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ABSTRACT
Steady-State Visual Evoked Potentials (SSVEPs) are oscil-
lations of the electroencephalogram (EEG) observed over
the occipital area that exhibit a frequency corresponding to
a repetitively flashing visual stimulus. SSVEPs have proven
to be very consistent signals for rapid EEG-based brain-
computer interface (BCI) control. However, due in part
to perceptual and neurophysiological aspects, SSVEP sig-
nal detection biases exist for different stimulation frequen-
cies. Furthermore, these biases tend to differ across subjects.
Canonical correlation analysis (CCA) has proven to be the
most robust approach for detecting SSVEPs in multiclass
stimulus paradigms where each potential target flashes at
a different frequency. In this work, in order to provide a
better characterization of the SSVEP spectrum for BCI ap-
plications, 22 subjects were stimulated with an LED array
that flashed according to a chirp signal having a frequency
that varied over the typical functional range of SSVEP from
5.5-34.5 Hz. The resulting EEG was analyzed using CCA
to elucidate the stimulus frequencies that produce the best
discriminability for practical use. Subjects achieved an av-
erage accuracy of 72.2% using a six-class paradigm with a
standardized set of stimulus frequencies. However, when
using a subject-specific frequency set (i.e. frequencies opti-
mized for each subject), the average accuracy significantly
increased to 83.7% (p = 0.03). The results show that in-
herent SSVEP response differences exist between subjects,
which can have a significant effect on performance. This ap-
proach also establishes a framework for a rapid optimization
of subject-specific frequency profiles.
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1. INTRODUCTION
Brain-computer interfaces (BCIs) are augmentative commu-
nication devices that analyze brain activity and decode user

intent in order to provide a non-neuromuscular pathway of
communication [7]. Some of the most promising approaches
for scalp-recorded EEG-based BCIs utilize Steady-State Vi-
sual Evoked Potentials (SSVEPs). SSVEPs are oscillations
in EEG that correspond to to the frequency of a flash-
ing visual stimulus [3][6]. The fundamental frequency, as
well as several harmonic frequencies, can be detected in the
EEG and used to decode user intention when multiple flash-
ing targets are presented. Recently, multichannel SSVEPs
have been used on-line with Canonical Correlation Analysis
(CCA) producing a robust BCI system that achieves good
performance with little to no training data [1][2]. CCA is
generally a preferred detection method for SSVEP BCIs be-
cause of its inherent channel harmonic analysis capabilities,
relative simplicity, and robust performance. However, in-
dividuals generally have SSVEP responses in the range of
5-45 Hz, and the optimal stimulus frequencies within this
range can vary greatly across individuals. This study aims
to establish a novel characterization of the SSVEP using
CCA, and to quantify the BCI performance differences be-
tween subject-optimized stimulation frequencies and stan-
dard, pre-selected stimulation frequencies. The results show
that the brain responses over the SSVEP spectrum can vary
drastically across subjects and frequencies, and that subject-
specific optimization can greatly improve the performance of
SSVEP BCIs.

2. METHODOLOGY
2.1 Data Collection
Subjects were 22 able-bodied adults (5 women, 17 men; age
range 18-42 years). All subjects were free of neurological
or psychiatric disorders or medications known to adversely
affect EEG recording. All subjects had normal or corrected-
to-normal vision. This study was reviewed and approved
by the Old Dominion University Institutional Review Board
and each user gave informed consent before participating.

The EEG was recorded using a 16-channel active electrode
cap (g.GAMMAsys, g.tec Medical Engineering). The elec-
trodes were positioned at locations: Fz, Pz, Poz Oz, O1,
O2, Po3, Po4, Po7, Po8, Poo1, Poo2, Poo3, Poo4, Oi1h,
Oi2h based on the extended International 10-20 system [5]
as shown in Figure 1. All channels were referenced to the
right earlobe and grounded to the left mastoid. The EEG
was bandpass filtered from 0.1 Hz to 100 Hz, notch filtered
at 60 Hz and digitized at a rate of 512 Hz using a g.USB
amp (g.tec Medical Engineering). All aspects of the data
collection and experimental procedure were controlled by



Figure 1: The EEG electrode montage used for
data collection. The positions are based on the In-
ternational 10-20 system. All electrodes were re-
referenced to Fz.

the BCI2000 system [4].

2.2 Experimental Paradigm
Each subject sat in a dark room in front of a custom-built
SSVEP stimulator composed of an 8 x 8 array of green LEDs
as shown in Figure 2. Each LED in the array was connected
together so that all LEDs illuminated simultaneously with
the same stimulus. The stimulator is driven by a microcon-
troller with an output stimulation frequency of 500Hz and a
10-bit intensity resolution. The LED array was tested using
a photo-diode to ensure consistent stimulation. LED lumi-
nosity was linearized over the operating range to ensure a
uniform intensity distribution. All stimulation signals were
generated using Matlab and loaded to the microcontroller.

The stimulator was positioned in the center of each subject’s
visual field and placed approximately 60 cm away from the
subject so that the LED array spanned visual angles of 5.25
degrees vertically and horizontally. During the experiment,
the subject’s task was to attend and keep visual focus on the
flashing stimulator. For each session, subjects attended to
30 seconds of continuous stimulation followed by 15 seconds
of rest before the cycle repeated. The stimulation wave-
forms that were presented in a single experimental session
were composed as follows: square waveforms with a chirp
increase from 5.5-20.5 Hz, square waveforms with a chirp
increase from 19.5-34.5 Hz, square waveforms with a chirp
decrease from 20.5-5.5 Hz and square waveforms with a chirp
decrease from 34.5-19.5 Hz. Each chirp waveform (increase
and decrease) had a ∆f of 0.5 Hz per second. This pro-
vided approximately two seconds centered on each integer
frequency and is sufficiently slow enough to emulate a fixed
frequency over a short time window.

Figure 2: LED stimulator used to generate SSVEP
stimulation. The stimulator consists of an 8 x 8 ar-
ray of green LEDs driven by a microcontroller with
a 10-bit DAC. The physical dimensions of the stim-
ulator are 5.84 cm x 5.84 cm.

Each waveform was repeated five times, giving a total of 40
trials. The waveforms were presented in a randomized order
to account for possible fatigue issues. Baseline EEG with
the stimulator stimulator turned off and subject’s eyes kept
open was collected for approximately two minutes before
and after the session. Each subject participated in a single
experimental session.

2.3 Canonical Correlation Analysis
CCA is a multi-dimensional correlation analysis technique
that finds underlying correlations between two sets of data.
It linearly filters the two data sets to produce a pair of
canonical variants whose correlation is maximized. Given
two multi-dimensional data sets X, and Y , the canonical
variants x = XTWx and y = Y TWy can be found by de-
termining the weight vectors Wx and Wy that produce the
maximum correlation between x and y. This optimization
problem can be achieved using the singular-value decompo-
sition method. Lin et all [1] proposed using this method to
decode and analyze SSVEP signals. In this way, the mul-
tidimensional EEG data, X, can be canonically correlated
with a multivariate set of reference signals Yf . The reference
signals Yf are a set of sine and cosine signals derived from
Nh harmonics.

Yf =


sin(2πft)
cos(2πft)

...
sin(2πNhft)
cos(2πNhft)

 (1)

There is a reference template for each target frequency. The
multi-channel EEG and reference signals are used in the
CCA to produce a canonical correlation for each target fre-
quency. The output class is determined as

C = argmaxiρi, i = 1, 2, ...K, (2)



where K is the total number of classes or target frequencies
used for the SSVEP BCI.

2.4 Data Analysis
2.4.1 Pre-Processing

All data were first pre-processed by applying a zero-phase
IIR bandpass filter from 0.5-40Hz. Each channel was then
re-referenced to Fz. All data were segmented by trial for
each chirp stimulus condition. Inter-trial data (i.e. rest
periods) were discarded.

2.4.2 SSVEP Characterization
The data elicited from the chirp signals were analyzed us-
ing the CCA method. SSVEP reference signals, Yf , were
created that were centered at 0.5 Hz increments across the
chirp signal. Reference signals were created for each fre-
quency using 1, 2 and 3 harmonics of the respective center
frequencies. This resulted in three sets of reference signals
for evaluation of the impact of the harmonics.

The chirp data from the 5.5-20.5 Hz waveform was concate-
nated with the chip data from the 19.5-34.5 Hz waveform to
produce an SSVEP response signal from 5.5-34.5 Hz. The
decreasing chirp signals (20.5-5.5 Hz and 34.5-19.5 Hz) were
concatenated to produce a 34.5-5.5 Hz response and then
time-reversed to match the previous 5.5-34.5 Hz.

Fixed frequencies were approximated from the chirp signal
by using a sliding window with a length of two seconds and
a one-second overlap. This corresponds to frequencies start-
ing from 6 Hz to 34Hz in increments of 0.5 Hz (55 total
distinct frequencies), which covers the functional range of
the SSVEP spectrum with sufficient resolution.

CCA was performed on each window of the EEG response
and on each frequency from the SSVEP reference signals.
Each target frequency (i.e. the current time window corre-
sponding to the frequency from the chirp stimuli) was canon-
ically correlated with each reference signal frequency. This
results in a quantitative measure of target discrimination
from background EEG activity for each of the selected fre-
quencies.

2.4.3 SSVEP Classification
For BCI applications, it is common to select a somewhat
arbitrary set of stimulation frequencies based on hardware
restrictions or EEG spectral characteristics (e.g., alpha-band
overlap). To assess the discriminative capacity of CCA for
the broad range of stimulus frequencies provided by the chirp
signals, an offline BCI classification scheme was set-up using
6-classes. As a reference, 13 Hz, 14 Hz, 15 Hz, 16 Hz, 17
Hz and 18 Hz were ealuated based on Gao et al., 2009 [1],
which is the landmark SSVEP CCA study. This reference
frequency set represents typical, generic stimulus frequencies
that are not optimized for each subject. Using the SSVEP
response data due to the chirp stimuli, the time windows
centered at these six frequencies were extracted to set up a
simulated BCI classifier.

To compare with the classification performance of this fre-
quency set, 1600 unique frequency sets were extracted and
used in the off-line classification. Each subject’s SSVEP

stimulus frequencies were optimized by finding the combi-
nation that maximized the individual classification perfor-
mance. The value of 1600 frequency sets was selected to
provide comprehensive combinations of six stimulus frequen-
cies over the range of 6-34 Hz (55 distinct frequency choices).
The theoretical number of frequency permutations for a set
of 6 out of 55 is approximately 28 million combinations.
Since it is impractical and unnecessary to test all of these fre-
quency combinations in a exhaustive optimization, selected
uniformly-spaced and randomly-determined frequency sets
were evaluated. The 1600 different sets were generated as
follows: 100 frequency sets of 6 frequencies starting from 6
Hz to 34 Hz with spacings of 0.5 Hz, 1 Hz, 2 Hz, and 2.5 Hz
(i.e., Set 1: 6, 6.5, 7, 7.5, 8, 8.5; Set 2: 6.5, 7 ,7.5, 8, 8.5,
9, 9.5; etc.). The uniform sets cover the entire range of the
SSVEP spectrum of frequencies. The next 1500 frequency
sets were generated by selecting 500 random frequency per-
mutations each in the low (6-15.5 Hz), medium (16-25 Hz)
and high (25.5-34.5 Hz) frequency ranges.

To optimize the frequency set for each subject, the first 70%
data were used for training and the remaining 30% for test-
ing. The accuracies for the training data were evaluated and
the frequency set that performed the best for each subject
was recorded. In the event of ties (i.e. cases where multi-
ple frequency sets provided the equivalent best performance)
the frequency set for each tie was recorded. The testing data
was then used to evaluate the performance of the frequency
set optimization. For ties, each set was individually evalu-
ated and the results were averaged. To assess the prevalence
of optimal frequencies across subjects, a histogram was cre-
ated showing the proportion of times a particular frequency
was included in the optimal frequency set. The contribu-
tions from each subject to the histogram were normalized to
adjust for subjects with ties.

3. RESULTS
3.1 SSVEP Spectrum Characterization
The SSVEP Spectrum Characterization is shown in Figure
3. This figure shows a time-frequency plot of the CCA corre-
lation values of the reference signals and the EEG across the
60 s of concatenated chirp signal. The CCA was repeated
using three different combinations of progressive harmonics:
the first (fundamental) harmonic only, the first two harmon-
ics, and the first three harmonics. Each time-frequency plot
represents the average across all subjects. Since the EEG
signal is in response to a linearly increasing chirp signal,
the prominent diagonal lines in Figure 3 represent the ex-
pected strong correlation of the EEG signal with the target
frequency.

The diagonal line representing the fundamental frequency is
present in all three graphs. Likewise, the second and third
harmonics are also pronounced in each plot, though not as
nearly as prominent as the fundamental. What appear to be
sub-harmonics in the lower two plots are actually the result
of performing CCA with harmonics. For instance if the EEG
is oscillating at 20 Hz due to a 20 Hz stimulus, there will be a
correlation with a 10 Hz reference signal when the harmonics
are included in the CCA. This is an important consideration
when evaluating harmonic frequencies.

Figure 4 shows the CCA correlation values of the SSVEP



response as a function of stimulation frequency averaged
across all subjects. A second-order polynomial is fit to the
correlation data. It is observed that the correlation values
generally increase as more harmonics are added.

3.2 SSVEP Classification
The SSVEP classification results are shown in Table 1. The
first column shows the performance using the reference fre-
quency set from [1]. This frequency set resulted in an aver-
age classification accuracy of 72.2%±20.7% across subjects.

For the 1600 uniform/random frequency sets, the frequency
set that maximized the average performance across all sub-
jects was determined to be: 6, 7, 7.5, 8.5, 9.5, and 11 Hz.
The performance of this group-wise set is given in the sec-
ond column. This set produced an average classification
accuracy of 77.2% ± 17.6% across subjects. Although the
average accuracy of the group-wise set is greater than the
reference set, a two-tailed t-test indicates that the increase
is not a statistically significant (p = 0.38).

Lastly, individually optimized frequency sets were deter-
mined by selecting the set with the highest classification
accuracy for each individual subject. These individually-
optimized frequencies represent the best classification per-
formance that a subject can obtain given the range of avail-
able frequency values. The individually-optimized frequency
sets produced an average classification accuracy of 83.7% ±
15.0% across subjects. The accuracies produced using indi-
vidually optimized frequencies resulted in significantly higher
accuracies compared to the reference set (p = 0.03). Com-
pared to the group-wise set, the individual accuracies were
better on average, although the increase was not statistically
significant (p = 0.19).

The individual frequency sets varied greatly across each of
the 22 subjects, thus indicating that each subject has a
rather unique frequency response profile that should be in-
dividually optimized. To illustrate the commonly selected
frequencies, Figure 5 shows a histogram of the relative oc-
currence of frequencies in the optimized frequency sets. This
figure shows two distinct frequency ranges that were most
commonly selected as frequencies for the optimized sets.
The majority of the optimized frequencies tend to be the
lower frequency range from 6 to 15Hz, with a smaller group-
ing in the higher frequency range from 22 to 34 Hz and very
few frequencies selected from the mid range (16-21 Hz).

4. DISCUSSION
While it is generally known that subject-specific stimulation
frequencies should produce superior performance, there has
been little work to quantify and evaluate optimal frequen-
cies. This study represents a fairly comprehensive analysis
and characterization of the full SSVEP spectrum and its
effect on SSVEP BCI performance.

The results shown in Figures 3 and 5 indicate that lower
stimulus frequencies (i.e., 6-15 Hz) generally produce the
best SSVEP discrimination. This is likely the result of the
higher signal-to-noise ratio (SNR) of the lower frequencies
due to the 1/frequency power characteristic of the EEG,
which impacts the correlations as shown in Figure 4. Addi-
tionally, the histogram plot in Figure 5 shows that frequen-

Figure 3: CCA squared correlation values using for
first harmonic (top), first two harmonics (middle),
and first three harmonics (bottom), averaged across
all subjects.



Figure 4: CCA correlation values of the SSVEP re-
sponse as a function of stimulation frequency aver-
aged across all subjects. Top: first harmonic, mid-
dle: first two harmonics, bottom: first three har-
monics

cies in the high-range (22-34 Hz) more often contributed to
optimal BCI performance compared to the mid-range (16-21
Hz). Since this higher range has a lower SNR compared to
the key lower-range frequencies, the higher frequencies may
serve as an “outlier condition” that serves to boost discrim-
ination; although this must be validated through further
analysis.

The classification results indicate that frequency selection
can have substantial impact on overall BCI performance,
increasing from 72.2% to 83.7%(p = 0.03). To date, there is
no widely accepted stimulus frequency set or standardized
methodology for obtaining subject-specific stimulus frequen-

Table 1: Classification results for different frequency
sets

Subject Reference Group-wise Individual
1 95.8 100 98.3
2 83.3 95.8 95.8
3 54.2 66.7 64.6
4 70.8 95.8 94.4
5 66.6 83.3 80.8
6 45.8 75 78.12
7 37.5 87.5 87.5
8 91.6 54.2 94.4
9 70.8 87.5 83.3
10 37.5 45.8 61.1
11 100 87.5 95.8
12 87.5 70.8 75
13 75.0 87.5 95.8
14 73.5 37.5 41.6
15 41.7 45.8 58.3
16 87.5 83.3 87.5
17 83.3 91.7 88.6
18 91.7 75.0 95.8
19 83.3 91.7 88.4
20 75.0 70.8 87.5
21 79.2 83.3 94.4
22 91.7 83.3 95.0

Avg 72.2 77.3 83.7

Figure 5: Histogram plot showing the relative oc-
currence of each frequency in the optimal frequency
sets for all subjects.

cies. As a result, most studies use sub-optimal frequencies,
although this can still lead to acceptable performance - par-
ticularly in individuals with strong SSVEP responses.

If a subject-specific frequency optimization is not feasible for
a particular scenario, the results show that frequencies in the
lower frequency range (particularly from 6-11 Hz) provide



the best performance. These findings are consistent with
the results from [6], indicating that the majority of subjects
have an SSVEP response innately present in the EEG, while
a small percentage of subjects will naturally have a weaker
or even no detectable SSVEP response.

The method utilized in the study can be used as an efficient
way to characterize the response of the SSVEP spectrum
for an individual. The chirp stimulus displayed at a rate of
0.5 Hz/s can be achieved much more rapidly than evaluat-
ing individual frequencies independently. Additionally, only
several passes of the chirp signal would be required, leading
to calibration times on the order of minutes.

Because of the continuous nature of the chirp signals and
the limitation of monitor refresh rates, this study was done
using LED stimulation and not the more convenient LCD
stimulation. An identical follow-up study using an LCD
monitor is planned, although it is not expected that the
results will significantly differ from the present study. Ad-
ditionally, the long-term stability of the SSVEP spectrum
has yet to be assessed and longitudinal online experiments
need to be conducted. Nevertheless, the present offline re-
sults serve as a strong indicator of the potential impact of
optimized SSVEP frequencies and efficient characterization
of the SSVEP spectrum.
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