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Abstract— A brain-computer interface (BCI), a system that
translates a user’s brain activity into device commands, can
provide a non-muscular means for disabled individuals to in-
teract with their environment. The P300 event-related potential,
a transient brain response to a sensory stimulus, has been
demonstrated to be a reliable brain signal for controlling a
BCI. Traditionally, P300-based BCIs have been used for simple
typing tasks using a P300 Speller application, which mimics
the functionality of a computer keyboard. Here we extend the
discrete selection capabilities of the P300 Speller to achieve
high-level control of a 6 degree-of-freedom robotic arm. This
study aims to determine if a user’s performance, measured
in accuracy and communication rate, is affected when a P300
Speller is used to control a robotic arm compared to simple
typing. The results indicate that a user’s performance is not
significantly affected whether typing or controlling a robotic
arm.

I. INTRODUCTION

ABrain-Computer Interface (BCI) can provide a non-
muscular method to facilitate communication and de-

vice control for a person whose motor abilities may be
impaired [1]. This is often beneficial for those afflicted
with such disabilities as amyotrophic lateral sclerosis, spinal
cord injuries, or brain-stem stroke. Advanced instances of
these debilitating conditions can render patients “locked in”,
unable to interact with the outside world and completely
dependent upon caregivers, even though normal cognitive
capabilities often exist. An effective BCI can return a level
of autonomy to these disabled persons by translating brain
signals, in this case recorded from the scalp using electroen-
cephalography (EEG), into computer and device commands.

The P300 Speller, originally described by Farwell and
Donchin [2], is a commonly used BCI paradigm that has been
extensively examined for communication purposes. Studies
on healthy individuals [3], and initial studies with disabled
individuals [4], [5], [6], show that the P300 Speller has
potential to become a viable method for communication. This
paradigm allows users to make discrete selections based on
the presence of a P300 event-related potential (ERP). The
P300 ERP is a positive deflection in the EEG occurring
roughly 300ms after an unpredictable or novel stimulus that
occurs infrequently amongst other stimuli. When using the
P300 Speller, the user focuses attention on one of the sym-
bols presented in a matrix format while the rows and columns
of the matrix flash in a random order. A P300 response is

This work was supported by the National Institutes of Health
(NIBIB/NINDS EB00856) and the National Science Foundation (0905468)

Authors are with the School of Engineering at the University of
North Florida, Jacksonville, FL 32224 (corresponding author e-mail:
deankrusienski@ieee.org)

elicited when the attended symbol flashes. After multiple
stimulus presentations and sufficient response averaging to
improve the signal-to-noise ratio, a classifier predicts which
row and column contains the desired symbol. The speller
then outputs the symbol at the intersection of the predicted
row and column, effectively creating a keyboard for the user.
The matrix used in this study is shown in Fig. 1.

Utilization of this discrete selection capability can be
directly applied to goal-oriented control of a robotic arm.
Discrete BCI control of an electrical prosthesis has been
previously explored using steady-state visual evoked poten-
tials (SSVEP), where online testing accuracies only ranged
between 44% and 88% [7]. Additionally, the prosthesis
was limited to four controlled motions. By comparison,
a matrix with 36 possible selections can be consistently
classified at accuracies above 90% by using the P300 Speller
paradigm [3]. As such, the use of a P300 paradigm can
potentially provide more control options at a comparatively
high accuracy when controlling a robotic arm. In this work,
a precision Staubli TX40 robotic arm with 6 degrees of
freedom is controlled using a P300-based BCI. The aim
of the study is to show that the P300 Speller can be used
to achieve reliable, goal-oriented control of a robotic arm,
and to determine if the inclusion of a robotic arm as the
control device has any adverse effect on an individual’s BCI
performance compared to the traditional typed feedback of
a spelling application. Preliminary results obtained from five
able-bodied individuals are presented.

Fig. 1. The P300 Speller in Copy-Spell mode, with on-screen feedback.
This mode prompts the user to spell a predefined word, in this case “DICE”.
The user has already correctly typed D, and should now be focused on
the letter I. Since the third row is dimmed, this will likely produce the
characteristic P300 response. The colored pattern is used to orient the matrix
with the robotic workspace.
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II. METHODOLOGY

A. Participants

Five able-bodied individuals (four males, one female, ages
21 to 25) participated in this study. The participants varied
in their previous BCI experience. Four had little or no
experience, while one had approximately fifteen previous
P300 sessions. The study was approved by University of
North Florida’s Institutional Review Board, and each user
gave informed consent.

B. Data Acquisition

The EEG was recorded using an ElectroCap International
cap with 16 electrodes distributed over the scalp, based on
the International 10-20 system (see Fig. 2). The EEG was
amplified, bandpass filtered 0.1-60 Hz, and digitized at 256
Hz by a 16-channel g.tec biosignal amplifier. All aspects
of data collection were managed by BCI2000, a general
purpose system commonly used in BCI research [8]. Five
sessions were collected from each subject over a three week
period, the first of which was a calibration session while the
subsequent four were test sessions.

Fig. 2. The electrode montage used in the current study. The 16 electrodes
used are encircled.

C. Robotic Arm Hardware and Control

1) Robotic Arm and Manipulator: The robotic arm is a
six-degree of freedom, Staubli TX40 robotic manipulator arm
used for high precision, industrial applications. The TX40
has a reach capacity of 0.5m and a repeatability of 0.02mm.
The maximum linear movement speed of the manipulator
arm is 1000mm/s, as such; the movement speed that was
utilized in this study was 250mm/s. A CS8C controller,
which is governed by VAL3 software, controls the robot
arm. It provides kinematic and dynamic control of the robot,
giving it the ability to link the tool frames to the base frame
and allowing precision joint-by-joint control of the robot.
The controller not only supplies power to the robot, but also
loads robotic applications, executes programs, and performs
other various internal system monitoring tasks. The robotic
end-effector is a Schunk gripper. This gripper is comprised

of a stepper motor that is powered separately from the robot
through its own unique control unit. The digital signals that
control the gripper are generated from digital input-output
ports from the CS8C controller. The grippers are tailored to
pick up a single 1-inch cylindrical plastic block, as shown
in Fig. 3.

2) Communication with BCI2000: Communication be-
tween the CS8C controller and BCI2000, which is general-
purpose BCI software used for stimulus presentation, data
collection, and character selection, is accomplished over
an Ethernet connection. Along the data-path is a custom
middle-ware program written in C++, which translates the
character selected by BCI2000 into ASCII code that VAL3
can interpret. Additionally, this program buffers the selected
characters until the robotic arm requests the next command.
The middle-ware transmits the data to the controller through
an Ethernet socket. Once the controller identifies the input, it
calls the corresponding subroutine and outputs the position
and movement data to the robot. The CS8C controller
also has internal buffering system that stacks movement
commands in a command queue until the robotic arm can
complete them or the program is terminated.

3) Workspace: A 12-inch square board positioned directly
in front of the robotic arm serves as the workspace for the
sessions. The board is segmented into a 4x4 grid of 16 color-
coded squares as shown in Fig. 3. The robot is programmed
to pick up individual cylindrical plastic blocks at a loading
tray to the side of the robot. The robot then defaults to
a center position above the workspace to where it waits
for input from BCI2000. Once it receives the transmission
denoting a target square, it places the block at the desired
location and automatically picks up another block. The robot
is also programmed with the capability to vertically stack
the blocks. This functionality is necessary because of the
potential for errors in classification. The robot itself does
not currently contain any external sensors that are capable
of detecting the position of the blocks. Instead, the VAL3
program was implemented with logic tracking to recognize
if a position contains a block, and adjust movement protocol
accordingly to stack the incoming block.

D. Task and Data Processing

The participants sat upright in front of both a video
monitor and the Staubli TX-40 robotic arm at a comfortable
viewing distance, as shown in Fig. 3. The task was to focus
attention on a specified target letter of the matrix on the
monitor, and silently count the number of times the target
letter flashed (in this case the target icon intensity actually
dimmed for a stimulus event, which will be referred to as
a ”flash” herein). The data in all sessions were collected
in the copy speller mode, where for each character epoch
the user was prompted to attend to a letter specified by the
researcher and indicated in parenthesis on the top line of the
P300 Speller (see Fig. 1). One character epoch consisted of
15 flashes of each row and column. The rows and columns
were flashed in random order, with a single flash having a
duration of 100ms, and with 75ms before the next row or
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column was flashed. A 5 second pause was given between
each character epoch.

Fig. 3. The Staubli robotic arm and display setup. Note the board colors
spatially correspond to the display, allowing the subject to quickly ascertain
if the robot placed the block where they intended.

During the initial calibration session, the users performed
8 sets of 5 random character selections for a total of 40
character trials. No feedback was provided in this calibration
session. After the users’ calibration session, a subject specific
classifier was constructed using Fisher’s linear discriminant
(FLD) [9]. For each of the 16 channels, an 800ms segment
(198 samples) of data immediately following each flash was
extracted. These segments were smoothed and decimated to
15Hz. The resulting data segments were then concatenated
by channel, creating a feature vector corresponding to each
stimulus. This resulted in a feature vector of length 176
(198/18 samples * 16 channels) for each of the 4,800 stimuli.
Of these stimuli, 1,200 were target flashes and 3,600 were
non-targets. The target stimuli were assigned a class label
of +1, and non-target stimuli were labeled as -1, creating
a binary classification problem. The weights generated by
the FLD solution, which are the same as the ordinary least-
squares regression for a binary case, are computed as:

w = (XTX)−1XT y (1)

where X is the matrix containing the feature vectors for all
4,800 stimuli, and y is the vector of class labels. By taking
the scalar product of these weights and the feature vectors,
and selecting the resulting row and column stimulus that has
the largest scalar product across each character epoch, we
can predict which character the user is attending. Thus, the
predicted row and column are selected as:

predicted row = max
rows

(
∑
irow

w · xirow) (2)

predicted column = max
cols

(
∑
icol

w · xicol). (3)

The weights generated from the calibration session were
used to provide feedback for the four remaining sessions. The
four subsequent test sessions also consisted of 40 character

trials apiece. Each session could be considered to consist of
2 half-sessions, where in one half the user performed copy
spelling with just the matrix on the video screen. The robotic
arm was not activated for these runs, and the feedback in the
form of the character predicted by the classifier was provided
to the user on the monitor in the space provided immediately
under the text to spell (see Fig. 1).

In the other half of the session, the 16 color-coded squares
on the monitor spatially correspond to the 16 color-coded
squares in the robot’s workspace. The user would not be
provided feedback on the monitor, but instead the robotic arm
would move a small cylindrical block from a fixed position
adjacent to the workspace onto the square in the workspace
corresponding to the square on the monitor predicted by the
classifier. Although all specified target locations were unique
for each run, the robot was programmed with the capability
to vertically stack blocks if a location was erroneously
selected multiple times within a run. With 5 seconds between
character trials, the participants had ample time to ascertain
if the location of the placed block was correct. The ordering
of the half-sessions was counterbalanced across sessions to
mitigate effects of order on performance.

III. RESULTS

The online prediction accuracy averaged over the four test
sessions for each subject and feedback method is shown in
Table 1. Although the final accuracy when using the robotic
arm is 3.5% lower than the standard method, where feedback
is displayed on a video monitor, an analysis of variance
on the online accuracies did not reveal any statistically
significant difference between the two methods (p = 0.185).
Fig. 4 shows the percentage of correctly classified targets,
averaged across all users and test sessions, for each feedback
method as a function of the number of flashes. This offline
analysis suggests that the performance difference also is
consistent for fewer flashes.

TABLE I
ONLINE AND OFFLINE PERFORMANCE FOR EACH SUBJECT

Standard Feedback Robotic Arm Feedback
Subject Accuracy Max Bitrate Flashes Accuracy Max Bitrate Flashes

A 85.0 8.2 7 80.0 7.1 11
B 98.8 14.6 4 97.5 15.4 4
C 100 13.1 7 96.3 13.1 7
D 90.0 10.1 5 81.3 7.7 10
E 58.8 3.9 8 60.0 3.7 9

AVG* 86.5 9.2 7 83.0 8.1 7
∗ Maximum bitrate and the corresponding number of flashes are

based on the average accuracy accross users.

Another common metric used to evaluate BCI performance
is the bitrate, which accounts for speed as well as accuracy.
During actual use, although the highest accuracy may be
achieved after 15 flashes, this number of flashes could be
suboptimal in terms of bitrate. This can be remedied by
adjusting the system to make a prediction after fewer flashes,
when the bitrate is highest for a given individual based on
offline analysis. The formula for computing the number of
bits communicated per character epoch is:
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Fig. 4. The symbol prediction accuracy averaged across all 5 subjects
and test sessions. On average, the accuracy when using the robotic arm is
marginally less than when using the standard video feedback through most
of any given character trial.

B = log2 N + P log2 P + (1− P ) log2

(
1− P

N − 1

)
(4)

where N is the number of possible targets and P is the
probability that the target is accurately classified [10]. The
bitrate is then B divided by the character epoch duration. Fig.
5 shows the bitrates computed from the accuracies shown
in Fig. 4. Table 1 provides the maximum bitrate, based on
the average accuracy across test sessions, and the number
of flashes required to obtain this bitrate for each user. As
with the accuracy results, the bitrate results only indicate a
marginal difference between feedback methods.
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Fig. 5. The bitrate curves corresponding to the accuracies in Fig. 4.

IV. DISCUSSION

The study demonstrates an important initial step toward
implementing a practical P300-based robotic arm system by
examining the relative performance of using a robotic arm as

the control device for the P300 Speller. The results indicate
that the P300 Speller paradigm can be readily extended from
traditional typed communication to high-level robotic arm
control. More importantly, this can be accomplished without
any significant effects on a user’s performance. Although
there is an overall 3.5% degradation in accuracy from the
standard feedback method, neither this nor the bitrate re-
sults indicated statistically significant differences between
the performance of the methods. Given that the task was
identical for both feedback methods, the results suggests that
robotic feedback did not create enough additional workload
or distraction to adversely impact performance.

It should also be noted that when controlling a robotic
arm to position physical objects in a workspace, the overall
accuracy is arguably more important than a higher commu-
nication rate. When interacting with practical objects, rather
than simple plastic cylinders, selection errors can lead to col-
lisions in the workspace that can damage the objects, relocate
them to undesirable positions, and/or lead to safety concerns
for the user, particularly if they are disabled. Nevertheless,
the system must also be fast enough for practical use. To
accomplish this, various high-level macro functions, similar
to the macro functions used to pick and place the blocks in
this study, can be assigned to the individual P300 Speller
selections. When a single P300 Speller selection is made,
the robot can be employed to perform a complex interaction
with specific objects and environments. This approach is
substantially faster and more practical than associating the
P300 Speller selections to individual robotic arm joint angles,
for instance. However, strictly predefined macro functions
can be limiting in terms of providing the freedom to achieve
arbitrary trajectories or interact with arbitrary objects in the
workspace. Therefore, a vision system will be incorporated
to give the system a level of intelligence and flexibility for
interacting with novel objects and environments.
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