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ABSTRACT 

This paper investigates the application of particle swarm 

optimization techniques to infinite impulse response (IIR) 

adaptive phase equalizers.  Particle swarm optimization 

(PSO) is similar to the genetic algorithm (GA) in that it 

utilizes a population based search suitable for optimizing 

multimodal error surfaces where gradient-based 

algorithms tend to fail, such as those generated by IIR 

adaptive filters.  This paper will investigate PSO for the 

phase equalization of minimum phase surface acoustic 

wave (SAW) filters used in CDMA receivers. 

1. INTRODUCTION 

Adaptive IIR phase equalizers are useful in many 

communications and acoustical channel equalization 

problems because they can provide a better approximation 

of a long impulse response using a fewer number of 

coefficients compared to FIR filters.  IIR filters have a 

nonlinear phase response, but can be configured to have an 

all-pass characteristic where the magnitude is unaffected.  

This property makes IIR all-pass filters ideal for nonlinear 

phase equalization applications. 

The drawback to IIR adaptive filter structures is that 

they tend to generate error surfaces that are multimodal.  

When the error surface is multimodal, local optimization 

techniques that work well for FIR adaptive filters, such as 

versions of gradient descent algorithms, are not suitable 

because they are likely to get trapped in a local minimum 

solution. 

An alternative to a gradient-based optimization 

technique is a structured stochastic search of the error 

space.  These types of global searches are structure 

independent because a gradient is not calculated and the 

adaptive filter structure does not directly influence the 

parameter updates – aside from the error computation.  

Due to this property, these types of algorithms are 

potentially capable of globally optimizing any class [4] of 

adaptive filter structures or objective functions.  Several 

structured stochastic search approaches have appeared in 

the IIR adaptive filtering literature, most notably simulated 

annealing [6] and evolutionary algorithms such as the GA 

[6,7,10].  PSO is another structured stochastic search 

algorithm that has recently gained popularity for 

optimization problems.   

This paper will discuss particle swarm optimization 

techniques for adaptive all-pass IIR filters with application 

to the motivating example of the phase equalization of a 

minimum phase surface acoustic wave (SAW) filter. 

1.1 Phase Equalization for SAW Filters 

Surface acoustic wave (SAW) filters are commonly 

used in the RF and IF stages of mobile communications 

devices because of their linear frequency response over the 

pass-band and high stop-band attenuation.  The drawback 

to SAW filters is that their frequency response relies on 

their physical characteristics, which cannot be further 

miniaturized to keep up with the ever-shrinking mobile 

communications devices.  However, the physical size of 

SAW filter packages can be minimized without 

compromising their frequency response by performing 

some compensation through adaptive signal processing. 

This decrease in physical size can be achieved by 

using minimum phase SAW filters, which are a more 

compact alternative to the larger linear phase SAW filters 

commonly used in communications devices.  Though 

these minimum phase SAW filters exhibit the shortest 

possible propagation delays, their phase response is 

nonlinear and fails to meet the IS-95-A CDMA 

specifications.  This nonlinear phase characteristic can be 

compensated for with an adaptive all-pass IIR phase 

equalizer [11]. 

1.2 Adaptive IIR Phase Equalizers 

The general structure of a multiple pole/zero adaptive 

all-pass phase equalizer is given as follows: 
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where * denotes the complex conjugate.   

By cascading an all-pass adaptive after a minimum 

phase SAW filter, the non-linear phase response of the 

SAW filter can be adaptively compensated without 

altering the magnitude response.  It has been shown [11] 

that a single first order stage (N=1) of the adaptive IIR 
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equalizer given by equation (1) is capable of providing 

enough non-linear phase compensation to meet the IS-95-

A standards, but higher order IIR filters can further 

improve the performance of the system.  Reference [11] 

considered only gradient based approaches, specifically 

the decision directed (DDA) and the constant modulus 

algorithms (CMA).  Though these algorithms have 

demonstrated success with a single first-order stage, they 

often encounter local minima that will become 

increasingly limiting when the filter order is increased.  

Some work has been done to eliminate the local 

minimum problem in similar higher order SAW filter 

phase equalizers using the simulated annealing and the 

genetic algorithm [2,8].  Particle swarm optimization is a 

novel algorithm that demonstrates several advantages over 

SA and the GA for adaptive IIR filtering [4], which 

especially can be exploited for higher order all-pass phase 

equalization. 

2. PARTICLE SWARM OPTIMIZATION 

Particle swarm optimization was first developed in 

1995 by Eberhart and Kennedy [3], rooted on the notion of 

swarm intelligence of insects, birds, etc.  The swarm of 

particles represents multiple parameter estimates, 

analogous to the population of individuals in the GA.  The 

standard PSO algorithm begins by initializing a random 

swarm of M particles, each having N unknown parameters 

to be optimized.  At each iteration, the fitness of each 

particle is evaluated according to the selected fitness 

function.  The algorithm stores and progressively replaces 

the most fit parameters of each particle (pbesti, i=1,2,...,M)

as well as a single most fit particle (gbest) as better fit 

parameters are encountered.  The parameters of each 

particle (pi) in the swarm are updated at each iteration (n)

according to the following equations: 
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where 

)(nveli
=velocity vector of particle i             

    er=random values  (0,1) 

    acc1=acceleration coefficient toward gbest
    acc2=acceleration coefficient toward pbesti

    w=inertia weight 

The trajectory of each particle is influenced in a 

direction determined by the previous velocity and the 

location of gbest and pbesti.  The two acceleration 

coefficients combined form what is analogous to the step 

size of an adaptive algorithm.  Small acceleration 

coefficients tend to give a better search with slower 

convergence, while larger coefficients give a lesser search 

and faster convergence.  The random ei vectors provide the 

randomness of the step between gbest and pbesti.  The 

inertia weight controls the influence of the previous 

velocity.  A single particle update is graphically illustrated 

in two dimensions in Figure 1.  The new particle 

coordinates can lie anywhere within the bounded region, 

depending upon the weights and random components 

associated with each vector.   

Fig. 1 Possible search region for a single particle 

As new gbests are encountered during the update 

process, all other particles begin to swarm toward the new 

gbest, continuing to search along the way.  The search 

regions continue to constrict as new pbestis are 

encountered.  The algorithm is terminated when all of the 

particles in the swarm have converged to gbest or a 

suitable minimum error condition is met. 

For adaptive IIR phase equalization, the fitness 

function is chosen as the CMA error-generating function.  

This error metric is chosen because a training signal is not 

available for the error formulation in adaptive phase 

equalization but the constant modulus is known for digital 

signal transmissions regardless of phase or polarity.  This 

property makes it an effective metric for tracking time-

varying phase. The general CMA error-generating 

function for IIR adaptive phase equalization is as follows: 
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where N is the order of the all-pass filter, K is the length of 

the window over which the error is averaged, the pi’s are 

the tap weights of each particle, and q and r are integer 

parameters.  When J(n) is minimized, the coefficients 

provide the optimum phase equalization for the given 
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filter.  A more detailed description of PSO for general IIR 

and nonlinear adaptive filtering, as well as suggested 

modifications and a comparison to the GA is outlined in a 

previous paper [4].   

3. SIMULATIONS 

The experimental system consists of a basic CDMA 

communication system model. The transmitted signal is an 

IS-95-A signal, which consists of a bipolar data stream 

spread by two pseudorandom (PR) bipolar sequences; one 

forms the in-phase (real) channel, while the other forms 

the quadrature (imaginary) channel. The transmitter 

consists of a length 48 pulse shaping filter, matched to the 

SAW filter, obtained from [5].  These coefficients were 

interpolated by a factor of 4 to obtain 196 coefficients, in 

order to correct for the up-sampled pulses in the bit 

stream. 

Fig. 2. Impulse responses of the linear and minimum phase 

pulse shaping filters, matched to the SAW filters 

The transmitted in-phase and quadrature signals each 

pass through the same channel model before reaching the 

receiver. The simple channel model adds independent 

complex additive white Gaussian noise with zero mean.  

The receiver consists of the minimum-phase SAW filter, 

given in Figure 2. The long analog baseband filter in the 

receiver is modeled by a linear-phase FIR filter, of order 

201, also obtained from [5].   

A modified PSO (MPSO) algorithm [4] was used to 

update the IIR phase equalization filter that directly 

follows the cascade of the minimum phase SAW filter and 

the baseband filter.  MPSO uses the standard PSO 

algorithm as a base, with several added modifications to 

improve efficiency that involve re-randomization and 

mutation of the particles, detailed in [4]. 

Since the signal is bipolar, the modulus of equation (4) 

is chosen to be =1, and r=q=2.  Both PSO and MPSO 

are initialized with the same population of real-valued 

parameters  (-0.5,1.5) and allowed to evolve.   

3.1 First-order IIR Phase Equalizer
In this example, a first-order (N=1) IIR equalizer 

trained with the MPSO algorithm.  The acceleration 

constants were selected to be 0.5 in all cases.  The CMA 

error is plotted with respect to the single filter coefficient 

in Figure 3.  The convergence plots of the filter 

coefficients, averaged over 50 trails, is given in Figure 4 

for different swarm sizes (M=10, 20, 30).  The straight line 

at the top of Figure 4 indicates the optimal solution, given 

by the global minimum in Figure 3. 

Fig. 3. Error surface of the first-order phase equalizer 
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Fig. 4. Coefficient learning curves of different swarm sizes 

for the first-order phase equalizer 

3.2 Second-order IIR Phase Equalizer

In this example, a second-order (N=2) IIR equalizer is 

trained with the MPSO algorithm.  The acceleration 

constants were selected to be 0.5 in all cases.  The CMA 

error contour is plotted with respect to the two filter 

coefficients in Figure 5.  Because there is no significance 

to the order of the stages in the cascade, this error surface 

in is symmetric about a 45º manifold in the parameter 

space.  Because the global minimum occurs on the 

diagonal, both coefficients will converge to the same 

value.  Therefore, only one of the coefficients is plotted 

M=20 

M=30 

M=10 
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for each case.  These coefficient convergence plots, 

averaged over 50 trails, are given in Figure 6 for different 

swarm sizes (M=20, 30, 40).  The straight line at the top of 

Figure 6 indicates the optimal coefficients, given at the 

center of the global minimum region in Figure 5.   

Fig. 5. Portion of the multimodal error surface contour for 

second-order phase equalizer 

Fig. 6. Coefficient learning curves of different swarm sizes 

for the second-order phase equalizer 

4. DISCUSSION

One curious observation from Figures 4 and 6 is that 

the coefficient curves always begin at a lower value and 

converge upward toward the optimum, despite the fact that 

the coefficient vectors are randomly initialized.  This can 

be attributed to the fact that the PSO algorithm will always 

select the gbests with the lowest error value.  It can be 

observed from Figures 3 and 5 that the largest regions with 

relatively low error values are located where the 

coefficients are lower in value than the optimum.  

Therefore, in these examples, it is more likely for the 

initial coefficients to start lower and increase toward the 

optimum. 

Adding all-pass stages offers a performance 

improvement with diminishing returns as the number of 

stages increases.  Therefore, 2-3 stages should be 

sufficient to exceed the IS-95-A standards with improved 

performance over the single stage.  Since the numerator 

and denominator coefficients are the same for each stage 

in the all-pass equalizer, the number of particle parameters 

is equal to the number of stages, which will generally be 

very low.  Because the swarm size is directly related to the 

dimensionality of the search space, PSO is well suited for 

these minimal parameter cases because it can give fast 

convergence with a relatively small swarm size, as 

indicated by Figures 4 & 6.  This property makes PSO 

ideal for fast on-line phase adaptation in communications 

devices.   

When compared to alternative stochastic search 

algorithms such as the SA and the GA [2,8] for the same 

problem, PSO is able to give a more robust search with 

better convergence properties for a given population size.  

This can be directly attributed to the inherent update 

mechanism and adjustable step size of PSO, which is 

especially effective for low-dimensional real-valued on-

line adaptive problems such as all-pass phase equalization. 
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