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Abstract— This study presents a preliminary analysis of
the relationship between electroencephalographic (EEG) and
electrocorticographic (ECoG) event-related potentials (ERPs)
recorded from from a single patient using a brain-computer
interface (BCI) speller. The patient had medically intractable
epilepsy and underwent temporary placement of an intracranial
ECoG grid electrode array to localize seizure foci. The patient
performed one experimental session using the BCI spelling
paradigm controlled by scalp-recorded EEG prior to the ECoG
grid implantation, and one identical session controlled by ECoG
after the grid implantation. The patient was able to achieve near
perfect spelling accuracy using EEG and ECoG. An offline
analysis of the average ERPs was performed to assess how
accurately the average EEG ERPs could be predicted from the
ECoG data. The preliminary results indicate that EEG ERPs
can be accurately estimated from proximal asynchronous ECoG
data using simple linear spatial models.

I. INTRODUCTION

ABrain-computer interface (BCI) is a system that allows

individuals with severe neuromuscular disorders to

communicate and control devices using their brain waves [1].

One of the most promising signals for controlling a BCI are

event-related potentials (ERPs) such as the P300. The P300 is

an evoked response to an external stimulus that has been tra-

ditionally observed in scalp-recorded electroencephalography

(EEG). The scalp-recorded P300 response and constituent

ERPs have proven to be reliable signals for controlling a

BCI using the P300 Speller paradigm [2]. Based on multiple

studies in healthy volunteers [3][4][5], and initial results in

persons with physical disabilities[6][7][8], the P300 Speller

has the potential to serve as an effective communication

device for persons who have lost or are losing the ability

to write and speak.

Electrocorticography (ECoG), electrical activity recorded

directly from the surface of the brain, has also recently been

demonstrated to be viable for controlling the P300 Speller[9].

Because ECoG electrodes are closer to the source of the

desired brain activity, ECoG has been shown to have superior

signal-to-noise ratio, and spatial and spectral characteristics

compared to EEG [10][11][12], which will inevitably provide

superior BCI performance. However, unlike EEG, ECoG

requires surgical implantation, and much work must be done

in terms of validating chronic implantations and establishing
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long-term efficacy before it will be a practical BCI alternative

for patients.

The skull and scalp tissue act as a volume conductor for

the brain’s electrical activity [13], thus it is conceivable that

scalp recorded EEG can be represented as a linear mixture

of underlying ECoG signals. Since there are several major

issues with simultaneous recording EEG and ECoG in tem-

porarily implanted humans, such as the effect of the incision

and ECoG implantation trauma on simultaneously monitored

EEG, the approach taken for this analysis compares EEG

data recorded pre-ECoG grid implantation and ECoG data

recorded after implantation. Essentially, the averaged ERPs,

which are assumed to be consistent and time-invariant for

EEG and ECoG, are used for the modeling. It is hypothesized

that accurate models of EEG constructed from ECoG will

provide a better understanding of sources of scalp-recorded

ERPs and the electrical transmission characteristics of the

skull and surrounding tissue, eventually leading to more

effective EEG-based BCI processing techniques. This pre-

liminary work merely presents a case study of mathematical

modeling EEG from ECoG.

II. METHODOLOGY

A. Patient Information

The data were collected from a patient (27 year old male)

with medically intractable epilepsy who underwent Phase 2

evaluation for epilepsy surgery with temporary placement of

an intracranial grid electrode array to localize seizure foci

prior to surgical resection. The patient exhibited specific

impairments in word finding, attention, processing speed,

and learning efficiency. The patient was evaluated to be in

the borderline to mildly deficient range for intellectual func-

tioning. The patient was presented at Mayo Clinic Florida’s

multidisciplinary Surgical Epilepsy Conference where the

consensus clinical recommendation was for the patient to

undergo invasive monitoring primarily to localize the epilep-

togenic zone. The study was approved by the Institutional

Review Board of both Mayo Clinic and the University of

North Florida. The patient gave informed consent.

The patient’s seizure onset zone was determined to reside

in the left hippocampus. A 36-contact ECoG grid was placed

over the left frontal-parietal region and two depth electrodes

were placed in the left hippocampus (see Figure 4 for approx-

imate electrode positions). Electrode placements and duration

of ECoG monitoring were based solely on the requirements

of the clinical evaluation, without any consideration of this

study. The patient had post-operative anteriorposterior and
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lateral radiographs to verify electrode locations. After elec-

trode implantation, the patient was admitted to an ICU room

with epilepsy monitoring capability. Clinical ECoG data were

gathered with a 64-channel clinical video-EEG acquisition

system (Natus Medical, Inc.; CA, USA).

B. BCI Data Acquisition

Prior to electrode implantation, the patient performed a

single BCI session using scalp-recorded EEG. The EEG

was recorded using an ElectroCap International cap with 32

electrodes distributed over the scalp, based on the Interna-

tional 10-20 system (see Figure 1). The EEG was amplified,

bandpass filtered 0.5-500 Hz, and digitized at 1200 Hz using

two 16-channel g.USB amplifiers. The high sampling rate

was selected to be consistent with the ECoG data collection.

Stimuli were presented and the EEG data were recorded

using BCI2000, a general-purpose BCI system [14].

Additionally, the patient performed one BCI session using

ECoG. This testing occurred approximately 48 hours after

electrode implantation. Testing was performed only when

the patient was clinically judged to be at cognitive baseline

and free of physical discomfort that would affect attention

and concentration. Testing was performed at least six hours

after a clinical seizure. The 32-channel subset of ECoG

electrodes used for the BCI experiments is shown in Figure 4,

with the approximate grid location with respect to the scalp

electrodes is indicated by the circumscribed region in the

upper topography. All electrodes were referenced to a scalp

vertex electrode and recorded using the identical hardware,

software, and protocols as the EEG data collection. The

signals for the BCI experiments were acquired concurrent

with the clinical monitoring via a 32-channel electrode

splitter box.

Fig. 1. The 32-channel EEG electrode montage used in the study. The
gray area indicates the approximate location of the ECoG grid.

C. Task, Procedure, and Design

The experimental protocol was based on the protocol used

in an EEG-based P300 Speller study [3], and was consistent

for both the EEG and ECoG session. The patient sat in a

comfortable chair (for EEG) or hospital bed (for ECoG)

about 75 cm from a video monitor and viewed the matrix

display as shown in Figure 2. The task was to focus attention

on a specified character in the matrix and silently count the

number of times this target character flashed, until a new

character was specified for selection. All data was collected

in the copy speller mode: words were presented on the top

left of the video monitor and the character currently specified

for selection was listed in parentheses at the end of the

character string as shown in Figure 2. Each session consisted

of 8-11 experimental runs of the P300 Speller paradigm;

each run was composed of a word or series of characters

chosen by the investigator. This set of characters spanned the

set of characters contained in the matrix and was consistent

for each session. Each session consisted of between 32-39

character epochs. A single session lasted approximately one

hour. One complete EEG session and one complete ECoG

session were collected from the patient.

 

 

 

 

 

 

Fig. 2. The P300 Speller in Copy-Spell mode, with on-screen feedback.
This mode prompts the user to spell a predefined word, in this case DICE.

D. Data Analysis

The patient achieved perfect online performance after 15

flash sequences with both EEG and ECoG as shown in

Figure 3, using a distinct static classifier for each case

(refer to [3] for details regarding ERP classification). Thus,

it is presumed that the patient produced consistent ERPs

across both conditions. For reference, Figure 4 illustrates

the topographic correlation of the EEG and ECoG ERP

amplitudes with the target stimuli.

The models were exclusively constructed using the target

stimulus ERPs (resulting from a flash that the subject was

instructed to attend) because they represent consistent and

predictable evoked neural activity, as opposed to the non-

target stimulus data that primarily consist of spurious back-

ground activity.
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Fig. 3. The character prediction accuracy with respect to the number of
flash sequences. Note that the online accuracy (after 15 sequences) was
100%.

All data were lowpass filtered to 20Hz and decimated to

240Hz, to smooth the data while retaining sufficient samples

for modeling and ERP visualization. For each EEG and

ECoG channel, 800-ms segments of data following each

flash were extracted as the ERP. The average target ERP

was computed to form the archetype ERP for each EEG

channel. The first half of the ECoG target ERPs (480 ERPs)

were averaged for each channel and used in an ordinary least-

square linear regression model to predict each archetype ERP,

equivalently producing a spatial filter based on all ECoG

channels for predicting each EEG channel’s archetype ERP.

The second half of the ECoG ERPs were used to validate the

EEG archetype prediction for each channel by computing the

mean-squared error (MSE) between the predicted ERP and

the archetype ERP. First, each archetype ERP was scaled to

have unit variance. The same scale factor was applied to the

respective ECoG predicted ERP. This was done in order to

compare the MSE across channels.

III. RESULTS

Figure 5 shows the MSE for the predicted ERPs at each

EEG channel. Figure 6 shows the archetype and the predicted

ERPs for selected channels, as well as the corresponding

ECoG spatial filter that produced the predicted ERPs.

IV. DISCUSSION

The results show that the archetype EEG ERPs can be

accurately modeled using a linear combination of spatial

ECoG ERPs obtained from a separate experimental session.

These models also generalize to independent data. The

spatial filter weights shown in Figure 6 indicate that relatively

few ECoG channels contribute to the predictions, and in

most cases the contributing ECoG electrodes are positioned

directly under or in close proximity to the respective EEG

electrode, as would be expected. For instance, the three most

relevant electrodes for CP3 are grouped very near the scalp

electrode. However, it is also interesting to note that the

highest magnitude electrode weights are not always posi-

tioned directly under or spatially congruent to the respective

Fig. 4. The topographic correlation of the EEG (top) and ECoG (bottom)
ERP amplitudes with the target stimuli. The circumscribed region in upper
figure indicates the approximate location of the ECoG grid. The scale
corresponds to the electrode coloring and indicates the maximum -log(p-
value) over the 800 ms interval for the particular electrode, where the p-
value tests the hypothesis that the correlation between the amplitude and
the target stimuli is zero.

EEG electrodes. This could be an artifact of the regression

due to the relatively small amount of data used to construct

the average responses. Although only the EEG electrodes

adjacent to the ECoG grid are presented, several other EEG

ERPs were predicted accurately. This is likely due to the

volume conduction properties of the skull and surrounding

tissue.

With regard to the classical P300 electrodes (Fz, Cz, and

Pz) and the relevant electrodes used in online classification

shown in Figure 4, the ECoG grid was not optimally po-

sitioned. Nevertheless, there is significant overlap between

the relevant classification electrodes for EEG and the EEG

predictions that produced a low MSE. It is also interesting to

note that there doesn’t appear to be much overlap between

the relevant classification electrodes for ECoG and the rel-

evant ECoG spatial filter weights for predicting the EEG.

However, the relevant classification electrodes for ECoG as

presented in Figure 4 were evaluated in isolation; it was

found that nearly all of the ECoG electrodes contributed to

the online classifier.

Although the online performance of ECoG and EEG was

comparable, it is believed that the superior ECoG signal

characteristics can provide improved performance under the

proper conditions. For example, there are several factors

that likely disadvantaged the ECoG performance such as the

patient’s underlying condition and post-surgery physical and

mental state, and the suboptimal, localized ECoG electrode
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Fig. 5. The MSE for the predicted ERPs at each EEG channel. The
circumscribed region indicates the approximate location of the ECoG grid.

coverage compared to EEG. With greater EEG and ECoG

coverage, it may be possible to generate inverse models that

would better localize the relevant ECoG activity from EEG.

The resulting EEG spatial filters could conceivably improve

EEG-based BCI performance.
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Fig. 6. Right Column: The archetype EEG ERPs (red) and the predicted
ERPs (black) for selected EEG channels. Channels Fz, Cz, and Pz represent
the classical P300 electrodes, while the other electrodes are positioned
adjacent or directly over the ECoG grid. Left Column: The corresponding
ECoG spatial filter weights that generated the predicted ERPs. The colorbar
indicates the relative scale for the spatial filter weights. Note that the black
ECoG electrodes were not used for BCI recording due to hardware channel
limitations.
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