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Abstract - Two well known optimization algorithms, the
Genetic Algorithm (GA) and the Simulated Annealing Algorithm
(SAA), are investigated for IIR adaptive phase equalizers.  For
non-convex error surfaces, gradient-based algorithms often fail
to find the global optimum.  This work compares the ability of
the GA and the SAA to achieve the global minimum solution for
multi-order all-pass adaptive filters to be used for the phase
equalization of minimum phase SAW filters.

1.  INTRODUCTION AND BACKGROUND
This work investigates the effectiveness of two well

known stochastic optimization algorithms, the Genetic
Algorithm (GA) and the Simulated Annealing Algorithm
(SAA), for locating the global optimal solution for multi-order
all-pass IIR adaptive filters.  Both of these algorithms are
known to be effective in multimodal optimization problems,
which is the primary reason for the interest in these search
mechanisms.  The structure of the all-pass IIR adaptive phase
equalizer proposed for this application is given by
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where * denotes the complex conjugate.  Note that an all-pass
filter can be represented completely by its poles.

Wilborn [1] demonstrated that a one-pole, one-zero all-
pass adaptive equalizer using the LMS algorithm is capable of
equalizing the phase response of a minimum phase SAW filter
for potential use in IS-95 CDMA wireless communication
systems.  Furthermore, it is expected that additional
improvements can be made in the SNR by using higher order
IIR phase equalizers.

The SAW filter is an important component in an IS-95
CDMA receiver.  Although the ideal choice relative to
performance criteria is a linear phase SAW filter, it has been
shown previously that the use of a minimum phase SAW filter
significantly reduces the cost of this critical component.  A
minimum phase SAW filter can achieve the same magnitude
response as a linear phase SAW, but its nonlinear phase
response must be compensated with a phase equalization
stage.  The purpose of this work is to determine whether
higher order equalizers can be used to more effectively reduce
the phase distortion of the minimum phase SAW filter.  Both
the GA and the SAA adaptive strategies were implemented to

determine how well they perform in the application of phase
equalization.  The standard specified by the IS-95-A, for the
minimum RMS phase error, was 3° .

To check for non-linearity, the total phase of the
minimum phase SAW filter in series cascade with the
equalizer was generated.  The best-fit line for the phase of this
combination was iteratively determined.  The RMS phase
error was calculated using the deviation between the phase
plot of the minimum phase filter combined with the adaptive
equalizer, and the best-fit linear phase characteristic [1. 4].

2.  THE GENETIC ALGORITHM
Genetic Algorithms (GAs) are robust search and

optimization techniques that are used widely in practical
applications due to their capacity to locate the global optimum
in a multimodal region [2].  Since the details of the GA for the
IIR phase equalization problem were previously presented in
[3], they will not be repeated here due to the lack of space.
The following discussion focuses on demonstrating the
behavior characteristics of the GA as a function of population
size, mutation rate, and order of the equalizer (number of IIR
sections).

2.1 Effect of Population Size
The genetic algorithm was investigated for various filter

orders with different population sizes in order to analyze the
effect of this parameter [4].  As a baseline, a typical learning
curve for the GA is shown in Figure 1, where the complete
search pattern is shown, along with the optimal selections.  It
was seen throughout the experiments that for lower order
filters a larger population size led to convergence in a
relatively large number of iterations, as compared to when a
lower population size was used.  In many of these situations a
small population size provided enough search capacity to
reach a neighborhood of the global optimum.  However, a
larger population size decreased the minimum mean square
error further by approaching closer to the global optimum, but
resulted in longer times to reach convergence.

Throughout the experiments, a higher population size
gave better minimum errors at the cost of lower convergence
rates.  Thus the choice of population size represents a trade off
among convergence rate, performance as measured by the
minimum MSE, and computational complexity.
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Figure 2 and Table 1 show the effects of population size
with a mutation rate of 30%.  For a 2nd order filter a population
size of 84 was too high and hence it took 280 iterations to
converge giving an optimum error of –5.27 dB.  This is lower
than the error obtained with a population size of 60.  But when
the population size was reduced to 60, convergence was
achieved in 136 iterations.  Again, a population size of 30
appeared too small to permit the a 2nd order filter to achieve
fast convergence.

2.2 Effect of Mutation Rate
Mutation rate is another important parameter in the

genetic algorithm as it introduces diversity into the population.
A low mutation rate may not introduce new individuals fast
enough thus slowing convergence.  This can be seen in Figure
3 with a 1.0 % mutation rate for a 2nd order filter.
Alternatively, a high mutation rate may make the search too
random and hence may lower the convergence rate.  This is
seen in Figure 3, where a mutation rate of 50% resulted in 407
iterations to reach convergence.  It was observed that for
higher order filters, lowering the mutation rate resulted in
faster convergence, with a correspondingly higher error.

When the mutation rate is too large in a high order filter,
the search becomes too random and may end prematurely.
Figure 4 shows the effects of high and low mutation rates for a
7th order filter.  For maintaining a search space that will
facilitate convergence, the population size and mutation rate
should be chosen in accordance with the order of the filter.  In
general a large population size combined with a high mutation
rate would be too divergent, whereas lowering either one of
the parameters and keeping the other high results in
convergence with an optimum error and an acceptable
convergence rate.  Table 3 and Figure 5 show the learning for
different order filters with a population size of 80 and a
mutation rate of 30%.  Table 4 shows the RMS phase error
after equalization for various order equalizers

3.  SIMULATED ANNEALING
Simulated Annealing (SA), as derived from statistical

mechanics, exploits an analogy between the way in which a
metal cools and freezes into a minimum energy crystalline
structure (the annealing process) and the search for a
minimum entropy condition in a more general optimization
problem.  The algorithm is based upon that of Metropolis et al.
[5], which was originally proposed as a means of finding the
equilibrium configuration of a collection of atoms at a given
temperature.

3.1 The Physical Process
The physical process of annealing is one in which a solid

in a heat bath is heated by increasing the temperature of the
heat bath, until is reaches a value at which all particles of the
solid randomly arrange themselves in the liquid phase.  Then
the temperature of the heat bath is slowly lowered, giving the
particles a chance to arrange themselves in low-energy ground
state.  The minimum energy state will be reached provided the
cooling is sufficiently slow.  As the temperature is reduced,

the atomic energies decrease.  Starting off at a given value of
the temperature, the temperature of the system is subsequently
gradually reduced, after reaching thermal equilibrium at each
temperature. In thermal equilibrium the probability of
occurrence of a state with energy E is given by the Boltzmann
distribution represented as

                                     P(E) µ  e[-E/(kT)] (2)

where E is the system energy, k is Boltzmann’s constant, T is
the temperature and P(E) is the probability that the system is
in a state with energy E.  If the temperature of the system is
cooled non-gradually or in a fast manner, widespread
irregularities and defects are seen in the crystal structure. This
is known as rapid quenching.  The system does not reach the
minimum energy state and ends in a polycrystalline state,
which has higher energy.

At high temperatures, P(E) converges to 1 for all energy
states according to equation (2).  It can also be seen that there
exists a small probability that the system might have high
energy even at low temperatures. Therefore, the statistical
distribution of energies allows the system to escape from a
local energy minimum.

3.2 The Simulated Annealing Algorithm
Simulated annealing employs a random search

mechanism which not only accepts changes that decrease the
objective function, but also accepts certain changes that
increase it.  In an analogy between an optimization problem
and the annealing process, the states of the solid represent
feasible solutions of the optimization problem.  The energies
of the states correspond to the values of the objective function
at those solutions, and the minimum energy state corresponds
to the optimal solution of the problem.  Rapid quenching can
be viewed as the process of terminating the search in a local
minimum.

The algorithm consists of a sequence of iterations, with each
iteration randomly changing the current solution to create a
new one.  Once a new solution is created the corresponding
change in the cost function is computed to decide if the newly
created solution is to be accepted.  If accepted the update is
made in the current solution.  If the change in the cost function
is negative, the newly produced solution is directly taken as
the current solution.  Otherwise it the decision on whether to
accept the new solution is determined by the Metropolis
Criterion.

3.3 The Metropolis Criterion
Metropolis’ criterion is based on Boltzmann’s probability.

If the difference between the cost function values of the
current and the newly produced solutions is equal to or larger
than zero, a random number d  in [0,1] is generated from a
uniform distribution and if

                                         d  £  e (-D E / T) (3)

is satisfied, then the newly produced solution is accepted.  If
not, the solution is unchanged.  In equation (3), D E is the
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difference between the cost function values of the two
solutions, and T is the temperature.  Metropolis’s criterion
allows uphill moves, allowing the search to climb out of local
minima.

3.4 The SA Algorithm with a Directed Approach
In this work the SAA was implemented using a directed

approach, characterized as follows:

1 . Starting with an initial temperature of 1, a random initial
coefficient is chosen.

2. Vectors in predetermined directions were generated around this
initial solution.

3. A new parameter value was determined by taking a step in the
direction of the vectors generated.  The magnitude of the vector
was randomly determined by:

                                           xn = ‰ xc + rv‰ , (4)

where xn is the new location, xc is the current location, r is a
random number generated, which is between (-1, 1), and v is the
vector generated in a specified direction.  This new location was
checked to see whether its energy was lower than the current
solution.  If it was lower, the solution was accepted; if higher,
the Metropolis criterion was checked to decide whether or not to
accept the new solution.

4. Step 3 was carried out until a predetermined N was reached.
5. Temperature was reduced using the cooling schedule.
6. If temperature limit was not reached the process returned to step

3, else exited.

3.5 Experimental Results
Throughout the experiments it was seen that as the

number of iterations per each temperature were increased, the
error was reduced and convergence took longer.  This occurs
as the search is prolonged, and hence, there is a better chance
of finding the optimum.  Figure 6 shows the working of the
algorithm of the SAA; i.e. the actual search mechanism vs.
only the optimal points [4].

It was seen throughout the experiments that lower order
filters (2nd or 3rd order) converged in a smaller number of
iterations and achieved in good minimum error values.  If the
number of iterations was increased per temperature the error
kept decreasing, but the convergence rate became relatively
high.  This is effect shown in Table 5 and Figure 7.

For higher order filters (like the 5th order filter and higher)
a low number of iterations per temperature did not give the
process enough time to find the global minimum and the
search ended prematurely.  As the number of iterations
increased the error decreased steadily until convergence was
achieved.  This is seen in Table 6 and Figure 8 for a 5th order
filter.  At approximately 350 iterations per temperature (N) the
error was as low as -5.66 dB, taking 4761 iterations to reach
that level.  Increasing N to 850 gave a 0.3 dB improvement
but required 13398 total iterations.

Typically a system should be cooled gradually in order to
assure convergence.  If it cools too fast, it emulates rapid
quenching and falls into local minima.  To observe the effect
of rapid quenching, the reduction factor was changed from 0.9
to 0.7.  Then to observe the effect of gradual cooling, the

factor was changed again to 0.99.  This was done for a 2nd

order filter, with 60 iterations per temperature.  With c = 0.7,
the search terminates in 47 iterations, illustrating the
mechanism of rapid quenching.  For c = 0.7, the cooling was
too fast, in comparison to the case of c =  0.9, as seen in Table
7 and Figure 9.  With c = 0.9, the process has sufficient time
to reach a low enough error in a moderate number of
iterations.  It reached an optimum error in 219 iterations,
which is much faster than the case of c = 0.99.  The factor of
0.9 was chosen since it gave results that were optimal for this
application, especially for the higher order filters.

When the temperature was reduced using a factor of c =
0.99, the system cooled gradually, thus allowing sufficient
time to find the optimum after 5566 iterations.  The
performance of three different order filters while being cooled
by c = 0.99 are shown in Table 8 and Figure 10.

The behavior of different order filters for a start
temperature of 1 and c = 0.9 was investigated.  The
experimental results are shown in Table 8.  It is seen from
these results that although the 3rd order filter gives the best
error of -5.3 dB, it requires many more iterations to converge
than the 2nd order filter.

After convergence the equalization ability was checked
for different order filters.  Table 9 gives the RMS phase error
for different filter orders, along with the number of iterations
required for convergence.
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Figure 1. Actual search vs. optimal points for the GA.
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Figure 2.  Population size vs. convergence rate.

Table 1. Effect of population size.
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Figure 3.  Mutation rate vs. convergence rate.

Table 2. Effect of mutation rate on learning characteristics.
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Figure 4.  Effect of mutation rate for 7th order filter.

0 50 100 150 200 250 300 350 400 450 500
-8

-7

-6

-5

-4

-3

-2

-1

0

8th Order Filter
2nd Order Filter
5th Order Filter

Figure 5.  Performance of different order filters.

Table 3. Convergence of different order filters.

Table 4. Rms phase error for different filter orders.

ORDER POP. MUT.  (%) ERROR (dB) ITER.

2   80 50      - 7.24 407
2   80 30      - 6.94 182
2   80 1      -2.60 245

ORDER POP. MUT.  (%) ERROR (dB) ITER.

2   84 30      - 5.27 407
2   60 30      - 5.10 136
2   30 30      -4.90 318

FILTER ORDER
RMS PHASE ERROR

(degrees)
2 1.1084

4 0..9698
6 1.1909

ORDER POP. MUT.  (%) ERROR (dB) ITER.

2   80 30      - 6.94 182
5   80 30      - 7.25  85
8   80 30       -6.84 194
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Figure 6. Actual search vs. optimal points for the SAA.
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Figure 7.  Convergence rate vs. iterations per temperature.
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Figure 8. Convergence rate vs. iterations per temperature.

0 1000 2000 3000 4000 5000 6000
-6

-5.5

-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

Temp. Reduction Factor 0.7 
Temp. Reduction Factor 0.9 
Temp. Reduction Factor 0.99

Figure 9. Effect of temperature reduction factors.
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Figure 10. Performance of different filter orders with a
different temperature reduction factor.

Table 5. Convergence for 2nd order filter.
FILTER
ORDER

REDUCTION
FACTOR

OPTIMUM
ERROR(dB)

CONVERGENCE
RATE

2 0.9 - 4.4 47

2 0.9 -5.75 219

2 0.9 -6.1 522

Table 6.  Convergence for 5th order filter.

FILTER
ORDER

REDUCTION
FACTOR

OPTIMUM
ERROR (dB)

CONVERGENCE
RATE

5 0.9 -5.2 2473

5 0.9 -5.66 4761

5 0.9 -5.94 13398

Table 7. Different temperature reduction factors.

FILTER
ORDER

REDUCTION
FACTOR

OPTIMUM
ERROR (dB)

CONVERGENCE
RATE

2 0.7 - 4.4 47
2 0.9 -5.75 219
2 0.99 -5.94 5566

Table 8. Convergence of different order filters.
FILTER
ORDER

REDUCTION
FACTOR

OPTIMUM
ERROR (dB)

CONVERGENCE
RATE

2 0.9 -4.4 47
3 0.9 -5.3 456
4 0.9 -4.9 531

Table 9. RMS phase error for different order filters.

FILTER
ORDER

RMS PHASE
ERROR (deg.)

NUMBER OF
ITERATIONS

2 1.2313 23
4 1.1074 905
6 2.8298 13613
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