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Abstract - This paper investigates design strategies for achieving
reliable performance in low power VLSI adaptive filters that are
prone to transient errors due to increasingly smaller feature
dimensions and supply voltages of the CMOS circuits. First it is
shown that a well known stochastic search algorithm, the Genetic
Algorithm, has an inherent resistance to transient (soft) errors
that may occur due to feature scaling. It is then shown how
modular hardware can be designed with residue number system
(RNS) coding to provide improved resistance to transient (soft)
errors in low power realizations of adaptive filters that optimize
the filter parameters via the Genetic Algorithm.

I. INRODUCTION AND BACKGROUND

Achieving improvements in terms of speed, power and
integrating complex systems on a single chip have been the
chief motivating factors behind the continuous CMOS
technology scaling. In addition to providing better
performance and means to integrate complex systems on a
single chip, scaling has resulted in the onset of many problems
that affect the reliability of such circuits. The reduced feature
sizes, increased pipeline depths and lower noise margins result
in increased occurrence of soft or transient errors in nano scale
circuits. The impact of atmospheric radiation and electrical
noise effects on scaled down devices has been a widely
researched subject [1, 2]. Many solutions have been proposed
to solve the transient error problem at the circuit [3] and
algorithm levels [4].

As scaling continues in the deep sub micron feature sizes
there has been an increase in the quiescent power consumption
due to an increase in leakage power and the dynamic power
per transistor not decreasing at the rate expected. This
coupled with high transistor density results in an alarming
increase in power density and, consequently, higher operating
temperatures on the chip [5]. Increased operating temperature
directly affects the long term reliability of the chip. The
various ageing phenomenon exhibit an exponential
dependence on operating temperatures [6]. In [6] the adverse
impact of scaling on ageing is explored in detail. The higher
impact of ageing in scaled down devices results in a greater
chance of occurrence of a permanent fault in these devices.

When adaptive echo cancellers, channel equalizers, noise
cancellers, and LPC data compressors are implemented in
nano-scale VLSI circuits there is a concern about how such
systems will perform in the presence of both transient and
permanent errors. Previous work has shown that in many
circumstances transient errors have the effect of resetting the
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system to arbitrary initial conditions. In this case the adaptive
system will re-adjust to meet the minimum MSE criterion and
thereby bring the system back to a converged condition.
However, there are other circumstances when transient errors
can drive the system into instability, resulting in permanent
system failure.

Section II reviews the principles of the Genetic Algorithm
and discusses how this type of stochastic search algorithm
achieves inherent fault tolerant behavior. Section III
introduces fault tolerance for soft errors through hardware and
arithmetic modularity via residue number system (RNS)
arithmetic. It is shown how the error magnification property
of redundant RNS coding enhances the ability of the GA
strategy to maintain fault tolerance. Finally Section IV
presents some experimental examples that demonstrate the
fault tolerant behavior of GA-based adaptive filters operating
with RNS arithmetic.

II. ERROR RESISTANCE OF EVOLUTIONARY ALGORITHMS

Evolutionary algorithms (EA) begin with a random set of
possible solutions (the unknown parameters to be optimized),
termed the population [7]. Each possible solution in the
population is termed an individual. Each individual's set of
parameters is termed a chromosome or genome, and each
parameter is termed a gene. Depending on the nature of the
problem, the chromosomes may represent real numbers or can
be encoded as binary strings.

At every generation, the fitness of each individual is
evaluated by a predetermined fitness function that is assumed
to have an extremum at the desired optimal solution. An
individual with a fitness value closer to that of the optimal
solution is considered better fit than an individual with a
fitness value farther from that of the optimal solution. The
population is then evolved based on a set of principles rooted
in evolutionary theory such as natural selection, survival of
the fittest, and mutation. Natural selection is the mating of the
fittest individuals (parents) within the population to produce a
new individual (offspring). This equates to randomly
swapping corresponding parameters (crossover) between the
parents to produce a new, potentially better fit individual. The
new offspring then replace the least fit individuals in the
population, which is the survival of the fittest facet of the
evolution. A portion of the population is then randomly
mutated in order to add new parameters to the search. The
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expectation is that only the offspring that inherit the best
parameters from the parents will survive and the population
will continually converge to the best possible fitness that
represents the optimal or suitable solution. Several EA
paradigms exist such as the genetic algorithm, evolutionary
programming, and evolutionary strategies; each emphasizing
only specific evolutionary constructs, encoding, and operators.

In the examples presented in Section IV a real-coded
version of the GA is used based on that suggested in [8]. This
particular variation of the algorithm was chosen due to its
enhanced convergence speed. The scheme uses a ranked
elitist strategy, where the K fittest members of the population
of P individuals are used to generate offspring, which replace
the remaining least fit members of the population. For each
offspring, two of the K parents are selected randomly and the
crossover is performed by a random weighted average of each
parent's coefficients. A portion of the offspring is randomly
mutated using a Gaussian distribution with a progressively
decreasing variance to aid the convergence of the population.

This process is illustrated in equation (1) below:

offspringk = diag[sl,s2,...ISRI * parenti

+ (I- diag[sl,s2,...sR])parentJ for k=P,. P-K

+ mutationk (1)

where offspring is the generated vector of new parameters,
parenti and parentj are the vectors of parent parameters (ij) E
[1, K], i1j), mutation is a sparse vector of random mutation
values, and the Sr is a vector of random numbers E (0,1). The
optimum K reflects the convergence speed and is problem
dependent.

The structure of the GA algorithm makes it inherently fault
tolerant to transient errors in the updating of the parameters
during the crossover and mutation operations, and also to
transient errors that might occur in the filter calculations for
each member of the population. Transient errors introduce
effects that are similar to crossover, as well as to the mutation
of selected members of the population. If a transient error does
not significantly damage the fitness of a particular individual,
that individual continues to influence the population as the
stochastic search progresses. However, if a transient error
produces a seriously unfit individual its influence is eliminated
from the search process since the erroneous particle will not be
selected in subsequent search updates.

III. FAULT TOLERANCE BASED ON RNS ARITHMETIC

Additional fault tolerance can be introduced into VLSI
chip designs through the use of residue number system (RNS)
coding. A general class of RNS arithmetic is constructed as a
direct sum of simple modular structures (either fields or rings)
that have moduli that are pairwise relatively prime integers
(i.e. no two have a non-unity common factor). If R(M) is a
modular ring that defines the computational range of a
particular signal processing task, where M = mm2...mL andM
= (M1, m2,.. ., mL} is the moduli set, then the arithmetic

within the RNS is defined by:

(XI-...¢XL)*(Yl ....YL) =(Z1I-.-ZL)
and zi = (xi * yi) mod mi for i = 1,. ., L,

(2a)

(2b)

where * denotes addition, subtraction or multiplication. Since
zi is determined entirely from xi and yi, RNS arithmetic is
carry-free in the sense that there is no propagation of
information from the ith digit to the jth digit for i . j. The lack
of carry propagation in residue arithmetic systems means that
an error occurring in one digit cannot be propagated into other
digit position during subsequent operations of addition,
subtraction, or multiplication. Therefore the modularity of the
arithmetic provides error isolation that limits the propagation
of errors between the RNS modules [9].

In order to enable RNS error detection redundancy is
provided by including extra moduli that provide dynamic
range beyond what is needed for the actual computation.
Suppose that one redundant modulus is appended to the
original moduli set, creating a total ofL+1 moduli. All ofthe
L+1 moduli must be pairwise relatively prime to ensure a
unique representation for each state in the RNS code. It is
well established that the addition of one redundant modulus,
such that mL+1 > ml, i = 1, . . . L, is necessary and sufficient
to provide error detection capability for all single residue digit
errors.

Error detection is typically implemented by converting an
RNS number to an associated radix representation aL . ai,
where the ai's are defined by:

x = aL(mLl mI) + . + a2m2+ a2 (3)
If no errors occur x will be constrained to the legitimate range
[0, M-1]. However if any one of the RNS digits is corrupted
by an error the result will be mapped into the illegitimate
range [M, MR-I], where MR= mL+M. Therefore single RNS
digit error detection is achieved through single digit
redundancy (SDR) and a simple check via mixed radix
conversion [10].

Modularity of an RNS arithmetic code introduces three
important properties that aid in managing the effects of
transient errors:

i) Hardware modularity - RNS arithmetic is executed in short
word length modules that tend to break long delay paths and
result in fewer interconnects. Also, RNS designs have the
capability to reduce power consumption in VLSI
implementations [11].

ii) Arithmetic modularity - Modularity results in the lack of
error propagation among modules and facilitates error
detection strategies that are not so easily implemented in
conventional long (2' s-complement) word length
processors.

iii) Error magnification - RNS error magnification occurs
because all single digit errors map the erroneous result to
large values. When used in the design ofGA-based adaptive
filters this property tends to make the erroneous result
become an unfit member of the population, and hence it has
little influence on the stochastic search algorithm.
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The error magnification property is formally established by
the following theorem:

Theorem: Let an RNS set ofmoduli M = {mI,m2. mL} be
augmented with one redundant modulus mL+1 such that mi <
mj+1 for i = 1, ., L. Let x = xIx2 .. xL+l be the RNS
representation of a number x E [0, M-1]. If a single digit error
occurs in one of the residue digits xi, i = 1, ., L+1, RNS error
magnification will cause the erroneous x, to be mapped into the
illegitimate range [M, MR-1].

Proof: The Chinese Remainder Theorem (CRT) defines how a
residue number XIX2 XL+1 is mapped into the corresponding
computational ring R(MR), as shown below:

(x)mod MR ( i(miXli)modm )mod MR (4)

L+i

where MR ]7Jm i,
i=l

MLI and x E [O, MR -1] -

mi

Note that the size ordering of the inl's implies that:

mL < ... < m2 < ml

Let e' = (lil-'ei)mod mi, where x' = xi + ei1

Then Ei = iiei, where0-ei-mi-1 (5)
is the error that occurs in xe due to the single digit error el that
occurred in xi. From equation (5) the maximum and minimum
errors in xe can be determined:

(minimum error from the ith digit): E min=

(maximum error from the ith digit): E MR -m
(overall minimum single digit error): Emin M
(overall maximum single digit error): Emin MR M

Therefore M C e1 C MR - M, which implies thatxe is mapped
to the interval [M, MR- I ]. Q.E.D.

Note that the RNS error magnification property can be
seen in equation (5) where the error ei is multiplied by ii,
which is a relatively large factor for every value of i. The
RNS signed computational range, the RNS legitimate and
illegitimate ranges, and the single digit error ranges are
illustrated in figure 2.

IV. EXPERIMENTAL EXAMPLES

To illustrate error magnification in a redundant RNS an
example of a 233-tap FIR notch filter is presented in figure 3
and 4. This filter is used to eliminate noise from the
frequency band 1.20 - 1.30 MHz. in a random noise radar
system. The filter was implemented in a redundant RNS with
moduli (71, 79, 83, 89, 97}, where 97 was defined to be the
redundant modulus. In figure 3a the output of the RNS-SDR
filter is shown operating on a noisy input signal without the
occurrence of transient errors. In figure 3b the output of the
filter is shown with RNS single digit transient errors occurring
at iteration n = 1000 and held in the same error condition for

100 iterations. In figure 4 the simulation was repeated with
randomly occurring single digit errors. In both cases during
the occurrence of the errors the output of the filter is
magnified (i.e. it is mapped into the illegitimate range),
thereby revealing that a single digit error has occurred. It is
also shown in figures 3c and 4b that during the occurrence of
the errors the highest order mixed radix digit aL,1 becomes
nonzero, thereby providing a direct error detection
mechanism.

Experimental results showing the fault tolerant behavior of
an adaptive filter using the GA adaptive algorithm
implemented with redundant RNS arithmetic are presented in
figures 5 - 8. In these experiments each of the individual
filters was implemented in RNS arithmetic, although the
updates were implemented in 2's-complement binary
arithmetic. These experiments all used a population of 10 and
a K factor of 3. All were implemented in the same RNS
system used in the previous FIR filter example. Figure 5
shows the baseline (error free) learning curve for a length N =
4 FIR adaptive filter used in the system identification
configuration to identify an FIR system with a unit pulse
response of h = [2.0, -0.5, 0.5, 1.0]T.

In figure 6 the previous experiment was repeated but with
a single RNS digit error introduced randomly during the
calculations performed in 3-out-of-of- 10 individual filters.
Note that the adaptation rapidly recovers as the erroneous
(unfit) individuals are removed from the population due to
their poor fitness values. Figures 7 and 8 show extreme cases
where transient errors were created at iteration 10 in 8-out-of-
10 and 9-out-of-10 individual filters. In each case there are
transient disturbances in the learning curve, after which the
adaptation rapidly recovers.

Finally, figures 9-11 show repeats of the previous three
experiments where 3-out-of-10, 8-out-of-10, and 9-out-of-10
of the individual filters were corrupted at iteration 10 by
single transient errors. In these final three experiments RNS
arithmetic was replaced by normal real arithmetic so the RNS
error magnification effect was removed from the adaptive
process. By pairwise comparing the results of figures 6 & 9, 7
& 10, and 8 & 11 it is seen that in each case the RNS
arithmetic resulted in faster post-error convergence than the
results obtained with real arithmetic. In all experiments that
were conducted rapid error recovery was seen in the
adaptation process and the convergence rate appeared to be
enhanced by the error magnification property provided by
RNS single digit redundancy.
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Figure 3. Error magnification of burst errors in a 233-tap FIR notch
filter used in random noise radar (notch from 1.2-1.3 mHz).

a) random transient

b) nonzero mixed radiy digit i->

Figure 4. Error magnification of transient errors in a 233-tap FIR
notch filter used in random noise radar (notch from 1.2-1.3
mHz). Note that a5 . 0 on iterations when errors occur.
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Figure 2. Distribution of single digit errors in a redundant RNS.
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Figure 6. Learning curve for the GA with transient errors in three
members of the population (RNS arithmetic).
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Figure 7. Learning curve for the GA with transient errors in eight
members of the population (RNS arithmetic).
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Figure 9. Learning curve for the GA with transient errors in three
members of the population (real arithmetic)
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Figure 10. Learning curve for the GA with transient errors in eight
members of the population (real arithmetic)
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Figure 8. Learning curve for the GA with transient errors in nine
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Figure I11. Learning curve for the GA with transient errors in nine
members of the population (real arithmetic).
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