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ABSTRACT 

This paper investigates the application of a modified 
particle swarm optimization technique to nonparametric 

density estimation based independent component 
analysis (ICA).  Nonparametric ICA has the advantage 
over traditional ICA techniques in that its performance 

is not dependent upon prior assumptions about the 
source distributions.  Particle swarm optimization 
(PSO) is similar to the genetic algorithm in that it 

utilizes a population based search suitable for 
optimizing multimodal error surfaces where gradient-
based algorithms tend to fail, such as those generated 
by nonlinear entropy maximization schemes used in 

ICA algorithms.   

1. INTRODUCTION 

Independent Component Analysis (ICA) techniques 

have garnered much attention recently for their ability 

to successfully blindly separate linear mixtures of 

signals generated by independent sources.  Although 

the current ICA algorithms have proven to be 

successful for some cases, most of the time the 

algorithms’ performances are at best satisfactorily.  The 

weakness of the aforementioned ICA algorithms 

primarily stems from two factors: the entropy 

estimation technique and the optimization of the 

entropy performance function.   

The heart of ICA is a complex optimization 

problem of determining the unknown “unmixing” 

matrix.  In ICA algorithms the determination of this 

unmixing matrix is performed based on maximizing the 

estimated entropy of the system.  The quality of the 

results depends on how the entropy is estimated, which 

traditionally relies on apriori assumptions about the 

sources and mixing matrix.  For most ICA algorithms, 

for reasonable performance, it is necessary to restrict 

the probability distributions of the sources to a 

particular shape or class via fixed or parametric 

estimates [1][3].  This can lead to a simple training 

network, but obviously results in poor performance 

when the actual sources do not match the assumed 

distributions.  Such restrictions are not placed on the 

sources in nonparametric density estimation 

approaches, making the algorithms more robust. 

Regardless of whether the ICA density estimation 

is fixed, parametric, or nonparametric, ICA algorithms 

attempt to maximize the estimated entropy of the 

system.  The preeminent ICA algorithms primarily use 

gradient based techniques to perform the entropy 

maximization.  These gradient based techniques are 

often misguidedly deemed acceptable for several 

reasons.  For one, because of the inherent complexity of 

many ICA algorithms, additional complexity is avoided 

by incorporating a reliable gradient based algorithm 

with provable (albeit often suboptimal) local 

convergence.  Also, this suboptimal performance may 

occur less frequently than expected because many 

global optima of the performance surface exist as scaled 

and permuted versions of the unmixing matrix.  

However, for example, it is well-known and commonly 

overlooked that neural networks such as implemented 

in variations of Infomax [3][12] (and in general) are 

highly nonlinear and produce multimodal performance 

surfaces that do not lend themselves well to gradient-

based techniques.  Likewise other ICA techniques, 

including the nonparametric density estimation 

examined here [4], contain nonlinear entropy estimation 

functions.  Again, gradient based optimization will 

inevitably lead to suboptimal solutions on such 

nonlinear performance functions, which requires 

multiple restarts to avoid a meaningless unmixing 

matrix.  In addition, the number of local minima of the 

performance surface can dramatically increase when the 

unknown sources have multimodal distributions. 

Although a global optimization alternative to a 

gradient based approach, such as the suggested particle 
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swarm optimization technique, would likely improve 

the performance of both parametric and neural network 

[13] based ICA algorithms, nonparametric density 

estimation based ICA is chosen for the analysis due to 

the aforementioned advantages.  

2. NONPARAMETRIC DENSITY ESTIMATION 

BASED ICA 

Assuming a linear mixture of N independent sources of 
the form x=As, where s is the vector of source signals 
and x is the matrix of mixed signals, ICA attempts to 

solve y=Wx, where W is the unmixing matrix that 
approximates A

-1
 to within a scaling and permutation.  

This is typically accomplished by maximizing the 
entropy, or equivalently, minimizing the mutual 

information between the reconstructed signals 
according to: 
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Because H(x), the entropy of the input, is constant with 
respect to the weight matrix W, it can be dropped from 

the expression, giving the following cost function: 
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where wi is the i
th

 row of matrix W. 
Nonparametric density estimate based ICA [4] aims 

to simultaneously determine the densities of the source 
distributions as well as the unmixing matrix.  Using a 
batch of sample data of size M, the marginal 

distributions are approximated using the following: 
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Substituting in equation 2 results in the following cost 

function: 
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where ϕ(
.
) is the Gaussian kernel, h is the kernel 

bandwidth, and x
(m)

 is the m
th

 column of the mixture x.

The additional constraint of 1=iw  is also imposed to 

restrict the search space. 

3. PARTICLE SWARM OPTIMIZATION 

Particle swarm optimization was first developed in 

1995 by Eberhart and Kennedy [7], rooted on the notion 
of swarm intelligence of insects, birds, etc.  The swarm 
of particles represents multiple parameter estimates, 

analogous to the population of individuals in the genetic 
algorithm.  The conventional PSO algorithm begins by 
initializing a random swarm of R particles, each having 

T unknown parameters to be optimized.  At each epoch, 
the fitness of each particle is evaluated according to the 
selected fitness function.  The algorithm stores and 
progressively replaces the most fit parameters of each 

particle (pbesti, i=1,2,...,R) as well as a single most fit 
particle (gbest) as better fit parameters are encountered.  
The parameters of each particle (pi) in the swarm are 

updated at each epoch (n) according to the following 
equations: 
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where )(nveli
is the velocity vector of particle i, et are 

random values ∈  (0,1), w is the inertia weight, and acc1

and acc2 are the acceleration coefficients toward gbest
and pbesti, respectively.

The trajectory of each particle is influenced in a 

direction determined by the previous velocity and the 
location of gbest and pbesti.  The two acceleration 
coefficients combined form what is analogous to the 

step size of an adaptive algorithm.  The random et

vectors provide the randomness of the step between 
gbest and pbesti.  The inertia weight controls the 

influence of the previous velocity. 
As new gbests are encountered during the update 

process, all other particles begin to swarm toward the 

new gbest, continuing to search along the way.  The 
search regions continue to constrict as new pbesti’s are 
encountered.  The algorithm is terminated when all of 
the particles in the swarm have converged to gbest or a 

suitable minimum error condition is met. 
The modified PSO (MPSO) algorithm incorporates 

an adaptive inertia and mutation operator that enhance 

the convergence properties and overall performance of 
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conventional PSO.  The mutation operator is analogous 

to that of the genetic algorithm.  Its purpose is to 
eliminate stagnation of particles that often occurs in 
conventional PSO.  Because the mutation operator 

tends to slow the optimal convergence rate of PSO in 
general, the following adaptive inertia operator is 
included to compensate: 
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where wi(n) is the inertia weight of the i
th

 particle, 
Ji(n) is the change in particle fitness between the 

current and last generation, and S is a constant used to 

adjust the transition slope based on the expected fitness 
range. The adaptive inertia automatically adjusts to 
favor directions that result in large increases in the 

fitness value, while suppressing directions that decrease 
the fitness value.  The specifics of these operators, as 
well as the performance characteristics and other 

variations of PSO, are detailed in [8][9][10][11].   

Source # Type Kurtosis Pdf 

1
Double 

exponential 
3.67

2
Gaussian 

mixture 
-1.07 

3 Uniform -1.21 

4 Rayleigh 0.31

5

Double 
exponential 

mixture 
-1.82 

Table 1. Synthetic source distributions used in the 
experiments 

4. SIMULATIONS 

The experimental setup consists of N = 5 synthetic 

sources drawn from different random distributions with 
zero mean and unit variance.  The selected distributions 
are provided in Table 1, with zero kurtosis 

corresponding to a Gaussian distribution.  These 

sources were linearly mixed using an arbitrary mixing 
matrix, having condition number < 6, generating 5 new 
signals.  The resulting data is then whitened to aid the 

convergence of the algorithms. The performance results 
produced by the gradient based algorithm provided by 
the authors in [4] are compared to the results obtained 

by substituting the MPSO algorithm for the gradient 
based update of the cost function (equation 4) in the 
same algorithm.  It should be noted that, contrary to the 
gradient method, no restriction on the weights is 

necessary with MPSO for reasonable performance.  The 
convergence plots are the average of 50 Monte Carlo 
trials. 

4.1 Example 1:  

In this example, a data length of 500 samples from each 
source is used for the ICA.  This small sample set is 
intended to test the performance at a lower extreme.  A 

modest swarm size of 100 particles was chosen as 
sufficient for convergence of MPSO.  The results are 
given in Figure 1. 

4.2 Example 2:  

In this example, a data length of 5000 samples from 

each source is used for the ICA.  This sample set is 
intended to illustrate the case of sufficient data.  Again, 
a swarm size of 100 particles was selected.  The results 

are given in Figure 2. 

5. DISCUSSION 

The analysis presented in this paper focuses on the 
convergence properties of the respective optimization 
techniques for the specific ICA cost function given by 

equation 4.  For the examples considered, it was 
verified that the minimization of equation 4 directly 
resulted in a lower Amari index [1], which characterizes 
the desired matrix composition and separation 

performance.   
The results in Figures 1 and 2 indicate that the 

performance of gradient method is suboptimal 

compared to MPSO.  For individual trials in general, 
the gradient method curiously tends to exhibit periods 
of very slow convergence, followed by periods of more 

rapid convergence - an effect that is averaged out but 
still apparent in the convergence plots.  This is believed 
to be due to the traversing of regions having minimal 

gradients on the nonlinear surface.  This behavior seems 
to be a precursor for increasingly poor performance 

(7)

IV - 359



under progressively more extreme conditions such as 

more complex multimodal distributions or larger scale 
mixtures, for instance.  The suboptimal convergence is 
not as noticeable, by comparison, in the larger data 

case.  This is likely due to the fact that the performance 
surface is better defined and more amenable to a 
gradient algorithm when more data is available. 

Conversely, MPSO and stochastic search 
algorithms are more robust with more consistent 
convergence characteristics.  This is because the 
performance surface gradients do not explicitly affect 

the weight updates.  Thus, stochastic algorithms can be 
applied to wide-ranging nonlinear optimization 
problems with reliable performance.  In addition, when 

compared to number of operations necessary for some 
complex gradient based weight updated schemes, 
MPSO and similar algorithms do not add a considerable 

computational burden [11].  For these reasons, it is 
practical to consider stochastic optimization algorithms, 
not only as a viable alternative, but as a replacement to 

conventional ICA optimization techniques - especially 
in instances where the conventional techniques falter.      
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Fig. 1. Learning curves for Example 1 
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Fig. 2. Learning curves for Example 2 

6. REFERENCES 

[1] Amari, S., Cichoki, A., and Yang, H.H., “A new learning 
algorithm for blind signal separation,” Advances in 
Neural Information Processing Systems, vol.8, MIT 
Press, 1996, pp. 757-763.  

[2] Bach, F.R. and Jordan, M.I., “Kernel Independent 
Component Analysis,” J. Machine Learning Res., vol.3, 
2002, pp. 1-48. 

[3] Bell, A.J., Sejnowski, T.J., “An Information 
Maximization Approach to Blind Separation and Blind 
Deconvolution”. Neural Computation, 7, 6, 1995, pp. 
1129-1159. 

[4] Boscolo, R., Pan, H., Roychowdhury, V.P., “Independent 
Component Analysis Based on Nonparametric Density 
Estimation,” IEEE Transactions on Neural Networks, 
Vol. 15, No. 1, January 2004. 

[5] El-Gallad, A. I., El-Hawary, M. E., Sallam, A. A., and 
Kalas, A. “Enhancing the particle swarm optimizer via 
proper parameters selection,” Canadian Conference on 
Electrical and Computer Engineering, 2002, pp. 792-797, 
2002.

[6] Hyvarinen, A., “Survey on Independent Component 
Analysis,” Neural Comp. Surveys, vol.2, 1999, pp. 94-
128.

[7] Kennedy, J., Eberhart, R. C., and Shi, Y., Swarm 
Intelligence San Francisco: Morgan Kaufmann 
Publishers, 2001.  

[8] Krusienski, D. J. and Jenkins, W.K., “Design and 
Performance of Adaptive Systems Based on Structured 
Stochastic Optimization Strategies”, IEEE Circuits and 
Systems Magazine. (to appear) 

[9] Krusienski D. J. and Jenkins, W.K., “A Particle Swarm 
Optimization-LMS Hybrid Algorithm for Adaptive 
Filtering”, Proc. of the 38th Asilomar Conf. on Signals, 
Systems, and Computers, November 2004. (to appear) 

[10] Krusienski, D. J. and Jenkins, W.K., “Particle Swarm 
Optimization for Adaptive IIR Filter Structures,” Proc. 
of the 2004 Congress on Evolutionary Computation, 
June 2004.  

[11] Krusienski, D. J., “Enhanced Structured Stochastic 
Global Optimization Algorithms for IIR and Nonlinear 
Adaptive Filtering”, Ph.D. Thesis, The Pennsylvania 
State University, 2004. 

[12] Lee, T.W., Girolami, M., and Sejnowski, T.J., 
“Independent component analysis using an extended 
infomax algorithm for mixed subgaussian and 
supergaussian sources,: Neural Computation, vol.11, 
no.2, 1997, pp. 417-441. 

[13] Mendes, R., Cortez, P., Rocha, M., Neves, J., “Particle 
swarms for feedforward neural network training,” in 
Proc. Int. Joint Conf. Neural Networks (IJCNN ’02), vol. 
2, 2002, pp. 1895–1899. 

IV - 360


	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 


