Emulation of computer mouse control with a noninvasive brain–computer interface

Dennis J McFarland1, Dean J Krusienski2, William A Sarnacki1 and Jonathan R Wolpaw1

1 Laboratory of Nervous System Disorders, Wadsworth Center, New York State Department of Health and State University of New York, Albany, NY 12201, USA
2 University of North Florida, Jacksonville, FL 32224, USA
E-mail: mcfarlan@wadsworth.org

Received 11 December 2007
Accepted for publication 14 February 2008
Published 5 March 2008
Online at stacks.iop.org/JNE/5/101

Abstract

Brain–computer interface (BCI) technology can provide nonmuscular communication and control to people who are severely paralyzed. BCIs can use noninvasive or invasive techniques for recording the brain signals that convey the user’s commands. Although noninvasive BCIs are used for simple applications, it has frequently been assumed that only invasive BCIs, which use electrodes implanted in the brain, will be able to provide multidimensional sequential control of a robotic arm or a neuroprosthesis. The present study shows that a noninvasive BCI using scalp-recorded electroencephalographic (EEG) activity and an adaptive algorithm can provide people, including people with spinal cord injuries, with two-dimensional cursor movement and target selection. Multiple targets were presented around the periphery of a computer screen, with one designated as the correct target. The user’s task was to use EEG to move a cursor from the center of the screen to the correct target and then to use an additional EEG feature to select the target. If the cursor reached an incorrect target, the user was instructed not to select it. Thus, this task emulated the key features of mouse operation. The results indicate that people with severe motor disabilities could use brain signals for sequential multidimensional movement and selection.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Brain activity produces electrical signals that are detectable on the scalp, on the cortical surface or within the brain. Brain–computer interfaces (BCIs) translate these signals from mere reflections of brain activity into outputs that communicate the user’s intent without the participation of peripheral nerves and muscles (Wolpaw et al 2002). Because they do not depend on neuromuscular control, BCIs can provide communication and control for people with devastating neuromuscular disorders such as amyotrophic lateral sclerosis (ALS), brainstem stroke, cerebral palsy and spinal cord injury. The central purpose of BCI research and development is to enable these users, who may be totally paralyzed (‘locked in’, unable even to breath or to move their eyes), to convey their wishes to caregivers, to use word-processing programs and other software, or even to control a robotic arm or a neuroprosthesis.

BCIs can be either noninvasive or invasive. Present-day noninvasive BCIs derive the user’s intent from scalp-recorded electroencephalographic (EEG) activity. They are clearly capable of providing basic communication and control to people with severe disabilities (e.g., Birbaumer et al 1999, Muller-Putz et al 2005, Sellers et al 2006). Present-day invasive BCIs derive the user’s intent from neuronal action potentials or local field potentials recorded from within the cerebral cortex or from its surface. They have been studied mainly in non-human primates and to a limited extent in humans (Chapin et al 1999, Wessberg et al 2000, Serruya et al
Table 1. User age, disability, gender and signal features that controlled horizontal (X) and vertical (Y) cursor movements and target selection (Z). For each feature, the scalp location (C3, C4, CP3, CP4, FC1) and the center frequency of the 3 Hz wide frequency band (in parenthesis) are given.

<table>
<thead>
<tr>
<th>Name</th>
<th>Age</th>
<th>Disability</th>
<th>Gender</th>
<th>X Features</th>
<th>Y Features</th>
<th>Z Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>24</td>
<td>Spinal cord injury</td>
<td>M</td>
<td>C3 (12)</td>
<td>C3 (12)</td>
<td>FC1 (15)</td>
</tr>
<tr>
<td>B</td>
<td>56</td>
<td>None</td>
<td>F</td>
<td>C4 (12)</td>
<td>C4 (12)</td>
<td>C3 (12)</td>
</tr>
<tr>
<td>C</td>
<td>44</td>
<td>Spinal cord injury</td>
<td>M</td>
<td>C3 (12)</td>
<td>C3 (24)</td>
<td>FC1 (24)</td>
</tr>
<tr>
<td>D</td>
<td>38</td>
<td>None</td>
<td>F</td>
<td>CP3 (12)</td>
<td>C4 (24)</td>
<td>C2 (24)</td>
</tr>
<tr>
<td>E</td>
<td>43</td>
<td>None</td>
<td>F</td>
<td>CP4 (26)</td>
<td>Cz (30)</td>
<td>FC1 (22)</td>
</tr>
<tr>
<td>F</td>
<td>28</td>
<td>None</td>
<td>M</td>
<td>C3 (12)</td>
<td>CP4 (12)</td>
<td>C3 (12)</td>
</tr>
</tbody>
</table>

2. Methods

Our sensorimotor-rhythm-based BCI methodology has been fully described previously (Wolpaw and McFarland 2004, McFarland et al 2006b) and is summarized here. The new procedures relating to sequential operation and target selection are described in detail.

2.1. Users

The BCI users were six adults, three women and three men, aged 24–56. Two of the men had spinal cord injuries (one at T7 and one at C6) and were confined to wheelchairs. All gave informed consent for the study, which had been reviewed and approved by the New York State Department of Health Institutional Review Board. Four of these users had no prior BCI experience. The two users with spinal cord injury had previously participated in other BCI studies (e.g., Wolpaw and McFarland 2004, McFarland et al 2006).

2.2. BCI training protocol and data collection

The user sat in a reclining chair facing a 51 cm video screen 3 m away, and was asked to remain motionless during performance. Online operation and data collection were supported by the general-purpose BCI software platform, BCI2000 (Schalk et al 2004). Scalp electrodes recorded 64 channels of EEG (Sharbrough et al 1991), each referenced to an electrode on the right ear (amplification 20 000; bandpass 0.1–60 Hz). All 64 channels were digitized at 160 Hz and stored for later analysis. A subset of channels located over sensorimotor cortex (see table 1) were used to control online cursor movement and target selection online as described below. Each user completed 2–3 sessions per week. Each session consisted of eight 3 min runs separated by 1 min breaks, and each run consisted of 20–30 trials.
The user first learned a one-dimensional vertical cursor-movement task in which two targets appeared, one at the top of the screen and one at the bottom. In each trial, one of the targets was red (i.e. correct) and one was green (i.e. incorrect). The location of the red target for each trial was randomly determined. The cursor began in the middle of the screen and moved vertically until it reached a target, at which point the trial ended. The user’s goal was to move the cursor to the red target. If it moved to the green target, an error was registered. Vertical cursor movement was controlled by a combination of sensorimotor-rhythm features as described below. After learning this vertical movement task, the user learned a comparable one-dimensional horizontal cursor-movement task in which the two targets appeared at the right and left edges of the screen, and horizontal cursor movement was controlled by a different combination of sensorimotor-rhythm features. Early in training, users typically employed motor imagery to control the cursor. As their skill developed, imagery tended to become less important.

After mastering both one-dimensional tasks, the user employed the two sets of sensorimotor-rhythm features to control both horizontal and vertical movements simultaneously. Four targets were presented, one in the middle of each edge of the screen, and the goal was to reach the single red target while avoiding the three green targets. The location of the red target for each trial was randomly determined. Targets on the top and bottom edges were 20% of the screen in width and 10% of the screen in height. Targets on the right and left edges were 10% of the screen in width and 20% of the screen in height. Thus, each target occupied 2% of the workspace. Once a target was reached, the user employed a third set of sensorimotor-rhythm features to select the target (if it was red) or to reject it (if it was green). This completed the trial. (Users were instructed to select the target by imagining grasping it with his/her right hand only if it was red.)

Figure 1 illustrates the sequence of events in each trial. First, the four targets appeared. 1 s later, the cursor appeared in the middle of the screen and began to move both horizontally and vertically under the control of the user’s EEG. When the cursor made contact with a target, the cursor and the other targets disappeared and the contacted target turned blue for 1.5 s. During this period, the user employed the third set of sensorimotor-rhythm features to select or not select the target. If the target was selected, it turned yellow for 1 s. If it was not selected, it simply disappeared and the screen was blank for 1 s. The screen was then blank for a 1 s inter-trial period, and the next trial began. Thus, each trial consisted of a 1 s period between target appearance and cursor movement, a variable period during which cursor movement occurred, a 1.5 s post-movement selection period, a 1 s post-trial feedback period and a 1 s inter-trial interval.

2.3. Control of cursor movement

To control each dimension (horizontal or vertical) of cursor movement, two EEG channels (one over the sensorimotor cortex of each hemisphere) were derived from the digitized data according to a large (i.e. 6 cm interelectrode distance) Laplacian transform (McFarland et al. 1997b). The specific channels used for each subject are shown in table 1. Every 50 msec, the most recent 400 msec segment from each channel was analyzed by a 16th-order autoregressive algorithm (Marple 1987) that was used to compute an estimation of the spectrum. Next, the amplitude (i.e. square root of power) was calculated from the spectrum for 3 Hz wide sensorimotor-rhythm frequency bands centered between 8 and 26 Hz (most commonly in the mu (8–12 Hz) or beta (18–26 Hz) frequency range). The amplitudes in these specific frequency bands from specific EEG channels constituted the signal features that conveyed the user’s intent. One or more of these features were combined to comprise the control signal (i.e. the independent variable) in a linear equation that controlled a dimension of cursor movement (McFarland et al. 1997a). That is, if \(\Delta V \) was the vertical cursor movement, \(S_v \) was the control signal for vertical movement, \(b_v \) was the gain and \(a_v \) was the mean of the vertical control signal for the user’s previous performance,

\[
\Delta V = b_v(S_v - a_v)
\]

(1) was the function that determined each vertical cursor movement. (This form of the linear equation is used so that \(a \) and \(b \) can be defined independently of each other.) Similarly, if \(\Delta H \) was the horizontal cursor movement,

\[
\Delta H = b_h(S_h - a_h)
\]

(2) was the function that determined the horizontal cursor movement. Movements in each dimension occurred simultaneously 20 times per second.

For each dimension, the intercept \(a \) was defined as the average value of the corresponding signal, \(S \), for 12 trials consisting of the three most recent trials for each of the four possible locations of the red target (McFarland et al. 1997a). Thus, the intercept minimized directional bias, maximized the
influence that the user’s EEG control had on the direction (e.g., upward or downward) of the cursor movement and helped make all targets equally accessible. The slope (or gain) \(b \) determined the magnitude of the cursor movement for a given value of \((S - a)\). The slope was automatically selected so as to provide similar horizontal and vertical movement (i.e. the same aspect ratio as the screen resolution in pixels) and to produce cursor-movement periods that typically lasted 2–3 s.

2.4. Control of target selection

Like each dimension of cursor movement, target selection was controlled by a linear equation in which the control signal comprised a weighted combination of sensorimotor-rhythm features from channels over sensorimotor cortex, usually on the left side. The frequencies and locations of the features used for each subject are shown in table 1. If \(G \) was the target-selection signal,

\[
G = b_3(S_3 - a_3)
\]

was the function that determined target selection. The target was selected when the value of this function was below zero (i.e. when imagery-related desynchronization occurred) and was rejected if the value was equal to or greater than zero. The intercept \(a \) was defined as the average value of the control signal over the last 12 trials. The slope \(b \) remained at a value of 1 throughout since the selection was simply determined by whether the value of \(G \) was positive or negative.

2.5. Feature selection and weights

As noted above, the signal features that controlled cursor movement and target selection were amplitudes in 3 Hz wide frequency bands with center frequencies between 12 and 30 Hz, and came from EEG channels located over sensorimotor cortex. \(C_3 \) and \(C_4 \) were the most common channels (table 1). For each user, channel and frequency selections at the beginning of training were based on the initial screening data (Wolpaw and McFarland 1994). As training progressed, they were modified on the basis of results using a stepwise regression analysis (McFarland and Wolpaw 2005). Separate regression equations were evaluated for prediction of horizontal target position, vertical target position and target selection. During on-line performance, feature weights for these three regression equations were updated at the end of each trial with the LMS algorithm (Haykin 1996) in conjunction with the prediction error for target position.

For target selection, the initial feature choice was based on evaluation of the user’s EEG during grasp imagery. Subsequent modifications in the features used and the weights assigned to them employed the same offline and online protocol described above for cursor movements.

Table 1 shows, for each user’s final sessions, the scalp locations and frequencies of the rhythm amplitudes used for each of the three control signals (i.e. vertical, horizontal and target selection). The final results showed in table 1, which differ markedly among users, are the products of the interactions during training between each user’s capacities and the adaptation produced by the LMS algorithm.

2.6. Evaluation of EMG activity during BCI operation

Following the completion of the primary study, four of the six users participated in an ancillary study to assess EMG activity during BCI performance. Both of the users with spinal cord injury were included in these sessions since their injuries did not preclude control of their hands and forearms. Six bipolar electrode pairs were placed on the forearm flexors, forearm extensors and palm of each arm. For 2–3 standard sessions from each user, EMG activity was recorded continuously while the user performed the cursor-movement/target-selection task. Prior to each of these sessions, the user performed a maximum voluntary contraction (MVC) (i.e. by making a fist with each hand) to provide a denominator for evaluating EMG amplitude during task performance.

3. Results

For each user, performance gradually improved over the training sessions as s/he gradually gained better control over the EEG features (i.e. the rhythm amplitudes) that controlled
cursor movement and target selection, and as the adaptive algorithm gradually adjusted the weights so as to vest control of cursor movement and target selection in those signal features (i.e. amplitudes in specific 3 Hz frequency bands from specific EEG channels) that the user was best able to control. As previously described (Wolpaw and McFarland 1994, 2004), users tended to employ motor imagery to control cursor movements, particularly early in training. This imagery involved muscle groups not paralyzed in the users with spinal cord injuries. As noted, four of the six users had no previous BCI training, while two had participated in a variety of studies. For the present study, following one-dimensional and two-dimensional training, the users had 14–38 sessions (i.e. 5–15 h) of training on the complete move-and-select task. The data presented here are those of each user’s final three sessions, comprising 484–602 trials from each of the six users. From these data, we assessed both EEG control and the control of cursor movement and target selection that the EEG control provided.

3.1. EEG control

We assessed EEG control during cursor movement by spectral and topographical analyses of the correlations (measured as R^2) between the vertical and horizontal locations of the red target (i.e. the correct target) and the average values for the trial of the vertical and horizontal control variables (i.e. from equations (1) and (2)), respectively (Wolpaw and McFarland, 1994, Sheikh et al 2003). Each variable correlated with its own dimension of target location and showed little correlation with the other variable’s dimension (table 2). The users developed two independent control signals: one for vertical movement and one for horizontal movement.

We assessed EEG control during target selection in an analogous fashion by determining R^2 for the correct selection value (coded +1 or −1) and the selection control variable (i.e. from equation (3)). For each user, the selection control variable correlated with the correct selection value (table 2).

Figure 2 shows for each user the topographies for the correlations (shown as R) between each of the three target dimensions (i.e. vertical location, horizontal location and selection) and the amplitude of the EEG feature that made the largest contribution to the control signal (i.e. equations (1), (2) or (3)) for that dimension. The correlations are shown as R rather than R^2 to distinguish negative and positive correlations.) For each signal in each user, control is focused over sensorimotor cortex. A user’s three topographies usually differ markedly from each other.

Table 2. Values of R^2 for correlations of the horizontal target position (H) with the horizontal control signal (S_H), the vertical target position (V) with the vertical control signal (S_V), the correct selection value (G) with the selection control signal (S_G), the horizontal target position (H) with the vertical control signal (S_V), the vertical target position (V) with the horizontal control signal (S_H) and the horizontal control signal (S_H) with the vertical control signal (S_V).

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.38</td>
<td>0.44</td>
<td>0.43</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
</tr>
<tr>
<td>B</td>
<td>0.31</td>
<td>0.37</td>
<td>0.50</td>
<td><0.01</td>
<td><0.01</td>
<td>0.03</td>
</tr>
<tr>
<td>C</td>
<td>0.18</td>
<td>0.33</td>
<td>0.07</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
</tr>
<tr>
<td>D</td>
<td>0.08</td>
<td>0.19</td>
<td>0.21</td>
<td><0.01</td>
<td><0.01</td>
<td>0.36</td>
</tr>
<tr>
<td>E</td>
<td>0.20</td>
<td>0.15</td>
<td>0.34</td>
<td>0.02</td>
<td><0.01</td>
<td>0.09</td>
</tr>
<tr>
<td>F</td>
<td>0.14</td>
<td>0.11</td>
<td>0.31</td>
<td>0.04</td>
<td>0.03</td>
<td>0.30</td>
</tr>
</tbody>
</table>

Figure 2. Topographies for each of the six users (A–F) for the correlations (shown as R) between each of the three target dimensions (i.e. vertical location (V), horizontal location (H) and selection (G)) and the amplitude of the EEG feature that made the largest contribution to the control signal (i.e. provided by equations (1), (2) or (3)) for that dimension. (The correlations are shown as R rather than R^2 to distinguish negative and positive correlations.) For each signal in each user, control is focused over sensorimotor cortex. A user’s three topographies usually differ markedly from each other.
Figure 3. Spectral properties of User A’s vertical, horizontal and selection control signals. From top to bottom are shown the equations that defined these signals, the voltage spectra for these control signals, the R^2 spectra corresponding to the voltage spectra and representative examples of the time-domain signals from EEG channels that contributed to the control signals. (For the vertical or horizontal control signal, the two features used were from the same frequency band of different EEG channels, and the spectra shown are the combination of the two channels. For the selection control signal, the two features used were from different frequency bands of different EEG channels, and thus the spectra shown are for only one of the channels.) These data illustrate the sensorimotor control that enabled the user to move the cursor to the target and to select the target if it was correct.

The middle of figure 3 shows, for the three vertical and three horizontal target levels and for the two selection levels (i.e. select/reject), the voltage spectra from which were derived the control signals (from equations (1)–(3)) and their corresponding R^2 spectra. At the bottom of figure 3 are samples of EEG from locations that contributed to the three control signals. These samples are during the cursor-movement period for trials in which the target was at the top or bottom or at the right or left screen edge, and during the target-selection period for trials in which the correct selection choice was ‘select’ or ‘reject.’ They illustrate the strong sensorimotor rhythm control that the user employed to move the cursor to the target and then to select it. While the 12 Hz mu activity changed at both locations with both dimensions of target location (e.g. 2 and 3), the adaptive algorithm arrived at feature weights that gave independent vertical and horizontal control signals (table 2).

3.2. Control of cursor movement and target selection

The EEG control summarized in table 2 and illustrated in figures 2 and 3 gave each user significant cursor-movement control. Users A–E reached the correct target in 59–88% of the trials (with 25% expected by chance), and, once a target was reached, these users correctly selected or rejected it in 71–91% of the trials (with 50% expected by chance). Every user’s performances for both cursor movement and target selection were significantly better than chance ($p < 0.0001$ by χ^2 analysis).
Average cursor trajectories to each target for each user are shown in figure 4. These trajectories are averages of individual trials lasting 5 s or less that are normalized in terms of the individual trial duration (i.e. each point is a proportion of the individual trial duration). Figure 5(a) shows each user’s accuracies for cursor movement, target selection and their combination. The percentage for the combination is based on the conditional probability of correct cursor movement given a selection. This would represent the accuracy of a functioning system where rejected targets would only reduce speed but not accuracy. Given that no target was selected, it could have been either the correct target or an incorrect target. However, this distinction is not relevant for system performance. Figure 5(b) shows for each user the percentages for the three possible trial outcomes: correct target selected, no target selected or incorrect target selected. These data make three important points. First, all the users were successful in both the cursor-movement and target-selection phases of the task. Second, the levels of performance on both phases differed markedly across users. (It is worth noting that the performances of the two users with spinal cord injuries were the first and third best of the six.) Third, the worst possible target outcome, selection of an incorrect target, occurred rarely in each user. In most of the trials that were not correct movements, no selection was made. These null trials waste time, but they do not create errors that then require correction. Thus, they are far preferable to incorrect selections.

We also examined the average cursor-movement time and accuracy of target selection for each target separately. Across the six users, average movement times were 2.5–3.5 s. For four of the six users, selection success did not depend on target location, while two users showed slight but significant dependence.

3.3. Analysis of concurrent EMG activity

All six users sat quietly during both parts of task and made no overt movements. Figure 6 presents the results of the analysis of forearm and palm EMG during the target-selection period for the four users who participated in this ancillary study. As figure 6 shows, EMG was low in all four users. The correlation between EMG and target type (i.e. correct or incorrect) was low in Users A and F and substantial in Users B and C. Most importantly, in all four users, the level of EMG contributed very little to the EEG control. That is, as figure 6 shows, the R^2 value for the correlation between the EEG variable (i.e., from equation (3) that controlled target selection and the correct selection value (coded +1 or −1) was only slightly reduced by removing the impact of EMG (i.e. by correcting for the variance common to the EEG variable and the combined activity of all six EMG channels). Thus, in all four users, EMG activity was low during target selection, and target selection was largely independent of that EMG activity.

4. Discussion

4.1. The results and their significance

The results show that people can learn to use scalp-recorded EEG rhythms to move a cursor in two dimensions to reach a target and then to select the target. Control develops over training sessions as the user gradually acquires better EEG control and as the BCI system gradually focuses on those rhythm amplitudes that the user is best able to control. The sequential two-dimensional movement control and selection demonstrated in this study is a skill that the user and system gradually master together. As control improves, the motor imagery that users typically employ early in training tends to become less important and performance becomes more automatic.

As table 1 shows, for the cursor-movement phase of the task, each user acquired control over two EEG variables (i.e. equations (1) and (2)), one for horizontal movement and one for vertical movement. Furthermore, for each variable correlation with the wrong dimension of movement was very low (the correlation between control channels was rather high in D and F, but this did not result in the signals being correlated with the wrong target). The achievement of two independent movement control signals was the result of user training in combination with the LMS algorithm. Each user also acquired
control over a third variable (i.e. equation (3)) that controlled the target-selection phase.

None of the users displayed overt movements during either part of the task. Analysis of forearm and hand EMG indicated that subtle changes in muscle activity were not responsible for the EEG variable that controlled target-selection (i.e. equation (3)). As figure 6 shows, for all four users tested, EMG was low during target selection, and the correlation of the EEG target-selection variable with the correct selection outcome was only slightly reduced when the impact of this EMG activity was removed. In Users A and F, EMG correlation with the correct outcome was very low. The EMG correlations found in Users B and C are consistent with previous evidence that motor imagery (in this case, imagery of a grasp response) can affect EMG activity (Dickstein et al 2005, Wehner et al 1984) and spinal stretch reflexes (Bonnet et al 1997, Li et al 2004). Thus, it is likely that the correlations noted in these two users were simply an additional consequence of the mental imagery that controlled the EEG variable. The crucial finding is that, in all four users in whom concurrent EMG was studied, the EEG variable remained highly correlated with the correct selection outcome even after correcting for the effects of EMG.

This study differs from most previous studies of two-dimensional control in that it provides multiple possible targets in every trial and thus allows the possibility of an incorrect selection. In most other studies (Chapin et al 1999, Wessberg et al 2000, Taylor et al 2002, Pesaran et al 2002, Serruya et al 2002, Wolpaw and McFarland, 2004, Hochberg et al 2006), only the correct target appeared on the screen and failure consisted merely of not reaching the trial within a given time period. A protocol that permits incorrect selections is more realistic, since most communication and control tasks that are encountered in the real world have the possibility of errors. For example, typical icon selection tasks based on
mouse control permit selection of the wrong icon. Similarly, reach and grasp tasks permit picking up the wrong object. Thus, the present work combines our recent advances in multidimensional control (Wolpaw and McFarland, 2004) with a more realistic user task. Furthermore, the combination of two sequential control tasks, cursor movement and target selection, greatly reduces the number of incorrect selections and thereby improves the rapidity of communication.

The move and select function demonstrated here emulates the operation of a standard mouse, which allows a user to move over an icon and then select it or not select it as appropriate. Thus, the results represent a key step towards development of EEG control analogous to a computer mouse that moves among a large number of icons and selects only the desired icon.

4.2. Comparison with previous invasive and non-invasive studies

Like our recent study of EEG-based two-dimensional movement control (Wolpaw and McFarland 2004), most studies of movement control with activity recorded by electrodes implanted within cortex have used one-target protocols, and thus have not permitted errors (Chapin et al. 1999, Wessberg et al., 2000, Pesaran et al., 2002, Serruya et al. 2002, Taylor et al. 2002, Hochberg et al. 2006). An exception is the invasive study of Musallam et al. (2004) which used four targets (but did not have a second, target-selection (i.e., confirmation) phase). They reported average success rates of 34–75% in three monkeys, a range that is somewhat lower than the target-hit accuracy range of 59–88% reported here. On the other hand, they required less time after the initial target view period: 0.1–1.2 s versus 2.5–3.5 s in the present study.

The only invasive study that has used a two-phase ‘move and select’ protocol similar to that of the present study is Carmena et al. (2003), which trained monkeys to move a cursor in two dimensions to a single target and then to select, or ‘grasp,’ it. Only one target was presented in each trial, so that full comparison with the present results is not possible. Carmena et al. (2003) used larger targets (7.7% of the workspace compared to less than 3% in the present study, taking into account the size of the target and the size of the cursor), while their movement times were slightly shorter (2.2–2.7 s compared to 2.5–3.5 s in the present study).

The present study applied multiple linear models to EEG features in order to control cursor movement and target selection. The LMS algorithm continually modified the model parameters on the basis of past results so as to optimize future performance. In contrast, Carmena et al. (2003) applied multiple linear models to single-neuron activity to control cursor movement and target selection. Their models were constructed from unit activity recorded during actual arm and hand movements and then applied in the absence of actual movement. Thus, the applicability of their approach in people who lack normal movement control is uncertain. The methodology of the present study, which does not begin from activity recorded during actual movement, may be more readily transferable to people who are paralyzed. In addition, this study’s noninvasive methodology does not require that electrodes be implanted in the brain.

Several groups have reported studies of sequential one-dimensional control using amplitude in specific EEG frequency bands. Millan et al. (2004) and Pfurtscheller et al. (2006) used EEG to make successive selections in a maze navigation task. Muller and Blankertz (2006) used EEG signals to make successive selections with a spelling device. Muller-Putz et al. (2005) used EEG to train a user who was quadriplegic to sequentially select different components of a grasp actuated with the Freehand system (Peckham et al. 2001). In contrast to the present study, all of these systems used the same EEG features for each component of the sequential task and controlled only one dimension at a time.

4.3. Potential improvements

The present study goes beyond previous work to show that people can use EEG features to produce three different control signals and that these signals can function sequentially as well as simultaneously. Thus, it is clear that the belief (e.g., Hochberg et al. 2006) that an EEG-based BCI cannot go beyond two independent channels of control is not correct. The limits of EEG-based control remain to be defined. It is likely that EEG-based control can be improved in speed and accuracy, and extended to more independent channels, by further improvements in signal acquisition and signal processing, in feature selection, and in the adaptive algorithm that encourages and guides user training and optimizes the translation of the chosen features into control signals. Recent studies of activity recorded from the cortical surface (i.e., electrocorticographic (ECoG) activity) suggest that gamma activity may be particularly useful for control (Leuthardt et al. 2004, Ball et al. 2004). Lower frequency gamma activity (i.e., 30–50 Hz) can be detected in EEG and warrants careful study as a possible source of BCI control features.

Invasive methods clearly result in a better signal-to-noise ratio than EEG. This may account for the fact that invasive methods at present may require less training (e.g., Leuthardt et al. 2004). Nevertheless, the control achieved by invasive methods does improve with training (e.g., Taylor et al. 2002). The training requirements for invasive and noninvasive methods have not yet been compared in a meaningful fashion. Future developments in signal recording and analysis for both approaches will affect and clarify their relative advantages and disadvantages. It is perhaps most probable that each approach will be found most suitable for particular applications and/or individuals.

5. Conclusions

This study extends the possible applications of non-invasive BCI technology to include multidimensional movement control and sequential target selection. The results are further evidence that it may not be necessary to implant electrodes in the brain to achieve control of complex tasks, and that they thereby increase the probability that BCIs will eventually become an important communication and control option for people with severe motor disabilities.
Acknowledgments

We thank Theresa M Vaughan and Gerwin Schalk for valuable advice throughout this work and Jonathan S Carp for his comments on the manuscript. This work was supported in part by grants from NIH (HD30146 (NCCRRI, NICHD) and EB00856 (NIBIB and NINDS)) and the James S McDonnell Foundation.

References

Bonnet M, Decety J, Jeannerod M and Requin J 1997 Mental simulation of an action modulates the excitability of spinal reflex pathways in man Cogn. Brain Res. 5 221–8
Chapin J K, Moxon K A, Markowitz R S and Nicolelis M A L 1999 Real-time control of a robot arm using simultaneously recorded neurons in the motor cortex Nat. Neurosci. 2 664–70
Donoghue J P 2002 Connecting cortex to machines: recent advances in brain interfaces Nat. Neurosci. 5 1085–8
Fetz E E 1999 Real-time control of a robotic arm Nat. Neurosci. 2 583–4
Kong P and Verschure P F 2002 Neurons in action Science 296 1817–8
Nicolelis M A L 2001 Actions from thoughts Nature 409 403–7