dimensionality of the problem becomes an issue, 
another variation is to separate the filter parameters into 
multiple independent swarms that will each search a lower 
dimensional space.  This can potentially lead to better 
convergence properties if the parameters designated to each 
swarm can be de-coupled.    

 
3. SIMULATION EXAMPLES 

 
In the following simulations, the properties of PSO and a 

modified version of PSO (MPSO) are compared to the GA for 
several system identification problems.  All adaptive filters are 
matched in order and structure to the unknown plant.  All 
algorithms were initialized with the same population of real-
valued parameters and allowed to evolve.  Each algorithm was 
tuned such that the population converged before the last 

iteration.  The population sizes and algorithm parameters were 
chosen to experimentally provide the best results for each 
case.  Each plot in Figures 5 and 6 shows the MSE averaged 
over 50 trials.  The specifics of each algorithm are as follows: 

 
PSO: The standard PSO algorithm is implemented with both 
acceleration constants weighted equally.  The acceleration 
constant was chosen to give a reasonable balance between the 
search quality and convergence speed for each case. 
 
MPSO: The modified PSO algorithm uses the standard PSO 
algorithm as a base, implementing the four modifications 
suggested earlier. As with standard PSO, both acceleration 
constants are weighted equally, using the same values as PSO.  
The mutations are randomly selected uniformly, with the 
variance decreasing according to Figure 4 to ensure 
convergence of the population.  The variances of the re-
randomization distributions also follow Figure 4.  The re-
randomization is sparsely distributed near gbest. 
 
GA: The genetic algorithm uses the most fit half of the 
population to generate offspring, which replace the least fit 
half of the population.  A crossover rate of 0.5 and a mutation 
rate of 0.25 are used for the evolution.  The mutations are 
randomly selected uniformly, with the variance decreasing 
according to Figure 4 to aid the convergence of the 
population. 
 
3.3.1 IIR Plant 

For this example, the plant is a second order IIR filter 
taken from [9].  The algorithms are set to learn the five filter 
coefficients given in equation (7).  A population of 50 was 
used and the acceleration constants of PSO and MPSO were 
selected to be 0.8. 
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Fig. 5. Second-order IIR Plant 
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3.3.2 Polynomial Filter 
This example illustrates how PSO can simultaneously 

update coefficients as well as exponential terms.  The output 
of an FIR filter (equation (8)) is passed through a polynomial 
nonlinearity (equation (9)) to produce the desired training 
signal d(n).  The AF filter is set to learn the four weighting 
coefficients, as well as the two exponential terms (equations 
(10) & (11)).  A population of 100 was used and the 
acceleration constants of PSO and MPSO were selected to be 
0.3. 
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Fig. 6. Polynomial Filter 

4. DISCUSSION 

From Figures 5 and 6, standard PSO exhibits a fast 
convergence initially, but fails to improve because the swarm 
quickly becomes stagnant and converges to a suboptimal 
solution.  The MPSO particles are not allowed to stagnate, 
which enables the algorithm to surpass both PSO and the GA.  
MPSO displays a much faster convergence compared to the 
GA because the GA doesn’t have an explicit step size and 
must evolve at its own rate.   

Because the computational complexity of these algorithms 
increases proportionally with the population size, it is 
desirable to work with smaller populations when possible.  For 
the GA, when the population size is relatively small, 
parameters that exhibit less sensitivity with respect to the error 

surface can be purged from the population (through selection 
and crossover) in the initial stages of the algorithm.  This can 
greatly reduce the population diversity, leading to an inferior 
solution.  Similar purging is evident in the IIR case because 
the numerator coefficients will to have a greater influence on 
the error in the initial stages of the updates.  This does not 
occur in PSO due to the prescribed particle memories, which 
is one of the reasons that MPSO results in a lower minimum 
MSE in Figure 5.  Similarly, for the polynomial plant results 
in Figure 6, the relative parameter sensitivities are increased 
by the introduction of the exponential terms.  This creates an 
error surface fraught with local minima within regions 
exhibiting comparatively low error values.  Again, the PSO 
swarm remains more resilient, motivating the hypothesis that 
PSO will continue to be more effective as the population size 
decreases.   

By examining the most basic form of each algorithm, PSO 
seems to demonstrate a more objective direction, or controlled 
randomness than the GA.  PSO particles take directed steps 
within well defined bounded regions, whereas the GA updates 
are less directed and possibly more redundant, which can 
adversely effect the convergence rate.  The PSO algorithm 
eliminates some potential search redundancy by retaining the 
previous particle bests and velocities.   

The aforementioned properties of PSO make it easier to 
visualize and predict the search process.  This, in turn, 
provides a more objective plan to assigning the search 
parameters such as accelerations and the inertia weight.  
Conversely, the search parameter assignments of the GA 
(mutation, crossover, etc.) are more heuristic.  Another 
advantage of PSO is that the convergence of the search can be 
more readily controlled via the acceleration coefficients, 
which are not present in the GA.  Because of this, the 
convergence rate of PSO can be tuned to be significantly 
faster than the GA, especially as the dimensionality of the 
space increases.  This property of PSO makes it better suited 
for on-line adaptive filtering problems. 
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