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Abstract

Recent advances in neuroimaging methods have improved

our ability to explore the neurological processes underlying

speech and language. As a result of these investigations, it is

now possible to decode aspects of speech directly from

neural activity toward the development of neuroprosthetic

devices for individuals with severe neuromuscular and

communication disorders. Much of what is known about the

neural correlates of speech articulation and perception is

based on lesion and cortical electrical stimulation studies, as

well as modern non-invasive neuroimaging. Though extremely

important to the current understanding of brain function,

traditional neuroimaging methods are primarily limited by

the spatial and temporal resolution of the imaging technique.

Electrical activity measured from the cortex, or electro-

corticography (ECoG), offers several advantages over other

neuroimaging modalities for characterization and real-time

decoding of brain activity. Specifically, ECoG is well-suited

for the study of speech and language owing to its unique

spatial and temporal resolution capabilities that allow it to

accurately capture the fast-changing dynamics of the large

cortical networks underlying speech processing. This review

presents the current progress of ECoG-based speech characteri-

zation and decoding studies, including an overview of

prior neuroimaging studies, ECoG representations of speech

production and perception, and a discussion of future directions.
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INTRODUCTION

While the neural correlates of speech processing have been

investigated for several decades, recent research has focused

on investigating the possibility of decoding speech directly

from neural activity. Currently, close to two million people in

the United States, and far more worldwide, have significant

verbal communication deficits as a result of severe neuromuscular

impairments due to injury or disease [1, 2]. Communication

impairments can originate from neurodegenerative disorders

that affect the motor production and articulation of speech,

such as amyotrophic lateral sclerosis (ALS), or from language

disorders that affect the cognitive production or comprehension

of language, such as various forms of aphasia [3]. One goal of

characterizing neural activity during speech production and

comprehension is to develop neurotechnological applications

to restore communication to those affected by speech and

language disorders. The majority of neuroimaging studies of

communication have used functional magnetic resonance

imaging (fMRI) and positron emission tomography (PET) to

localize the neuroanatomy involved in speech and language

[4], while noninvasive electromagnetic techniques such as

magnetoencephalography (MEG) and electroencephalography

(EEG) have additionally provided information related to the

temporal patterns of activation. In particular, fMRI and PET

have greatly contributed to the understanding of speech

processing in the human brain. However, such techniques that

rely on measurements of hemodynamic responses (timescale

of 4-6 seconds) are unable to capture the rapid temporal

dynamics of natural speech (phoneme productions are often

< 200 ms). Electrocorticography (ECoG), the measurement

of electrical activity from the cortex, has become a highly

promising neural signal acquisition modality for studying

speech and language processing due to its capability to

provide high spatial and temporal resolution [5]. Ultimately,

the unique information offered by ECoG can potentially be

used to develop neuroprostheses that will decode intended

speech for expressive communication or represent perceived
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language information directly using neural activity to

augment receptive communication. This review begins with

an overview of prior neuroimaging and lesion studies that

serve as foundation for the neural correlates of language.

ECoG is then introduced with an emphasis on recent speech

characterization and decoding studies. Finally, the review

concludes with a discussion of future directions of speech

research and development using ECoG.

Revealing neural correlates of language

Prior to the development of functional neuroimaging techniques,

identification of language areas in the human brain was

based on studies of deficits in patients with neurological

damage or patients undergoing electrical stimulation during

neurosurgery [6]. The process of identifying parts of the

brain involved in language processing began as early as

1861, when neurosurgeon Paul Broca studied the brains of

nine patients with lesions and concluded that the expressive

language centers present in most humans are located in the

posterior inferior frontal gyrus of the left hemisphere, in an

area now known as Broca’s area [7]. A decade later, another

renowned neurologist, Carl Wernicke, discovered that the

posterior part of the left temporal lobe is involved in the

comprehension of language. This region is now known as

Wernicke’s area [8]. Other researchers have also developed

functional models of speech that describe the speech-related

neural areas and their functional significance [9, 10]. These

models have identified the functional network consisting of

the pre-motor cortex, primary motor cortex, Broca’s area,

primary auditory cortex, Wernicke’s area, and superior temporal

gyrus (STG) to be involved in the planning and production

of speech and in the perception of speech (see Fig. 1).

Neuroimaging techniques such as PET or fMRI are also

used to identify the neural correlates of speech processing by

the human brain [4, 11-15]. PET imaging involves the use of

positron-emitting isotopes as tracers to detect changes in

cerebral blood flow and volume in response to a stimulus [16].

For speech processing, a stimulus might be the presentation

of acoustic speech or the preparation and execution of a

speech motor task. The spatial resolution in PET imaging is

approximately 6 mm, while the temporal resolution is between

tens of seconds to several minutes. In contrast, fMRI imaging

results from changes in the blood oxygenation level due to

the metabolic activity of neuronal tissue without the use of a

radioactive tracer. The spatial resolution of fMRI ranges from

1-4 mm and the temporal resolution is between hundreds of

milliseconds to seconds.

Studies have investigated the neural bases of speech

production as well as the perception of speech using scalp

EEG [17-19]. Due to the comparatively low signal-to-noise

ratio of EEG, time-locked averages known as event-related

potentials (ERPs) are needed to capture the relevant brain

responses. ERPs have been successfully used to study the

temporal evolution of the phonological and lexical processes

in the human brain corresponding to speech production and

perception [17-19], but not during active speech production

due to contamination from myoelectrical artifacts. While

noninvasive measures such as EEG and MEG can theoretically

offer adequate temporal resolution, factors such as spatial

resolution on the order of centimeters, spectral bandwidth on

the order of 80 Hz, and susceptibility to electrical artifacts

severely limit the utility of these modalities for investigating

the joint spatiotemporal dynamics of brain activity.

The excellent spatial resolution of fMRI and PET and the

temporal resolution of EEG and MEG have provided theoretical

and computational models that highlight the spatial topography

and functional connectivity of the brain networks involved in

speech production and comprehension [4, 17-20]. The results

of these studies highlight the interconnectedness of neural

networks for speaking, of which the traditional Broca’s and

Wernicke’s areas play a crucial role in production and

perception, respectively [4, 20]. New advances in intracranial

measurements of electrical activity such as ECoG can

simultaneously capture the spatial and temporal neurological

dynamics of speech and language processing, with respective

spatial and temporal resolutions that are equivalent or superior

to those obtained using standard noninvasive neuroimaging

and electrophysiology techniques. This provides a new

opportunity to observe and characterize the cortical speech

network during production and perception tasks, which can

lead toward the development of improved real-time decoding

models and eventually neural prostheses for speech and

language applications.

Fig. 1. The areas of the cortex involved in speech perception and
speech articulation, shown on a generic brain using color maps
that show approximate locations of the different areas. The pre-
motor area, primary motor area, and Broca’s area are involved in
speech preparation and articulation while the posterior and middle
superior temporal gyrus, the posterior middle temporal gyrus and
Wernicke’s area are associated with speech perception and
processing. Adapted with permission from reference [21]. 
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The electrocorticogram

Signal acquisition and characteristics

ECoG measures the electrical activity of the brain recorded

by electrodes placed directly on the surface of the cortex.

ECoG was originally developed by neurosurgeons W. Penfield

and H. Jasper in the 1930’s as a technique for localization of

epileptic seizure foci prior to surgical resection [22]. Modern

ECoG typically uses platinum electrodes with a diameter of

4 mm that are implanted as either two-dimensional grids

(e.g., 8×8 electrodes) or one-dimensional arrays (e.g., 4 or 6

electrodes) with an inter-electrode distance of 10 mm [23], as

shown in Fig. 2. In addition to standard clinical ECoG arrays,

micro-ECoG arrays (center-to-center distance of 4 mm or

less) have also been used in recent studies to improve spatial

resolution [24-27]. An example of a microgrid array is also

shown in Fig. 2.

ECoG recordings are well-suited for basic neuroscience

research as well as for neural decoding studies. The recording

characteristics of ECoG include: (1) spatial resolution on the

scale of millimeters (activity is related to the neural tissue

directly beneath the electrode disk), (2) frequency bandwidth

up to 200 Hz or higher, (3) an amplitude up to 100 µV

compared to near 20 µV for EEG, and (4) reduced sensitivity

to movement and myoelectrical artifacts compared to EEG

and MEG [23]. Due to higher signal amplitudes and lower

sensitivity to artifacts, ECoG signals also have higher signal-

to-noise ratios (SNRs) compared to EEG. Compared to

electrodes that penetrate the cortex, it is believed that ECoG

is less likely to suffer from adverse tissue reactions and

electrode encapsulation issues [28] that can degrade signal

quality over time because ECoG does not breach the cortex

[29, 30]. The superior bandwidth of ECoG compared to EEG

is particularly important because modulations of the 70-

180 Hz gamma-band range have been shown to be highly

correlated with perception, cognitive function, and motor

tasks [31-35]; including learning, memory and speech [21,

36-57]. These studies demonstrate the promising real-time

decoding potential of ECoG. 

Signal processing and feature extraction

To date, the most relevant information or features of ECoG

are based on its spectral dynamics. ECoG recordings typically

require preprocessing to condition the signals for further

analysis. A spatial common average reference (CAR) filter is

commonly applied to remove any undesirable noise, fluctuations,

and artifacts that may be present in all channels over a region

[36, 37, 43, 46]. Signals are then high-pass filtered starting

between 0.5-2 Hz to further attenuate low-frequency

fluctuations and heartbeat artifacts [44, 46]. The signals are

also notch or comb filtered at harmonics of 60 Hz (or 50 Hz

as appropriate) to eliminate power line interference [40, 42-

46]. Furthermore, any trials or channels that show excessive

fluctuations, presence of outliers, low SNR, or are overlying

pathological tissue are generally removed to ensure that

these trials or channels do not bias the analysis [40, 44, 46].

Following the preprocessing stage, more advanced signal

processing techniques are used to extract the relevant

spectro-temporal features for further analysis. The signals are

typically transformed to the frequency domain using a Discrete

Fourier Transform (DFT), auto-regressive (AR) model, or

band-power filtering [36, 37, 43]. To date, the gamma band,

from approximately 30 Hz to 200 Hz, has provided the most

informative description of the neural processes underlying

speech. Within this frequency range, modulations of the

high-gamma band, from approximately 60-80 Hz to 150-

200 Hz, have been identified as highly correlated with speech

production and perception. This range of frequencies is of

particular interest in ECoG because it is not detectable with

the limited spectral ranges of other neural signal acquisition

techniques such as scalp EEG [23]. Nevertheless, ECoG is

also well suited to examine the delta (<4 Hz), theta (4-8 Hz),

alpha (8-12 Hz) and beta bands (12-30 Hz) in the context

of speech production and perception in the human cortex

[21, 36], and often results in superior signal quality due to

the reduction of electrical artifacts compared to EEG.

The extracted spectro-temporal ECoG features have been

used to both study and decode neural activity during speech

production and perception. For studies of the spatial

Fig. 2. Macro and micro ECoG arrays. (a) Standard clinical macrogrid. (b) Surgical placement of macrogrid. (c) Microgrid array. (d)
Schematic of microgrid array. Adapted with permission from reference [23].
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characteristics of the speech network, recorded signals from

electrodes at different locations over the cortex are compared

against a reference signal (e.g., recorded speech) using statistical

techniques such as correlation analysis or analysis of variance

(ANOVA) [21, 36, 37, 40, 43, 45-48]. To obtain the temporal

dynamics of these spatial networks, ECoG signals from each

channel are compared to the reference signal at different time

latencies relative to the onset of speech articulation or the

presentation of speech stimuli to quantify the neural processing

involved in the production and perception of speech,

respectively [43, 45]. Decoding articulated or perceived

speech from ECoG generally requires additional advanced

signal processing and machine learning techniques to produce

the desired speech outcome. Some recent attempts at speech

decoding using these approaches are discussed in the ‘ECoG-

based decoding’ section of this article.

Neural dynamics of speech and language processing

using the electrocorticogram

Numerous studies have investigated cortical activity using

ECoG during various speech tasks to identify the cortical areas

and networks involved in speech production and perception,

which create the groundwork for speech decoding. The

following sections summarize the studies focusing on the

identification of spatial and temporal dynamics of ECoG

during speech production and perception. 

Spatial characterization of speech production 

A recent study by Bouchard et al. (2013) examined modulations

of the ECoG high gamma-band during production of

consonant-vowel syllables to investigate the phonetic

organization of the speech sensorimotor cortex [41]. Spatial

patterns of cortical activity showed that the gamma band

activity recorded by electrodes over the sensorimotor cortex

was present with different spatial organizations for consonants

versus vowels. The spatial patterns also confirmed prior

neuroimaging findings that speech is produced through the

coordination of a distinct set of articulatory representations

in the ventral sensorimotor cortex. In another study, Pei et al.

(2011) analyzed the high-gamma power of ECoG signals

recorded while subjects overtly or covertly repeated words

presented acoustically or visually [37]. Overt word production

was associated with high-gamma power changes in the

superior and middle parts of the temporal lobe, Wernicke’s

area, Broca’s area, the pre-motor cortex and the primary motor

cortex. Covert word production, in contrast, was associated

with high-gamma changes in the superior temporal lobe and

the supramarginal gyrus. This study provided corroborating

evidence for an overt speech production network identified

in prior neuroimaging studies [4], but conflicted with prior

accounts of covert speech, which merely suggested that the

speech network was reduced in size and strength for the

covert condition as compared to the overt condition [4, 12].

This study also demonstrated weaker and less distributed

cortical activations during the covert speech condition, but in

certain areas, in particular, the superior temporal lobe, no

significant difference in activation was found between the

overt and covert conditions. This study, thus, highlights the

important role played by the superior temporal lobe during

covert speech production. The neural correlates of verb

generation and noun reading have also been investigated

using an analysis of the ECoG high-gamma band [42]. The

results of this study showed that activation was found in the

primary mouth motor area, STG, and Broca’s and Wernicke’s

areas, which agrees with previously identified regions involved

in speech production.

Spatial characterization of speech perception

ECoG has also been used to explore the differences between

the processing of speech and non-speech auditory stimuli,

such as tones, in order to primarily highlight the importance

of the human cortex in processing both the acoustic and the

phonological aspects of speech. One of the early ECoG

speech studies based on speech perception by Crone et al.

(2001) explored the temporal and spatial activations of the

cortex in response to perception of speech (phonemes) and

non-speech (tones) stimuli [36]. This study found that

activations in the primary auditory cortex and STG occur in

the gamma band, and to a higher extent in the high gamma

band, during phoneme discrimination. For the tone stimuli, it

was found that increases of the gamma power occurred in

fewer electrodes (i.e., smaller spatial extent) and with lower

magnitudes than for phoneme stimuli. This effect was

particularly noticeable in the left STG, which highlights the

importance of the left hemisphere auditory cortex in speech

processing as compared to non-speech auditory processing,

and confirms results from earlier lesion studies that investigated

tone perception. 

Additional studies have supported the claim that processing

of incoming auditory stimuli results in an increase in high-

gamma activations in the left STG [44], and have elucidated

the importance of the speech envelope in speech comprehension

[43, 45]. The speech envelope is the rectified speech waveform

that fluctuates with speech intensity (e.g., loudness), phonetic

content, and rhythmic cadence that is vital for understanding

fluent, conversational speech. ECoG has the requisite spatial

and temporal resolution to study this quickly changing

speech signal, and prior work has found that ECoG in the

belt areas of the auditory cortex (i.e. the areas lying relatively

early in the auditory pathway) tracks modulations in the

speech envelope as well [43]. This provides evidence that

cortical signals closely represent the acoustic features of

speech, and paves the way for future studies to investigate

finer temporal aspects of speech processing in the cortex. An
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important study by Canolty et al. (2007) showed that the

high-gamma activity in the ECoG tracked the spatiotemporal

dynamics of word processing while subjects listened to a

stream of verbs associated with the hand and the mouth [46].

From this study, it was found that the perception of verbs

activates the posterior and middle STG as well as the

superior temporal sulcus (STS), which supports previous

studies that found evidence that the STG is largely involved

in speech comprehension. 

Other studies have attempted to investigate the cortical

responses to altered speech feedback to identify the neural

dynamics of sensory processing for error detection and

correction. One particular study by Chang et al. (2013)

recorded speech from subjects, and then later played back

these recordings with slight perturbations in the pitch to the

subjects while they were speaking [47]. It was found that the

cortical responses in the posterior STG were suppressed

while listening to unaltered feedback, but enhanced in

response to the pitch-altered feedback, which corroborates

results from a previous study which demonstrated the same

effect in the EEG auditory response [58]. With ECoG it was

possible to localize this change directly to the auditory cortex,

while EEG only provided indirect evidence of auditory cortex

involvement. The subjects were found to compensate for the

altered pitch in the stimuli by changing the pitch of their

speech. Furthermore, these vocal changes made by the

subjects were predicted by their auditory cortical responses

to the altered pitch stimuli. This neurological relationship

provides evidence for the sensorimotor control of articulation

in humans through the coordination of various cortical areas.

Temporal evolution of speech: from planning and production

to perception

Recent studies have attempted to use language tasks that

involve both speech production and perception to simultaneously

analyze both expressive and receptive speech areas [48-50].

Analyzing high-gamma band ECoG activity, it was shown

that the activation associated with listening was limited to

STG and areas in and around Wernicke’s area. Activation

associated with spoken word production was found in the

sensory or mouth motor regions as well as Broca’s area. It

can be concluded from the combination of all these studies

that, broadly, different areas of the cortex are activated by

motor speech production and speech perception, as illustrated

in Fig. 1. The areas involved in speech articulation are the

pre-motor cortex, which is mainly involved in planning; the

face-mouth-motor regions, involved in generating mouth

movements necessary for speech articulation; and Broca’s

area which is involved in speech planning and articulation.

The areas of the cortex primarily involved in speech

perception and comprehension are STG and Wernicke’s area.

Analysis of the temporal dynamics of ECoG signals during

speech perception shows that the posterior STG is activated

first, followed by the middle STG, and then the STS [46].

The spatial characterization results found by these studies

analyzing both speech production and perception simultaneously

further support results from the studies investigating speech

production and speech perception independently, discussed

in the previous two sections of this article, respectively. 

ECoG-BASED DECODING

The aforementioned studies provide a framework for associating

ECoG recordings (namely the high-gamma band power) with

the behavioral tasks of speech production and perception.

Fig. 3 illustrates the concept of training a neural-based

decoding model using overt speech for reconstruction of

imagined speech. This concept represents the basis of a

speech neuroprosthetic device. The decoding model may

Fig. 3. Speech decoding model. (a) ECoG signals serve as the input to a neural-based decoding model that is trained using
representations of recorded overt speech (e.g., time series, spectrogram, etc.) to ideally reconstruct the overt speech directly from the
ECoG signals. (b) In principle, a version of the trained decoding model would be used to generate imagined speech directly from ECoG
signals in real time. The model may be trained using overt speech or through some prior characterization of imagined speech, since there
is no behavioral output during imagined speech. 
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perform a continuous reconstruction of the speech or a

discrete classification and output of phonemes, words, etc.,

depending on the objective and constraints of the system.

While it may be possible to decode individual words or

phrases discretely, extending such models becomes highly

dependent on the desired vocabulary and can become

intractable. Alternatively, the ability to decode formants or

phonemes will enable the creation of generative models that

are not limited to a fixed vocabulary. In any case, effectively

developing and transferring an overt speech-trained model to

imagined speech remains an active research challenge since

the neural representations of overt and imagined speech are

not identical. 

In terms of decoding perceptual information, one potential

application lies in the development of a practical auditory

neuroprosthesis. A practical auditory decoder should demonstrate

the ability to segregate and process attended sound streams

from irrelevant signals from more than one point in space in

a complex acoustic environment, such as in a hospital setting

or a restaurant. This ability would expand the active space of

the signal, allowing for more natural communication when

competing multi-talker streams exist in the acoustic space.

Additionally, perceptual decoding could be used to enhance

the speech production decoder by accounting for the

production-perception feedback loop [47, 49]. The following

sections discuss attempts to decode, or predict speech behavior

directly from ECoG activity. These studies represent the initial

steps toward the development of real-time neuroprostheses

for speech and language. 

Decoding of overt speech production

Speech production is a complex process that is initiated by

linguistic processing and results in articulated speech, which

can be further broken down into sentences, words, syllables,

vowels, consonants and finally, into phonemes. The following

speech decoding studies have investigated the decoding of

these various levels of speech production. A study by Wang

et al. (2011) showed an increase in gamma power over

Broca’s and Wernicke’s area during picture naming and

property identification [50] that was used to decode the

semantic category associated with each stimulus. In this study,

ECoG was recorded from four subjects as they participated

in a picture naming task, where they were presented with

pictures of objects from different semantic categories, such as

food, tools, dwelling and body parts, varying from subject to

subject. Two popularly used machine learning techniques, the

Gaussian Naive Bayes Classifier and the linear support vector

machine (SVM), were then used to decode the semantic

category that the subjects named from the ECoG activity,

resulting in accuracies as high as 74% (chance level 33%).

A study by Kellis et al. (2010), which involved the use of

micro-ECoG electrodes implanted over the facial motor

cortex and Wernicke’s area, attempted to classify 45 possible

pairs among a set of 10 words that a subject was articulating.

The power spectra of the ECoG data and principal component

analysis (PCA) were used to maximize the variance between

the classes of words being identified [24]. The electrodes that

led to the best classifier performance were selected to improve

classification of word pairs, which demonstrated that electrodes

implanted over the face-motor cortex resulted in better

classification (40 of the 45 word pairs classified with an

accuracy of 80% or higher, chance level 50%) than did the

electrodes implanted over Wernicke’s area (15 of the 45

word pairs classified with an accuracy of 80% or higher).

This may be explained by the role of the face-motor cortex

in the control of mouth movements required for speech

articulation.

A study by Pei et al. (2011) examined ECoG signals to

classify four vowels and nine pairs of consonants from a closed

set of spoken whole words, and achieved 10-fold cross-

validation classification accuracies up to 43% for vowels and

49% for consonant pairings, which were both significantly

better than chance (chance level 25% for both) [51]. This

study used the technique of maximum relevance and minimum

redundancy (MRMR) to select the top 35 or 40 ECoG

features for decoding consonant pairs or vowels respectively,

using the Naive Bayes Classifier. A recent study by Kanas et

al. (2014) performed spatio-spectral feature clustering of

ECoG recordings in order to detect speech activity from one

subject during a syllable repetition task, achieving an accuracy

of 98.8% [52]. This study used the method of k-means

clustering to group the best power spectral density features

for all the channels and frequencies into clusters. This

grouping was followed by the classification of the ECoG

features using different algorithms, among which the support

vector machine was the most accurate in detecting speech

activity from the related cortical signals. Although the

decoding performed by this study was limited to only speech

versus non-speech detection, it highlights the cortical areas

activated during and the ECoG features best associated with

a syllable repetition task, which paves the way for more

complex speech decoding.

A study by Zhang et al. (2012) used a sentence-level

approach to classify ECoG high gamma responses obtained

from the posterior portion of the inferior frontal gyrus during

the production of two eight-character Chinese sentences with

a 77.5% accuracy of classification (chance level 50%) [53].

Dynamic time warping was used to align the ECoG responses

with the onset of sentence articulation and identify temporal

activation patterns, or ECoG response templates, for the two

sentences. Fisher linear discriminant analysis (LDA) was

used for classification of the two sentences based on the

time-warped ECoG responses, which was then evaluated

using a leave-one-out cross validation technique. This study
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demonstrates the discriminability of high gamma activity

recorded during speech at the sentence level, which is an

important advance toward a neuroprosthesis for fluent,

conversational speech. The studies discussed to this point have

attempted to decode semantic categories, words, vowels,

consonants and sentences in articulated speech from ECoG

activity, and have shown preliminary success in speech

decoding. However, the success rates for these decoding

techniques are still low for a speech prosthesis capable of

operating in natural environments where both decoding speed

and accuracy are of importance.

One possible way to improve the information rate of

speech decoding may be to predict the smallest identifiable

components of speech, called phonemes, which can be

sequenced together to form more complex productions. A

study by Blakely et al. (2008) used micro-ECoG grids to

successfully classify a set of four phonemes, in a pair-wise

fashion, using ECoG high-gamma power [25]. The ten best

channels for classification of each of the phoneme pairs were

found using a correlation-based feature selection technique,

followed by a binary classification with a linear support

vector machine, which was then validated using a 4-fold

nested cross-validation. The study found that different locations

on the cortex were specific to classification of particular

phoneme pairs, thus demonstrating the spatial separation of

phoneme representation in the human brain. Using the best

set of electrodes for each phoneme pair, accuracies as high as

75% for classification of the /ra/ vs /la/ pair and 70% for the

/ba/ vs /wa/ pair (chance level 50% for both), were achieved.

Extending these possibilities further, a recent study by

Mugler et al. (2014) investigated a technique to decode the

entire set of phonemes in American English using ECoG

recordings from four subjects while they produced words

from the modified rhyme test. This test consists of 300

words with similar frequencies of phoneme occurrence as

found in the English language [54]. ECoG feature selection

was performed on the time-frequency features (short time

Fourier Transform features in the mu, beta and high gamma

frequency bands) using an ANOVA and selecting features as

those with the lowest p-values. These features were then

used to classify phonemes using linear discriminant analysis

technique followed by a ten-fold cross-validation to evaluate

the classification performance. For the subject with the best

performance, 36.1% of all consonant phonemes (chance

level 7.4%) and 23.9% of all vowel phonemes (chance level

12.9%) were correctly classified, with a classification rate as

high as 63% for a single phoneme. Another study by Leuthardt

et al. (2011) was able to successfully classify the production

of two phonemes based on the squared correlation of the

ECoG high gamma power during overt speech production

[27]. This was an online study where two subjects produced

two different phonemes to control a one-dimensional cursor

on the computer screen. The cursor was controlled using a

weighted summed value, based on the decoded phoneme

(e.g., one phoneme moved the cursor right, the other left).

Classification rates of 76% and 91% were achieved for the

two subjects (chance level 46.2%).

Decoding of imagined speech production

Because the primary goal of a speech neuroprosthesis is to

restore communication to those who are able to produce little

or no normal verbal communication, it is vital to demonstrate

that imagined or attempted speech can be accurately decoded

from brain activity. Pei et al. (2011) examined ECoG recordings

to classify vowels and consonant pairings during covert word

repetition, achieving classification accuracies as high as 43%

for imagined vowel classification and 46% for consonant

pairs (chance level 25% for both) in imagined speech [51].

This was done using the same technique for feature selection

(MRMR), classification (Naive Bayes Classifier), and evaluation

(10-fold cross-validation) as used for the decoding of overt

vowels and consonant pairs. This was one of the first studies

to demonstrate the possibility of classifying different vowels

and consonants embedded in imagined words directly from

brain signals. Furthermore, the decoding results were similar

for both actual and imagined speech, which provides evidence

that imagined speech can also be decoded from neural

activity. Leuthardt et al. (2011) also investigated online control

of a one-dimensional cursor using ECoG high-gamma power

for an imagined phoneme versus rest task in two subjects

(e.g., imagination of a phoneme moved the cursor right, rest

moved it left) [27]. The feature selection and classification

techniques used were consistent for the overt and covert

phoneme pair identification (discussed in the ‘Decoding of

Overt Speech Production’ section of this article). This resulted

in closed-loop classification accuracies above 69% (chance

level 42.6%) for both the overt and covert conditions, with the

overt condition yielding a performance as high as 91%.

A recent study by Martin et al. (2014) explored the possibility

of predicting spectro-temporal components of imagined

speech from ECoG high gamma power, in a manner similar

to overt speech [55]. In this study, subjects read aloud (overt

condition) and imagined reading (covert condition) short

stories that scrolled across the computer screen. Neural

decoding models were then developed for the overt speech

condition in order to predict two speech feature representations:

(1) a spectrogram-based feature, which is a time-varying

speech amplitude envelope at different acoustic frequencies,

and (2) a modulation-based feature, which is a non-linear

transformation of the spectrogram. Linear decoding models were

developed in order to predict the two speech representations

from ECoG high-gamma activity for the overt condition.

These models were then applied to predict the speech

representations during the covert condition. Dynamic time
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warping was used to align the reconstructed covert speech

representations to the actual overt representations. The

correlation coefficients between the actual and predicted

speech representations for the overt condition, and between

the time-warped actual and predicted speech representations

for the covert condition, were used to evaluate the models.

The reconstruction correlation was found to be statistically

significant in all the subjects for the overt condition. For the

covert condition, the predictions were statistically significant

when compared to the baseline condition. This indicates that

auditory representations of imagined speech can be reconstructed

from models developed for actual speech, showing that both

overt and covert conditions share a common neural basis.

Decoding of speech perception

Other studies have investigated the possibility of decoding

perceived speech directly from cortical recordings. A study

by Zavaglia et al. (2012) analyzed auditory features to build

a forward model of the ECoG responses corresponding to

word and acoustically matched non-word stimuli presented

to the subject [56]. This is done by using a weakly-coupled

oscillator model of transient synchronization (WCO-TS).

The WCO-TS uses the auditory stimulus being presented to

the subject as the input and utilizes the serial nature of word

processing in the human cortex, as demonstrated in [46], in

order to predict the ECoG gamma activity corresponding to

incoming auditory stimuli. Although this is inverse to the

process of speech decoding, i.e. utilizing speech features to

predict neural information, it provides useful information that

may be analyzed to build a direct model for the prediction of

speech features from ECoG. This study also identified a set

of speech features called the “occurrence time” features which

were found to outperform standard cepstral features typically

used in speech recognition, especially in noisy recognition

environments. These occurrence time features correspond to

the occurrence of peaks in specific speech frequency bands

and may be useful in future decoding efforts.

Chang et al. (2010) measured ECoG activity in the

posterior STG using a high density micro-ECoG grid during

the presentation of three consonant-vowel syllables [26]. The

study found that an acoustically varying speech stimulus is

transformed into distinct phoneme categories in the human

cortex. Using this information, they were able to classify three

consonant-vowel syllables from the ECoG signals recorded

across the posterior STG. The dissimilarities between the

neuronal response patterns were determined using a multivariate

pattern classifier which uses L-1 norm regularized logistic

regression, whose classification measures were used to

construct a confusion matrix for each time interval. Multi-

dimensional scaling of this confusion matrix and k-means

were then used to classify the neuronal responses into three

categories that corresponded to the three phonemes. The

results from this study indicate that the posterior STG

performs a critical role in the phonological processing and

categorization of perceived speech. 

A significant contribution for perceived speech prediction

was made by Pasley et al. (2012), in a study that examined

ECoG recordings from the STG to reconstruct the speech

spectrogram of aurally presented words and sentences [57]. Two

representations for the perceived speech were found, similar

to those used in [55], i.e. a spectrogram-based representation

and a non-linear modulation-based representation. Linear

neural decoding models were then developed which used

the ECoG high-gamma power to predict these two speech

representations, leading to linear and non-linear models

respectively. It was found that slow and moderate time

modulations in the speech, such as syllable rate, were

reconstructed well using the linear model, i.e., these modulations

are well-represented with the spectrogram-based representation.

Fast temporal modulations, such as syllable onsets and

offsets, could be better predicted using the non-linear model,

i.e. these modulations are well-represented with the modulation-

based representation. The fidelity of the reconstructions of the

spectrogram were sufficiently accurate to identify individual

words directly from the reconstructed spectrogram-based

speech representations using a simple spectrogram matching

algorithm, leading to a median word identification percentile

rank of 0.89 for 47 words (chance level 0.50).

FUTURE DIRECTIONS TOWARDS THE 

DEVELOPMENT OF A PRACTICAL SPEECH 

NEUROPROSTHETIC

These collections of studies have identified important neural

correlates associated with speech production and perception.

Decoding models have also been successfully developed that

are capable of predicting the essential components of vocal

communication, namely the production and perception of

speech and language directly from cortical activity. ECoG

studies have been especially informative in their ability to

provide a spatiotemporal characterization of the neural

correlates of speech planning, production and perception in

the human cortex. These studies have specifically focused on

the ECoG gamma-band power recorded over language-related

cortical areas, which is significantly correlated with speech

processing and is useful for speech decoding algorithms.

However, the performance of ECoG-based speech decoders

are not nearly as robust as needed for practical ECoG-based

speech reconstruction, which is the ultimate aim of this type

of research. One focus of future ECoG-based speech studies

should include improving computational models of neurological

speech processing for more accurate decoding. New models

will benefit from continued research on the development of
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more advanced signal processing and ECoG electrode design

to capture the recorded signals with higher fidelity. Most of

the studies described in this review have implemented

relatively simplistic linear approaches to characterize and

predict speech components from cortical activity. However,

in reality, it is likely that the relationship between ECoG

activity and the various speech representations of interest are

highly non-linear and dynamic. Therefore, more sophisticated

models based on improved signal acquisition capable of

capturing such non-linear relationships need to be developed

to achieve a more transparent and practical ECoG based

speech decoder. 

The majority of speech and language ECoG studies have been

performed using relatively discontinuous speech production

and listening tasks, such as cued word repetition tasks. These

studies are critical for identifying baseline neurological

activation during speech, but are not fully representative of

fluent, conversational speech. A characterization of the neural

correlates associated with continuous and spontaneous speech

production and perception may provide the supplementary

information needed to develop more advanced models. The

ability to decode perceived speech and articulatory commands

in continuous and fluent communication will represent a

fundamental improvement in the potential impact of a neural

prosthesis for speech. Natural verbal communication often takes

place in the presence of background speech or environmental

noise. The perception and comprehension of speech in

background noise requires additional verbal working memory

and attentional resources to process the target stream and

segregate it from competing background noise [59-61]. In

addition, the auditory-motor feedback loop active during

vocalization has been shown to affect speech production [47,

49]. However, the potential interference of background noise

on the feedback loop during communication is not well

understood, particularly at low signal-to-noise ratios, and

certainly not included in current decoding algorithms. Future

ECoG speech studies will need to determine the contribution

and coordination of both specific speech and non-speech

regions to the production and processing of speech in the

presence of different levels of background noise.

Furthermore, most of the ECoG-based speech decoding

studies have focused on decoding speech features such as the

envelope, words, phonemes, vowels and consonants from

ECoG activity. However, modern real-time speech processors

and automatic speech recognition (ASR) systems employ

many other speech features, such as the formant frequencies,

linear predictive coding coefficients, and mel frequency

cepstral coefficients, among others [62]. While some studies

have used formants for ECoG based speech decoding [26],

most other speech representations used in ASR have not

been investigated with regard to their relationship to cortical

activity. The decoding of these speech representations directly

from ECoG activity is a practical next step, and the results

could then be used in speech synthesis and recognition

systems. Along these lines, the incorporation of language

models and other ASR techniques should be examined to

further improve performance. This research would develop a

natural extension of ASR to neurological data, and provide a

step toward neural speech prostheses. 

Several of the ECoG studies discussed here use micro-

ECoG grids, i.e. ECoG grids with more densely spaced

electrodes than regular ECoG grids, in order to decode

speech [24-27]. These micro-ECoG grids offer higher spatial

resolutions than regular ECoG grids and hence, can be

beneficial for localization and decoding of speech components

more effectively than standard clinical ECoG grid spacing.

Other recent speech studies have analyzed intracortical

electrode recordings that penetrate the cortex in order to

decode various components of speech, such as imagined

vowels and phonemes, directly from cortical activity [63, 64].

However, human research using micro-ECoG and intracortical

electrodes has been limited due to the lack of clinical

applicability of these electrodes. Nevertheless, it can be argued

that the addition of micro-ECoG to standard clinical grids

poses insignificant risk to the patient, and that it may even

benefit seizure localization and cortical mapping. For these

reasons, it is expected that micro-ECoG will continue to gain

clinical acceptance, which will in turn benefit future language

decoding and general neuroscience studies. 

The ability to modulate pitch, intensity, speaking rate, syllabic

stress and rhythm is an important part of communication.

These variables can combine to convey emotional affect and

linguistic information beyond standard speech production.

Ideally, a practical neuroprosthesis for communication would

decode the combination of speech output, intended emotion,

motor plans for facial expressions, and intended patterns of

intonation and stress together from acquired neural signals

for natural speech output. In addition, a practical prosthesis

should be able to distinguish between intended speech output

and “inner speech” (e.g., differences between overt and covert

speech) to allow potential users a way to monitor and filter

their speech output. This description of a neural prosthesis

for communication is far beyond the capabilities of any

current speech decoding efforts. In addition, some intended

users of speech and language neuroprosthetics may present

with varying cognitive and motor abilities making it difficult

for them to control such a complex neuroprosthetic device.

However, a natural communication prosthesis with a direct

link to the brain should possess these abilities to offer users

the most complete communication experience possible.

Finally, while studies that analyze ECoG signal recordings

have provided invaluable information toward understanding

the complex processes involved in speech production and

auditory processing, these studies have examined recordings
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obtained over a short duration in a medical setting. Typically,

recordings are obtained over the course of a few minutes to

several days while the subjects are stationary, confined to a

hospital bed, and interacting with one speaker. In contrast,

natural speech communication occurs in the presence of

many additional factors, including visual scene changes and

additional motor movements during activities such as

walking, nonverbal communication including gestures and

eye gaze maintenance, interaction with multiple and varying

communication partners, and conversation maintenance and

repair after interruption or misunderstanding during lengthy

communication exchanges. In order to develop a neural

prosthesis for speech and language that successfully functions

in natural settings, these factors must be examined in future

studies. Chronically implanted electrodes would allow for

ECoG recordings in natural communication environments

and represent one way to investigate these factors in

communication. Few studies have been conducted on the

safety and efficacy of long-term electrode implantation in

humans, or the long-term placement of ECoG grids. However,

early evidence from recent studies of the stability of long-term

impedance in chronic subdural electrodes concluded that

impedance was stable up to one year after implantation [29,

30]. In addition, these studies reported few adverse effects

resulting from chronically implanted electrodes. This highlights

the potential feasibility of the use of chronic subdural electrodes

for future speech-based neuroprosthetics.
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