

Adaptive Filtering Via
Particle Swarm Optimization

D. J. Krusienski and W. K. Jenkins
Department of Electrical Engineering

The Pennsylvania State University
University Park, PA

 Abstract - This paper introduces the application of particle
swarm optimization techniques to generalized adaptive nonlinear
and recursive filter structures. Particle swarm optimization
(PSO) is a population based optimization algorithm, similar to
the genetic algorithm (GA), that performs a structured
randomized search of an unknown parameter space by
manipulating a population of parameter estimates to converge on
a suitable solution. These types of structured stochastic search
techniques are independent of the adaptive filter structure and
are capable of converging on the global solution for multimodal
optimization problems, which makes them especially useful for
optimizing nonlinear and infinite impulse response (IIR)
adaptive filters. This paper outlines PSO for adaptive filtering
and provides a comparison to the GA for various IIR and
nonlinear filter structures.

1. INTRODUCTION

It is well known that many systems employing adaptive
signal processing, such those used in as communications,
speech recognition, bio-systems, acoustics, etc. are recursive
or nonlinear in nature and would greatly benefit from
implementing IIR or nonlinear adaptive processing. The
prime obstacle impeding the development of IIR and nonlinear
adaptive processing is the lack of practical, efficient, and
robust global optimization algorithms. This paper introduces
a novel algorithm named particle swarm optimization (PSO)
for nonlinear and IIR adaptive filtering. PSO is a population
based search similar to the genetic algorithm (GA). But,
unlike the GA, PSO has yet to emerge in adaptive filtering
literature. Population based algorithms, such as PSO and the
GA, are envisioned to receive increasing attention as parallel
computing technology continues to progress to the forefront of
information processing. As will be shown, PSO demonstrates
several advantages over other global optimization algorithms
for IIR and nonlinear adaptive filtering.

1.1 Preliminaries

For adaptive filtering problems such as system
identification shown in Figure 1, the adaptive filter (AF)
attempts to iteratively determine an optimal model for the
unknown system (PLANT) based on some function of the
error between the output of the AF and the output of the plant.
The optimal model or solution is attained when this function
of the error is minimized.

In cases where the unknown plant is nonlinear or contains
feedback, a simple FIR adaptive filter of reasonable length
may not be sufficient to provide an adequate model of the
system. In these cases, it is only natural to model the unknown
system using an IIR or nonlinear adaptive filter such as a
neural network or polynomial filter.

Fig. 1. Adaptive System Identification Configuration

The drawback to IIR and nonlinear adaptive filter
structures is that they produce error surfaces that inherently
tend to be multimodal. When the error surface is multimodal,
local optimization techniques that work well for FIR adaptive
filters, such as versions of gradient descent (GD) including the
Least Mean Squares (LMS) algorithm and backpropagation
for neural networks, are not suitable because they are likely to
get trapped in the local minimum and never converge to the
global optimum.

1.2 Global Optimization Approaches to Adaptive Filtering

Whereas the gradient approaches rely on the AF structure
to update the filter parameters, a structure independent global
optimization approach is a structured stochastic search of the
error space. In structure independent optimization, a gradient
is not calculated and the structure of the AF does not directly
influence the parameter updates – aside from the error
computation. Due to this property, these types of algorithms
are capable of globally optimizing any class of adaptive filter
structures or objective functions by assigning the parameter
estimates to represent filter tap weights, neural network
weights, and even exponents of polynomial terms in the model
of an unknown system. There are several different structured
stochastic search approaches in the adaptive filtering
literature, most notably simulated annealing (SA) [4] and
evolutionary algorithms such as the genetic algorithm (GA)
[4,5,7,8,9].

5710-7803-8104-1/03/$17.00 ©2003 IEEE

2. PARTICLE SWARM OPTIMIZATION

Particle swarm optimization was first developed in 1995
by Eberhart and Kennedy [3], rooted on the notion of swarm
intelligence of insects, birds, etc. It has previously been
presented as a batch processing type algorithm for numerical
optimization, but, as will be shown, can be modified to
operate iteratively on windowed input data for on-line
adaptation.

Similar to the GA, PSO begins with a random population
of individuals; here termed a swarm of particles. As with the
GA, each particle in the swarm is a different possible set of
the unknown parameters to be optimized. Each particle
represents a point in the solution space that has a relative
fitness determined by evaluating the parameters with respect
to a predetermined fitness function that has an extremum at
the desired optimal solution. As with the GA, the parameters
can be real-valued or encoded depending on the particular
circumstances. The goal is to efficiently search the solution
space by swarming the particles toward the best fit solution
encountered in previous iterations with the intent of
encountering better solutions through the course of the
process, eventually converging on a single minimum error
solution. The difference between PSO and the GA is in the
method that the population is manipulated and the space is
searched.

The standard PSO algorithm begins by initializing a
random swarm of M particles (an adequate M is dependent on
the dimensionality of the problem), each having R unknown
parameters to be optimized. Unless there is prior knowledge
about the parameter space, the initial particles are typically
distributed uniformly about the space to facilitate a global
search. At each iteration, the fitness of each particle is
evaluated according to the selected fitness function. The
algorithm stores and progressively replaces the most fit
parameters of each particle (pbesti, i=1,2,...,M) as well as a
single most fit particle (gbest) as better fit parameters are
encountered. The parameters of each particle (pi) in the
swarm are updated at each iteration (n) according to the
following equations:

[]
[]))1((*,...,,*

))1((*,...,,*
)1(*)(

2212

1211

−−+

−−+
−=

nppbesteeediagacc
npgbesteeediagacc

nvelwnvel

iiiR

iiR

ii

)()1()(nvelnpnp iii +−=

)(nveli =velocity vector of particle i
er=random values ∈ (0,1)
acc1=acceleration coefficient toward gbest
acc2=acceleration coefficient toward pbesti
w=inertia weight

It can be gathered from the update equations that the

trajectory of each particle is influenced in a direction
determined by the previous velocity and the location of gbest
and pbesti. The acceleration constants are typically chosen in

the range 0-1 and serve dual purposes in the algorithm. For
one, they control the relative influence toward gbest and pbesti
respectively by scaling each resulting distance vector, as
illustrated for a 2-dimensional case in Figure 2. Secondly, the
two acceleration coefficients combined form what is
analogous to the step size of an adaptive algorithm. Selecting
each coefficient to be relatively small will produce fine
searches of a region, while larger coefficients will give a
lesser search and faster convergence. The random ei vectors
have R different components, which are randomly chosen in
the range 0-1. This allows the particle to take constrained
randomly directed steps in a bounded region between gbest
and pbesti, as shown in Figure 2.

Fig. 2. Example of the scaling and random direction bounds for the vectors

The random ei components are typically selected using a
uniform distribution to provide a high degree randomness to
the search, but can be assigned a distribution with a greater
density near 1 for a faster, more direct search. The inertia
weight controls the influence of the previous velocity. It is
typically set to decay from 1 to 0 during some adequate
interval in order to allow the algorithm to converge on gbest.
A single particle update is graphically illustrated in two
dimensions in Figure 3. The new particle coordinates can lie
anywhere within the bounded region, depending upon the
weights and random components associated with each vector.
The particle update bounds in Figure 3 are basically composed
of all of the bounded regions for each vector as shown in
Figure 2, with the addition of the non-random velocity
component.

Fig. 3. Example of the possible search region for a single particle

When a new gbest is encountered during the update

process, all other particles begin to swarm toward the new

(2)

(1)

572

gbest, continuing the directed global search along the way.
The search regions continue to decrease as new pbestis are
found within the search regions. When all of the particles in
the swarm have converged to gbest or a suitable minimum
error condition is met, the gbest parameters characterize the
minimum error solution determined by the algorithm.

2.1 PSO for Adaptive Filtering

Commonly in numerical optimization problems, the
particle fitness is evaluated at each iteration using the entire
input data. In typical on-line adaptive filtering problems, the
entire input data is not available or is too lengthy to process in
an efficient manner. Therefore, the input data must be
processed and evaluated in blocks. In this case, at each
iteration, the fitness or cost function will only provide an
estimate of the actual error due to the entire input data. The
quality of this estimate is dependent on the statistical nature of
the input data and can be improved by averaging the error
estimates over a window of previous input data.

 In adaptive filtering, the mean squared error (MSE)
between the output of the unknown system and the output of
the AF is the typical cost function, and will hence be used for
the fitness evaluation of each particle in the on-line form of
PSO. For an adaptive system identification configuration as
shown in Figure 1, the windowed MSE cost function is as
follows:

)](),(),...,2(),1([)(

))()((1)(

,

0

2
,

npLknxknxknxfny

nyknd
N

nJ

iik

N

k
iki

−−−−−−=









−−= ∑

=

where f is a nonlinear operator, N is the length of the window
over which the error is averaged, and L is the amount of delay
in the filter. The AF output yk(n) may also be a function of
past values of itself if it contains feedback, or also a function
of intermediate variables if the AF has a cascaded structure.
When J(n) is minimum, the AF parameters provide the best
possible representation of the unknown system.

2.2 Modifications and Variations

PSO, in its most simplistic form described previously, can
be made more efficient. In order to improve the efficiency of
PSO, its weaknesses must be recognized. The following are a
few of the concerns with standard PSO:

1) When a particle is found to be the new gbest of the swarm,

all of the other particles begin to move toward it. If the
new gbest particle is an outlying particle with respect to
the swarm, the rest of the swarm can tend to move toward
the new gbest from the same general direction. This may
potentially leave some critical region around the new
minimum excluded from the search.

2) Particles closer to gbest will tend to quickly converge on it

and become stagnant while the other more distant particles
continue to search. A stagnant particle is essentially

useless because its fitness continues to be evaluated but it
no longer aids the search.

3) The initial stages of the algorithm tend to give a broad

search where key points can be missed because the
individual search regions typically decrease in size rather
quickly as new bests are found. If gbest is at a local
minimum and continues to be after sufficient iterations,
which would likely be caused by an inadequate swarm size
or large initial acceleration, the swarm can undesirably
converge on the local minimum.

4) To a lesser extent, the efficiency of the algorithm may be

improved because particles closer to gbest may have
already searched nearly the same region as more distant
particles, which can be unnecessarily redundant.

These four concerns can be effectively combated with the
following simple modifications:

1) When a new gbest is encountered, random particles can be

re-randomized about the new gbest. This will act to ensure
that the region around gbest is searched from all directions,
while still keeping a portion of the swarm searching
somewhat globally.

2) Stagnancy of particles can be eliminated by slightly varying

the random parameters of each particle at every iteration,
similar to mutation in the GA. This will have little effect
on particles distant from gbest because this random
influence should be relatively small compared to the
random update of equation (1). However, this will
eliminate any stagnant particles and generate a finer search
about gbest.

3) The issue of premature convergence on a local minimum is

occasionally inevitable, depending on the characteristics of
the error surface or other constraints, but its likelihood can
be decreased by continually re-randomizing a random
portion of the particles over the entire parameter space and
allowing them to converge. This will in effect continually
generate unique search paths, which can increase the
probability of finding the global optimum. This
continuous probing of the space is also beneficial for
tracking a non-stationary input or dynamic plant.

Another alternative to better facilitate the search
includes swarming particles toward centers of mass
defined by groups of particles or previous bests rather than
a single point, or using multiple sub-swarms that swarm
toward separate centers. These two modifications can add
more diversity and better distribute the swarm, decreasing
the likelihood of converging on a local minimum.

4) The re-randomization procedures described previously can

be planned such that the space is searched more efficiently
and redundancy is kept to a minimum. One technique for
accomplishing this is to re-randomize according to an

(4)

(3)

573

appropriate distribution. By the nature of the algorithm,
the region close to the gbest is more efficiently searched
because the density of the particles has been greatest in
that region by the time of convergence. It may be
unnecessarily redundant to uniformly redistribute some of
the particles around gbest or the entire space, because all
particles will traverse the inner perimeter eventually. Re-
randomizing with a distribution that is sparse about gbest
would be more effective in terms of reducing unnecessary
redundancy.

In order to ensure convergence of the swarm, the variance

of the mutation and selected re-randomization distributions
must decrease according to some schedule. A reasonable
variance decay curve, shown in Figure 4, is given in equation
(5).

Fig. 4. Variance schedule

A
e

AnVariance
S

Mn
+











+

−
=

+−

1
)(

M: transition midpoint

S: transition slope adjustment

This schedule specifies a wide search (large variance)

initially, and then decays toward a finer search (small
variance) at a suitable interval after which the space is
presumed to be searched sufficiently. The slope of the
transition region and search intervals can be tuned for the
specific problem. This schedule may also be applied to the
acceleration coefficients to further tune the search. The re-
randomization and acceleration schedules can be coordinated
to optimize the convergence speed and search efficiency.

If the dimensionality of the problem becomes an issue,
another variation is to separate the filter parameters into
multiple independent swarms that will each search a lower
dimensional space. This can potentially lead to better
convergence properties if the parameters designated to each
swarm can be de-coupled.

3. SIMULATION EXAMPLES

In the following simulations, the properties of PSO and a

modified version of PSO (MPSO) are compared to the GA for
several system identification problems. All adaptive filters are
matched in order and structure to the unknown plant. All
algorithms were initialized with the same population of real-
valued parameters and allowed to evolve. Each algorithm was
tuned such that the population converged before the last

iteration. The population sizes and algorithm parameters were
chosen to experimentally provide the best results for each
case. Each plot in Figures 5 and 6 shows the MSE averaged
over 50 trials. The specifics of each algorithm are as follows:

PSO: The standard PSO algorithm is implemented with both
acceleration constants weighted equally. The acceleration
constant was chosen to give a reasonable balance between the
search quality and convergence speed for each case.

MPSO: The modified PSO algorithm uses the standard PSO
algorithm as a base, implementing the four modifications
suggested earlier. As with standard PSO, both acceleration
constants are weighted equally, using the same values as PSO.
The mutations are randomly selected uniformly, with the
variance decreasing according to Figure 4 to ensure
convergence of the population. The variances of the re-
randomization distributions also follow Figure 4. The re-
randomization is sparsely distributed near gbest.

GA: The genetic algorithm uses the most fit half of the
population to generate offspring, which replace the least fit
half of the population. A crossover rate of 0.5 and a mutation
rate of 0.25 are used for the evolution. The mutations are
randomly selected uniformly, with the variance decreasing
according to Figure 4 to aid the convergence of the
population.

3.3.1 IIR Plant

For this example, the plant is a second order IIR filter
taken from [9]. The algorithms are set to learn the five filter
coefficients given in equation (7). A population of 50 was
used and the acceleration constants of PSO and MPSO were
selected to be 0.8.

21

21

4.03.01
25.025.1

−−

−−

+−
−

=
zz
zzPLANT

26154

23121

−−

−−

+−
++

=
zpzpp
zpzppAF

iii

iii

0 10 20 30 40 50 60 70 80 90 100
-140

-120

-100

-80

-60

-40

-20

0

20
IIR Plant

iteration (n)

M
S

E
 (d

B
)

Fig. 5. Second-order IIR Plant

(5)

(6)

PSO
MPSO
GA

(7)

574

(11)

3.3.2 Polynomial Filter
This example illustrates how PSO can simultaneously

update coefficients as well as exponential terms. The output
of an FIR filter (equation (8)) is passed through a polynomial
nonlinearity (equation (9)) to produce the desired training
signal d(n). The AF filter is set to learn the four weighting
coefficients, as well as the two exponential terms (equations
(10) & (11)). A population of 100 was used and the
acceleration constants of PSO and MPSO were selected to be
0.3.

)(7.0)(5.0)]([)(

)1(8.0)(3.0)(
13 nununufnd

nxnxnu
−==

−+−=

)()()()()](ˆ[)(ˆ
)1()()()()(ˆ

)(4)(3

21

65

nunpnunpnufnd

nxnpnxnpnu
np

i
np

i

ii

ii −==

−+=

0 50 100 150
-120

-100

-80

-60

-40

-20

0
Polynomial Filter

Iteration (n)

M
SE

 (d
B

)

PSO
MPSO
GA

Fig. 6. Polynomial Filter

4. DISCUSSION

From Figures 5 and 6, standard PSO exhibits a fast
convergence initially, but fails to improve because the swarm
quickly becomes stagnant and converges to a suboptimal
solution. The MPSO particles are not allowed to stagnate,
which enables the algorithm to surpass both PSO and the GA.
MPSO displays a much faster convergence compared to the
GA because the GA doesn’t have an explicit step size and
must evolve at its own rate.

Because the computational complexity of these algorithms
increases proportionally with the population size, it is
desirable to work with smaller populations when possible. For
the GA, when the population size is relatively small,
parameters that exhibit less sensitivity with respect to the error

surface can be purged from the population (through selection
and crossover) in the initial stages of the algorithm. This can
greatly reduce the population diversity, leading to an inferior
solution. Similar purging is evident in the IIR case because
the numerator coefficients will to have a greater influence on
the error in the initial stages of the updates. This does not
occur in PSO due to the prescribed particle memories, which
is one of the reasons that MPSO results in a lower minimum
MSE in Figure 5. Similarly, for the polynomial plant results
in Figure 6, the relative parameter sensitivities are increased
by the introduction of the exponential terms. This creates an
error surface fraught with local minima within regions
exhibiting comparatively low error values. Again, the PSO
swarm remains more resilient, motivating the hypothesis that
PSO will continue to be more effective as the population size
decreases.

By examining the most basic form of each algorithm, PSO
seems to demonstrate a more objective direction, or controlled
randomness than the GA. PSO particles take directed steps
within well defined bounded regions, whereas the GA updates
are less directed and possibly more redundant, which can
adversely effect the convergence rate. The PSO algorithm
eliminates some potential search redundancy by retaining the
previous particle bests and velocities.

The aforementioned properties of PSO make it easier to
visualize and predict the search process. This, in turn,
provides a more objective plan to assigning the search
parameters such as accelerations and the inertia weight.
Conversely, the search parameter assignments of the GA
(mutation, crossover, etc.) are more heuristic. Another
advantage of PSO is that the convergence of the search can be
more readily controlled via the acceleration coefficients,
which are not present in the GA. Because of this, the
convergence rate of PSO can be tuned to be significantly
faster than the GA, especially as the dimensionality of the
space increases. This property of PSO makes it better suited
for on-line adaptive filtering problems.

5. REFERENCES

[1] Goldberg, D.E., Genetic Algorithms in Search, Optimization, and
Machine Learning, Addison-Wesley, 1989

[2] Haykin, S., Adaptive Filter Theory, 4th ed. Prentice Hall, 2001.
[3] Kennedy, J., Eberhart, R. C., and Shi, Y., Swarm intelligence San

Francisco: Morgan Kaufmann Publishers, 2001.
[4] Nambiar, R. and Mars, P., “Genetic and Anealing Approaches to

Adaptive Digital Filtering,” Proc. 26th Asilomar Conf. on Signals,
Systems, and Computers, vol. 2, pp. 871-875, Oct. 1992.

[5] Ng, S.C., Leung, S.H., Chung, C.Y., Luk, A., and Lau, W.H., “The
Genetic Search Approach,” IEEE Signal Processing Magazine, pp. 28-46,
November 1996.

[6] Shynk, J.J., “Adaptive IIR Filtering,” IEEE ASSP Magazine, pp. 4-21,
April 1989.

[7] Tang, K.S., Man, K.F., He, Q. “Genetic Algorithms and their
Applications,” IEEE Signal Processing Magazine, pp. 22-37, November
1996.

[8] White, M.S. and Flockton, S.J., Chapter in Evolutionary Algorithms in
Engineering Applications, Editors: D. Dasgupta and Z. Michalewicz,
Springer Verlag, 1997.

[9] Yao L., Sethares W.A., “Nonlinear Parameter Estimation via the Genetic
Algorithm,” IEEE Transactions on Signal Processing, vol.42, April 1994.

(8)

 PSO
MPSO
GA

(9)

(10)

575

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

