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ABSTRACT

A particle swarm optimization-least mean squares

(PSO-LMS) algorithm is presented for adapting various

classes of filter structures. The LMS algorithm is widely

accepted as the preeminent adaptive filtering algorithm

because of its speed, efficiency, and provably convergent

local search capabilities. However, for multimodal error

surfaces, a global search algorithm, such as PSO or the

genetic algorithm (GA), is required. The proposed PSO-

LMS hybrid algorithm combines the advantageous

properties of the two conventional algorithms to provide

enhanced performance characteristics.

Introduction

In many adaptive signal processing problems the

mean squared error surface that exists as a hyper-surface

in the multidimensional parameter space may be ill-

conditioned in the sense that it is a non-quadratic surface

that possesses local minima and saddle points, in

addition to a global minimum that represents the optimal

solution. It is well known that such surfaces inhibit

efficient optimization for certain classes of adaptive

systems, such as infinite impulse response (IIR) adaptive

filters, nonlinear polynomial adaptive filters, and neural

networks.

Stochastic optimization algorithms aim at increasing

the probability of encountering the global minimum,

without performing an exhaustive search of the entire

parameter space. Unlike gradient descent techniques, the

performance of stochastic optimization techniques in

general is not dependent upon the filter structure.

Therefore, these types of algorithms are capable of

globally optimizing any class of adaptive filter structures

or any types of objective functions by assigning the

parameter estimates to represent filter tap weights, neural

network weights, or any other possible parameters of the

unknown system model (even the exponents of

polynomial terms).

Congregational LMS

Gradient-based optimization techniques attempt to

estimate the gradient of the error surface and proceed to

an optimum by following the negative direction of this

estimated gradient. These algorithms are well known,

widely used, and proven simple, effective, and

convergent local optimization techniques. The most

notable of these algorithms is the least mean squares

(LMS) algorithm [3]. The problem is that, being a local

optimization technique, gradient decent is limited

because it is unable to converge to the global optimum

on a multimodal error surface if the algorithm is not

initialized in the valley of the global optimum.

A variation of the LMS algorithm, the congregational

LMS (CON-LMS) [1], attempts to locate the global

optimum by running several LMS algorithms in parallel,

initialized with different initial coefficients. The notion

is that a larger, concurrent sampling of the error surface

will increase the likelihood that one process will be

initialized in the global optimum valley. This technique

does have potential, but it is inefficient and may still

suffer the fate of a standard gradient technique in that it

will be unable to locate the global optimum if none of the

initial estimates is located in the global optimum valley.

By using a similar congregational scheme, but one in

which information is collectively exchanged between

estimates and intelligent randomization is introduced,

structured stochastic search algorithms are able to hill-

climb out of local minima. This enables the algorithms

to achieve better, more consistent results using a fewer

number of total estimates. There are several different

structured stochastic search approaches in the adaptive

filtering literature, most notably simulated annealing [8],

and evolutionary algorithms such as the genetic

[8][9][10] and particle swarm optimization [2].

Particle Swarm Optimization

Particle swarm optimization was first developed in

1995 by Eberhart and Kennedy [2] rooted on the notion

of swarm intelligence of insects, birds, etc. The

algorithm attempts to mimic the natural process of group

communication of individual knowledge that occurs

when such swarms flock, migrate, forage, etc. in order to

achieve some optimum property such as configuration or

location.

As with CON-LMS, PSO begins with a random

population of individuals; here termed a swarm of

particles. Again, each particle in the swarm is a different

possible set of the unknown parameters to be optimized.

Each particle represents a point in the solution space that

has a relative fitness determined by evaluating the
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parameters with respect to a predetermined fitness

function that has an extremum at the desired optimal

solution. The goal is to efficiently search the solution

space by swarming the particles toward the best fit

solution encountered in previous iterations with the

intent of encountering better solutions through the course

of the process and eventually converging on a single

minimum error solution.

The standard PSO algorithm begins by initializing a

random swarm of M particles, each having R unknown

parameters to be optimized. Unless there is prior

knowledge about the parameter space, the initial particles

are typically distributed uniformly about the presumed

parameter space to facilitate a global search. At each

iteration, the fitness of each particle is evaluated

according to the selected fitness function. The algorithm

stores and progressively replaces the most fit parameters

of each particle (pbesti, i=1,2,...,M) as well as a single

most fit particle (gbest) as better fit parameters are

encountered. The parameters of each particle (pi) in the

swarm are updated at each iteration (n) according to the

following equations:

)()1()( nvelnpnp iii +�=

where )(nveli
 is the velocity vector of particle I, er is a

vector of random values �  (0,1), acc1, acc2 are the

acceleration coefficients toward gbest and pbesti,

respectively, and w is the inertia weight.

It can be gathered from the update equations that the

trajectory of each particle is influenced in a direction

determined by the previous velocity and the location of

gbest and pbesti. The acceleration constants are typically

chosen in the range 0-2 and serve dual purposes in the

algorithm. For one, they control the relative influence

toward gbest and pbesti respectively by scaling each

resulting distance vector. Secondly, the two acceleration

coefficients combined form what is analogous to the step

size of an adaptive algorithm. Acceleration coefficients

closer to 0 will produce fine searches of a region, while

coefficients closer to 1 will result in lesser exploration

and faster convergence. The random ei vectors have R

different components, which are randomly chosen in the

range 0-1. This allows the particle to take constrained

randomly directed steps in a bounded region between

gbest and pbesti. The acceleration coefficients should be

chosen in conjunction with the random ei components for

a desired average step size.

The inertia weight controls the influence of the

previous velocity. It is typically set to decay from 1 to 0

during some adequate interval in order to allow the

algorithm to converge on gbest.

When a new gbest is encountered during the update

process, all other particles begin to swarm toward the

new gbest, continuing the directed global search along

the way. The search regions continue to decrease as new

pbestis are found within the search regions. When all of

the particles in the swarm have converged to gbest, the

gbest parameters characterize the minimum error

solution determined by the algorithm.

In adaptive filtering, the mean squared error (MSE)

between the output of the unknown system and the

output of the AF is the typical cost function, and will

hence be used for the fitness evaluation of each particle

in the on-line form of PSO. For an adaptive system

identification configuration, the windowed MSE cost

function is as follows:
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where d(n) is the desired signal, yk,i(n) is the adaptive

filter output, f(·) is a linear or nonlinear operator, N is

the length of the window that the error is averaged, and L

is the amount of delay in the filter. The AF output yk,i(n)

may also be a function of past values of itself if it

contains feedback, or also a function of intermediate

variables if the AF has a cascaded structure. When J(n)

is minimized the AF parameters provide the best possible

representation of the unknown system.

Certain enhancements of the standard PSO algorithm

to improve the overall efficiency and performance were

presented in references [4] and [5]. The advantageous

properties of these enhancements manifest themselves

differently in different types of problems. However, it

was found that the inclusion of three particular

enhancements provides substantial performance

improvements in virtually all variations of the PSO [5].

These three enhancements are i) mutation, ii) re-

randomization about gbest, and iii) adaptive inertia

operations. When these are added to the basic PSO

algorithm, the result is referred to as the modified PSO

(MPSO). The MPSO algorithm is designed to balance

convergence speed and search quality tradeoffs, and by

so doing provides significantly improved performance

compared to the conventional PSO.

PSO-LMS Hybrid

By combining the advantageous features of search

algorithms, hybrid algorithms can be derived that are

sometimes superior to the original algorithms. The goal

is to cleverly devise a combination of the dominant

global search techniques with convergent local search
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techniques to give the greatest performance, without

forsaking simplicity or computational complexity

whenever possible.

One weakness of PSO is that its local search is not

guaranteed convergent; its local search capability lies

primarily in the swarm size and search parameters. Also,

the PSO search tends to stagnate when the convergence

speed is maximized, if corrective measures are not taken

[2]. On the other hand, the problem with simply running

a brute-force population of N independent algorithms is

that there is no collective information exchange between

population members, which makes the algorithm

inefficient and prone to the local minimum problem of

standard LMS. Therefore, it is desirable to combine the

convergent local search capabilities of the LMS

algorithm with the global search of PSO.

When initialized in the global optimum valley, the

LMS algorithm can be tuned to provide an optimal rate

of convergence with out fear of encountering a local

minimum. Therefore, by using a structured stochastic

search, such as PSO, to quickly focus the population on

regions of interest, an optimally tuned LMS algorithm

can take over and provide better results than standard

LMS. A generalized form of this PSO-LMS Hybrid

algorithm is presented here, which can easily be

extended for IIR or LMS back-propagation updates for

nonlinear structures. For a general adaptive filter

structure, the LMS update takes the form:

)1()1()1()( ���+�= nynenwnw µ

where )(ne  is the instantaneous error between the

desired signal and filter output, )(ny�  is the gradient of

the output with respect to the filter parameters, and µ  is

the step size. This update can be considered a directional

vector, similar to those used to generate the particle

updates of PSO. The LMS step sizeµ  should be chosen

according to the guidelines given in [3], to provide

stability and the desired convergence properties. To

form the PSO-LMS hybrid, the LMS update from equ.

(5) is combined with to the PSO particle update from

equ. (2) to create the hybrid update:
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where c1 and c2 are scaling factors that control the

relative influence of the PSO and LMS directions,

respectively. These scaling factors should be chosen

such that c1 + c2 = 1 in order to control the stability of the

algorithm. The principle is to decrease the influence of

the more global PSO component as the algorithm

progresses, which will act to increase the influence of the

LMS component in order to provide the desired

convergence properties.

There are several advantages to this hybrid approach.

First, the LMS component of this algorithm is capable of

tracking a dynamic plant, which could also be used to re-

randomize the PSO search. Another advantage of this

hybrid approach is that smaller population sizes can

presumably be used compared to classical PSO or

congregational LMS, with similar performance results

for relatively compliant error surfaces. This is due to the

fact that the local search capabilities of the PSO are

directly related to the population size, which can be

relaxed due to the convergent properties of LMS, without

sacrificing the initial global search.

Simulation Examples

In the following examples, the properties of CON-

LMS, PSO, and PSO-LMS are compared for several IIR

and nonlinear system identification problems. All

algorithms were initialized with the same population of

real-valued parameters and allowed to evolve. The

window length, N, was set to 100 in each case. For each

simulation, the MSE is averaged over 50 successful trials

in which the algorithm converged to the neighborhood of

the global optimum. The specifics of each algorithm are

as follows:

PSO: The classical PSO algorithm is implemented with

both acceleration constants weighted equally at 1.2,

giving an average step size of approximately 0.6. The

acceleration constant was chosen to give a reasonable

balance between the search quality and convergence

speed for each case. The inertia weights are set to 0.5

initially and linearly decay to zero by the last trail.

PSO-LMS: The PSO-LMS algorithm is implemented as

described by equ. (6). As with classical PSO, both

acceleration constants are weighted equally at 1.2 and

the inertia weights linearly decay from 0.5 to zero.

The step sizes of the LMS contribution were selected

to give the best performance. The weighting of the

PSO/LMS contributions were chosen to provide a

smooth transition at the point that PSO stagnates.

CON-LMS: The congregational LMS algorithm [1] is

implemented where a population of independent LMS

algorithms is adapted. The step sizes were selected to

give the best performance.

IIR Identification

For this example the plant, a second order pole-zero

filter taken from [11], is given as:
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The adaptive filter is a matched second order structure:
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The step size of the LMS contribution of PSO-LMS was

selected as 0.01; the CON-LMS step size was selected as

0.01. The experimental results for this example using a

population of 20 are shown in Figure 1.

0 20 40 60 80 100 120 140 160 180 200
-60

-50

-40

-30

-20

-10

0

10

M
S
E
(
d
B
)

PSO
PSO-LMS
CONLMS

Figure 1.  IIR system identification.

In this example, as well as in many other

experimental IIR examples studied in [5], the CON-LMS

algorithm exhibits the slowest convergence rate due to

the fact that there is no information transfer between the

estimates. The PSO-LMS hybrid provides the LMS

algorithm with a better starting point, displaying a

similar rate of convergence to CON-LMS as the PSO

portion begins to stagnate. In several of the cases, the

PSO-LMS hybrid achieved the fastest initial

convergence due to the incorporated gradient descent.

This makes the algorithm favorable for situations having

a significant noise floor requiring fast convergence.

Both of the LMS based algorithms are capable of

eventually attaining the noise floor when the number of

generations is increased, assuming that they are not

trapped in a local minimum.

Matched Order Volterra Identification

In this example, a matched structure truncated

Volterra AF is used to identify the truncated Volterra

plant taken from [7]
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The step size of the LMS contribution of PSO-LMS was

selected as 0.1; the LMS step size was selected as 0.1.

The results given in Figure 2 illustrate the learning

curves with an SNR of 80dB.
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Figure 2.  Matched order Volterra identification.

Black-box Volterra Identification

In this example, the identification of an LNL cascade

system model taken from [7] is performed using a

truncated Volterra adaptive filter. The LNL plant

consists of a 4
th

order Butterworth lowpass filter

followed by a 4
th

power memoryless nonlinear operator,

followed by a 4
th

order Chebyshev lowpass filter, as

shown in Figure 3.  This system is a common model for

Figure 3.  Black-box system.

satellite communication systems in which the linear

filters model the dispersive transmission paths to and

from the satellite, and the nonlinearity models the

traveling wave tube (TWT) transmission amplifiers

operating near the saturation region:

The truncated Volterra adaptive filter relation used to

model this system is given in equ. (7). The learning

curves for this example are given in Figure 4. Note that

Figure 4 also includes results for the modified PSO

(MPSO) and the genetic algorithm (GA) to provide

further comparisons.
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It is observed from Figures 2 and 4 that for these

nonlinear system identification examples the

conventional PSO stagnates, while the PSO-LMS

continues to improve from the stagnation point of the

conventional PSO at a rate similar to CON-LMS. The

convergence speeds of the LMS based algorithms are

more rapid in these cases because the coefficients are

linear combinations of the ranked-ordered input terms,

and do not suffer from the same nuances as the LMS-IIR

algorithms. Again, MPSO is capable of achieving the

best performance with relatively small population sizes.

The relatively high minimum MSE obtained in Figure

4 is a result of the adaptive filter being a poor model for

the plant and has no reflection on the performance of the

algorithms. The algorithms are functioning well on the

error surfaces, blind to the actual structure of the filter.
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Figure 4.  Black-box Volterra identification.
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