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a b s t r a c t

In a conventional brain–computer interface (BCI) system, users perform mental tasks that yield specific
patterns of brain activity. A pattern recognition system determines which brain activity pattern a user
is producing and thereby infers the user’s mental task, allowing users to send messages or commands
through brain activity alone. Unfortunately, despite extensive research to improve classification accu-
racy, BCIs almost always exhibit errors, which are sometimes so severe that effective communication is
impossible.

We recently introduced a new idea to improve accuracy, especially for users with poor performance.
In an offline simulation of a “hybrid” BCI, subjects performed two mental tasks independently and then
simultaneously. This hybrid BCI could use two different types of brain signals common in BCIs – event-
related desynchronization (ERD) and steady-state evoked potentials (SSEPs). This study suggested that
such a hybrid BCI is feasible.
Here, we re-analyzed the data from our initial study. We explored eight different signal processing
methods that aimed to improve classification and further assess both the causes and the extent of the
benefits of the hybrid condition. Most analyses showed that the improved methods described here yielded
a statistically significant improvement over our initial study. Some of these improvements could be
relevant to conventional BCIs as well. Moreover, the number of illiterates could be reduced with the

are a
hybrid condition. Results
design in hybrid BCIs.

. Introduction

Brain–computer interfaces (BCIs) allow communication with-
ut movement. Users can send messages or commands through
irect measures of brain activity (Wolpaw et al., 2002). Most
oninvasive BCIs measure brain activity through electroencephalo-
raphic (EEG) sensors placed on the head (Mason et al., 2007).
our types of noninvasive BCIs have been described in the
iterature, categorized according to the type of brain activity
sed for control (Wolpaw et al., 2002; Allison et al., 2007):
300s (Farwell and Donchin, 1988), steady-state evoked potentials
SSEPs) (Middendorf et al., 2000; Müller-Putz et al., 2006), slow cor-

ical potentials (SCPs) (Birbaumer et al., 1999), and event-related
esynchronization (ERD) (Kalcher et al., 1996; Pfurtscheller and
opes da Silva, 1999).

∗ Corresponding author. Tel.: +43 316 8735315.
E-mail address: clemens.brunner@tugraz.at (C. Brunner).

165-0270/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
oi:10.1016/j.jneumeth.2010.02.002
lso discussed in terms of dual task interference and relevance to protocol

© 2010 Elsevier B.V. All rights reserved.

It might also be possible to combine two or more BCIs so that
subjects produce two or more of these different brain activities. A
BCI could also be combined with a device based on other phys-
iological signals such as breathing or heart rate (Scherer et al.,
2007). BCIs might also be integrated with conventional interfaces
such as keyboards, mice, or joysticks (Nijholt et al., 2008). More
recent work showed that an SSVEP BCI could be combined with
a new type of ERD BCI called a “brain switch” (Pfurtscheller and
Solis-Escalante, 2009; Solis-Escalante et al., 2010; Pfurtscheller,
2009).

In our recent paper (Allison et al., in press), we introduced a
dual task paradigm relevant to a hybrid BCI that combines visual
attention and imagined movement. Subjects performed three dif-
ferent tasks: ERD-only (by imagining left or right hand movement
to produce ERD); SSVEP-only (by focusing on one of two flickering

LEDs to produce SSVEPs); and a hybrid condition with both tasks.
This hybrid condition provides a classifier with two different types
of brain signals. The additional signal could improve accuracy. This
improvement might be especially important for subjects who are
not proficient with BCIs based on one of these signals (either ERD or

http://www.sciencedirect.com/science/journal/01650270
http://www.elsevier.com/locate/jneumeth
mailto:clemens.brunner@tugraz.at
dx.doi.org/10.1016/j.jneumeth.2010.02.002
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Fig. 1. Overview of all eight analyses in this study.

SVEP), a phenomenon called “BCI illiteracy” by some researchers
Kübler and Müller, 2007).

While the initial study collected data offline and thus did not
se a BCI, results seemed promising for future hybrid BCI systems.
owever, this study left open many questions about how to best
nalyze and combine ERD and SSVEP signals, and we wanted to
xplore some of these questions before an online implementation.
ndeed, due to the novelty of hybrid BCI systems, many opportuni-
ies for improvement have not been investigated. For example, our
aper noted that the hybrid condition might have improved accu-
acy by providing the classifier with more information, and/or by
roducing EEG activity that was easier to classify.

The principal goal of the present study was to explore eight pos-
ible avenues for improving classification accuracy based on the
ata recorded from our offline simulation of a hybrid ERD/SSVEP
CI (see also Fig. 1).

First, we consider improving classification in the SSVEP-only
uns by including harmonics of the SSVEP stimulation frequen-
ies. We also assess a harmonic phase coupling (HPC) approach
hat could also improve SSVEP classification accuracy. Second, we
xtend the first analysis to the hybrid runs. Third, we simulate an
artificial” hybrid BCI by combining features of the ERD-only and
SVEP-only runs. By comparing this to the original hybrid data, we
an determine whether the hybrid condition yielded stronger ERD
ctivity than the ERD-only runs, and stronger SSVEP activity than
he SSVEP-only runs. The fourth and fifth analyses assess whether
erforming two tasks simultaneously affects task performance.

In the sixth analysis, we compare the three conditions (ERD-
nly, SSVEP-only, and hybrid) using some of the new methods
ntroduced here. The seventh and eighth analyses both assessed
he relevance of the feature pool size across the different run types.

e wanted to explore the hypothesis that the improvement in the
ybrid condition occurred because more features, and/or different

eature types, were available to the classifier.
While the main goal was to improve accuracy, we also interpret

hese results in terms of relevance to dual task interference and
imultaneous task performance. Did the addition of a second task
such as a motor task) impair performance in the primary task (such
s a visual attention task)? If so, how much? How could hybrid BCIs
est combine two or more tasks?
. Methods

The materials and methods used to collect and analyze the data
re briefly reviewed here. We then describe the new signal process-
Fig. 2. (a) Computer screen and flickering LEDs (below screen) used in this study.
(b) Timing of each trial.

ing techniques introduced in this study (Fig. 1 presents an overview
of all analyses).

2.1. Subjects

Fourteen healthy subjects (six women and eight men, age range
17–31 years) participated in this study. No subjects previously used
any BCI. Subjects sat in front of a 17 inch flat screen. Red LEDs were
attached below the screen on the left and right side and flickered
at 8 Hz and 13 Hz, respectively. Fig. 2(a) shows the apparatus for
stimulus presentation used in this study.

2.2. EEG recording

Three bipolar electrodes over the motor cortex (C3, Cz, C4)
and two bipolar electrodes over the primary visual cortex (O1,
O2) were recorded. A ground electrode was placed on Fpz. All
impedances were kept below 5 k�. The EEG signals were bandpass-
filtered between 0.5–100 Hz, amplified with a g.BSamp amplifier
(g.tec OEG, Graz, Austria), and sampled at 250 Hz (16 bit DAQ card
National Instruments NI6031E). Sensitivity was set to 50 �V.

2.3. Experimental paradigm

Subjects performed three different tasks. During the first two
runs, called ERD-only, subjects imagined moving the left or right
hand to produce ERD. Subjects were instructed to imagine moving
the hand (first-person movement imagery) instead of imagining
observation of hand movement (third-person movement imagery),
since the former yields stronger ERD activity (Neuper et al., 2005).
During the next two runs, called SSVEP-only, subjects focused on
one of two flickering LEDs to produce SSVEPs. During the last four
runs, called hybrid, subjects were instructed to perform both tasks
simultaneously. During each run, 20 left and 20 right cues in the
form of an arrow were presented in random order. Each of these
40 trials proceeded as follows: first, a fixation cross appeared on

the screen. After two seconds, the subjects viewed an arrow that
pointed either to the left or right. They had to perform the cor-
responding task until the arrow disappeared after another four
seconds. Then, the screen was blank for two seconds, followed by a
break of 0.5–1.5 s before the next trial. Subjects did not receive feed-
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Table 1
The five conditions in the first analysis. HSD1, HSD2, and HSD3 differ only in the
length of the smoothing window. The HPC condition uses harmonic phase coupling,
and the SFFS condition is identical to the analysis in our initial paper.

Method Harmonics Smoothing window

HSD1 3 0.5 s
HSD2 3 1.0 s
C. Brunner et al. / Journal of Neur

ack. Fig. 2(b) illustrates the timing scheme of the experimental
aradigm.

.4. Analysis 1: improved SSVEP feature extraction in the
SVEP-only runs using harmonics and harmonic phase coupling

In our first analysis, we addressed whether SSVEP classification
ould be improved by using more sophisticated feature extraction
ethods than in our original paper. In a preliminary step, all data

ets were visually inspected, and the trials containing muscle arti-
acts were discarded. Most conditions in this analysis relied on
ogarithmic band power features with 1 Hz bands centered around
he stimulation frequencies 8 Hz and 13 Hz. Signals from both O1
nd O2 were used. The signals were bandpass-filtered, squared, and
moothed with a moving average filter. After that, the logarithms
f these signals were used as band power features. Earlier work
howed that some subjects produce distinct SSVEP activity at the
econd or third harmonic in addition to the fundamental frequency
Müller-Putz et al., 2005, 2008; Allison et al., 2008). Our approach
n this paper is equivalent to the well-established harmonic sum
ecision (HSD) approach using three harmonics (Müller-Putz et
l., 2005). Accordingly, we extracted features using the funda-
ental frequencies (first harmonics), second harmonics, and third

armonics. We calculated these band power features with three
ifferent smoothing windows (0.5 s, 1 s, and 1.5 s), hereafter called
SD1–HSD3. The size of the feature vector did not depend on the

ength of the smoothing window; each feature vector comprised
2 features (two electrodes with three bands each).

The fourth condition used a technique called harmonic phase
oupling (HPC). Our earlier work showed that this approach
mproved accuracy in about half of the subjects tested (Krusienski
nd Allison, 2008). HPC exploits amplitude and phase coupling of
he harmonically related sinusoidal components by constructing a

atched filter template MF(n) according to the following equation
Krusienski et al., 2007; Krusienski and Allison, 2008):

F(n) =
N∑

k=1

ak cos

(
2�nkff

fs
+ �k

)
,

here n is the template sample number, fs is the sampling fre-
uency (250 Hz in our case), ff is the fundamental frequency (or
rst harmonic) of the template, N is the number of harmonics to be
odeled, and ak and �k are the amplitude and phase of the individ-

al harmonics, respectively. These model parameters can be simply
btained from the FFT spectrum of the user’s normalized character-
stic waveform at each frequency as determined by a phase-aligned
verage.

Each incoming data epoch is circularly convolved for one period
f the MF template in order to evaluate the template at discrete
hase shifts, essentially determining the optimal phase correla-
ion between the data segment and the template. The square root
f the maximum value of the circular convolution, corresponding
o the optimal alignment, is the feature for the data segment. The
esult is a continuous amplitude analysis, similar to that produced
y a single frequency bin of a conventional spectral analysis tech-
ique.

We determined separate MF templates with N = 3 harmon-
cs for each of the two channels (O1 and O2) at each of the two
timulation frequencies (ff = 8 Hz and 13 Hz) and the correspond-
ng second harmonic of each stimulation frequency (ff = 16 Hz

nd 26 Hz), resulting in eight features. We computed the model
arameters of each MF template using the trials of the first run
ith a target stimulation frequency (or second harmonic of this

requency) corresponding to the fundamental frequency of the
emplate.
HSD3 3 1.5 s

HPC 3–4 1.0 s

SFFS Variable 1.0 s

The fifth condition was taken directly from our first paper
for comparison. It uses a feature selection algorithm (sequential
floating forward selection, SFFS) to select the optimal feature set
consisting of up to five features. The feature pool consisted of
eleven non-overlapping logarithmic band power features (width
2 Hz, between 8–30 Hz) for each of the two electrodes O1 and O2.

All five conditions in this analysis are summarized in Table 1.
Features extracted from all methods were subjected to a linear
classifier (Fisher’s linear discriminant analysis, LDA). In a first step,
we determined the optimal 0.5 s time segment to train the classi-
fier with a so-called running classifier (Müller-Gerking et al., 2000).
From this optimal time segment, we used five equally-spaced sam-
ples every 0.1 s. We employed a 10 × 10 cross-validation procedure
to avoid overfitting. The performance measure of the various meth-
ods was the maximum of the cross-validated classification accuracy
within a trial.

We compared the performance measures of the five different
conditions with a one-way repeated measures analysis of variance
(ANOVA). We checked the sphericity assumption and performed
Greenhouse–Geisser correction when necessary. The ANOVA used
the independent factor “condition” with five levels (see Table 1)
and the dependent variable “classification accuracy”. If the ANOVA
indicated significant differences, we conducted a Newman–Keuls
post hoc test to analyze the differences in more detail.

2.5. Analysis 2: improved SSVEP feature extraction in the hybrid
runs using harmonics and harmonic phase coupling

The second analysis extended the previous investigation to the
hybrid runs. We explored whether an improved SSVEP feature
extraction also has a beneficial effect on classification accuracy
in the hybrid condition. Here, we compared the results from our
previous paper to band power features with three harmonics and
HPC. We calculated the band power method with the same three
smoothing windows also used before. In short, we used HSD1,
HSD2, HSD3, and HPC as listed in Table 1.

We also used logarithmic band power features to quantify ERD
over electrodes C3 and C4. We extracted two standard bands
(10–12 Hz and 16–24 Hz) for all subjects. In contrast to our previous
paper, we excluded the central site Cz, because the main activity
for left and right hand motor imagery can be found on contralat-
eral sites C3 and C4 (Pfurtscheller and Berghold, 1989; Pfurtscheller
and Lopes da Silva, 1999). Furthermore, since a BCI should function
with the fewest possible electrodes, we repeated many analyses in
this study with Cz included. However, we found that including site
Cz did not substantially improve performance. As with our SSVEP
analyses above, we used three different smoothing windows. Here-
after, the three different ERD feature types will be referred to as
ERD1 (smoothing length 0.5 s), ERD2 (1 s), and ERD3 (1.5 s).

In summary, we compared seven conditions in this analysis by

combining the SSVEP methods with the ERD feature extraction pro-
cedure to analyze the hybrid condition. These seven conditions are
listed in Table 2. Again, we conducted a one-way repeated measures
ANOVA with the independent factor “condition” and the dependent
variable “classification accuracy”.
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Table 2
The seven conditions in the second analysis. The SFFS condition is identical to the
analysis in our initial paper.

Method ERD method SSVEP method

H1 ERD1 HSD1
H2 ERD2 HSD2
H3 ERD3 HSD3
H4 ERD1 HPC
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H5 ERD2 HPC
H6 ERD3 HPC

SFFS SFFS SFFS

.6. Analysis 3: true versus artificial hybrid condition

In the third analysis, we compared the hybrid condition with
n artificial hybrid condition. We developed the artificial hybrid
ondition by combining ERD features extracted from the ERD-only
uns and SSVEP features extracted from the SSVEP-only runs, where
ubjects did not perform two tasks simultaneously. In this analy-
is, we used ERD1, ERD2, and ERD3 to extract ERD features and
SD1, HSD2, and HSD3 to extract SSVEP features with three har-
onics and combined them accordingly to form three artificial

onditions (with three different smoothing windows). We com-
ared this artificial hybrid condition to the real hybrid conditions
1, H2, and H3 as defined in Table 2. That is, we used the ERD fea-

ures with three smoothing windows in combination with SSVEP
eatures using three harmonics. In total, we analyzed six different
onditions with a one-way repeated measures ANOVA. As usual,
he independent factor was “condition” and the dependent variable
as “classification accuracy”.

We also used a more fine-grained running classifier in this analy-
is. Specifically, we split up a trial into segments with 125 ms length
nd applied a running classifier to estimate the separability of the
ata of the different conditions.

.7. Analysis 4: ERD-only and hybrid runs using only ERD features

The fourth analysis assessed whether performing two tasks
imultaneously affects motor imagery activity measured with ERD.

e compared the performance in the ERD condition analyzed with
RD features ERD1, ERD2, and ERD3 to the performance in the
ybrid condition with the same ERD features. As before, those three
RD features correspond to logarithmic band power features at
lectrodes C3 and C4 using two frequency bands 10–12 Hz and
6–24 Hz, combined with a smoothing window with lengths 0.5 s,
.0 s or 1.5 s. In summary, we compared six different conditions
ith a one-way repeated measures ANOVA.

We also used grand average ERDS maps of the ERD-only and
ybrid condition in this analysis. The maps were calculated with
Hz bands from 5–40 Hz in steps of 1 Hz (plotted along the y-axis)
nd within the time segment of 0–8 s in steps of 0.05 s (plotted
long the x-axis). As a first step, we subtracted the evoked compo-
ents from the EEG signals for each condition and subject (Kalcher
nd Pfurtscheller, 1995). Next, the signals were bandpass-filtered,
quared and smoothed with a moving average filter (Graimann et
l., 2002). Finally, the resulting power values were normalized to
he mean power in a reference period between 0.5–1.5 s. The maps
re scaled from−100% (red, ERD) to+150% (blue, ERS, event-related
ynchronization). By averaging over all subjects in this study, we
btained grand average ERDS maps.
.8. Analysis 5: SSVEP-only and hybrid runs using only SSVEP
eatures

Analogous to the previous investigation, this analysis assessed
hether performing two tasks at the same time affects visual
ce Methods 188 (2010) 165–173

attention, based on SSVEP activity. Accordingly, we compared the
performance in the SSVEP condition analyzed with SSVEP features
HSD1, HSD2, HSD3 (band power with three harmonics), and HPC
(see also Table 1) to the performance in the hybrid condition with
the same SSVEP features. In total, we compared eight different con-
ditions with a one-way repeated measures ANOVA.

2.9. Analysis 6: comparison of ERD-only, SSVEP-only, and hybrid
conditions

Analysis 6 investigated whether the hybrid condition yielded
better results than the ERD and SSVEP conditions. We analyzed the
ERD condition with the three ERD feature types ERD1, ERD2, and
ERD3 (corresponding to the three different smoothing windows).
Similarly, we extracted bandpower features with three harmonics
(HSD1, HSD2, HSD3) as well as HPC features for the SSVEP condition.
Finally, we combined those ERD and SSVEP features to analyze the
hybrid runs, yielding six different hybrid conditions in total (see
also Table 2). In summary, we compared 13 different conditions
(ERD1, ERD2, ERD3, HSD1, HSD2, HSD3, HPC, H1, H2, H3, H4, H5,
H6) with a one-way repeated measures ANOVA.

2.10. Analysis 7: ERD-only runs using only ERD features and both
ERD and SSVEP features

Analysis 7 explored whether a potential improvement in the
hybrid condition could be due to the increased size of the feature
pool (both ERD and SSVEP features are available to the classifier in
this condition). In other words, we questioned if a potential per-
formance improvement could be spuriously caused by the larger
pool of different features and feature types. On the other hand, we
hypothesized that if an improved performance was actually due to
the subjects performing two tasks simultaneously, we should not
see higher classification accuracies in the ERD and SSVEP runs using
both ERD and SSVEP features. To this end, we analyzed the ERD-only
condition with ERD features only and both ERD and SSVEP features
(band power with three harmonics) as in the hybrid condition. In
summary, we compared six conditions ERD1, ERD2, ERD3, H1, H2,
and H3 (see Table 2) with a one-way repeated measures ANOVA.

2.11. Analysis 8: SSVEP-only runs using only SSVEP features and
both ERD and SSVEP features

The last analysis is similar to the previous one, but it used
data from the SSVEP-only runs instead. We compared the perfor-
mance when using only SSVEP features HSD1, HSD2, and HSD3 (see
Table 1) to using both ERD and SSVEP features H1, H2, and H3
(see Table 2). For statistical evaluation, we once again employed
a one-way repeated measures ANOVA.

3. Results

3.1. Analysis 1: improved SSVEP feature extraction in the
SSVEP-only runs using harmonics and harmonic phase coupling

The cross-validated maxima of the classification accuracy for all
methods are listed in Table 3. In general, all new methods yielded
improved results. Subjects S4, S9, S10, S11, S13, and S14 showed
the greatest improvement. HSD3, based on band power features
with a smoothing window of 1.5 s, was the best method for seven
out of 14 subjects, whereas HPC performed best in five subjects.
We found a highly significant difference between the five SSVEP
feature extraction methods (F4,52 = 9.68, Greenhouse–Geisser
adjusted p < 0.01). A Newman–Keuls post hoc test revealed that
the SSVEP method using SFFS from our first paper was signifi-
cantly worse than all other improved methods. In addition, HPC



C. Brunner et al. / Journal of Neuroscien

Table 3
Cross-validated maxima of the classification accuracy (in %) for all five methods.
HSD1, HSD2, and HSD3 refer to band power features with three harmonics and
smoothing window lengths 0.5 s, 1.0 s, and 1.5 s, respectively. HPC is the harmonic
phase coupling approach, whereas SFFS denotes the results from our previous paper.
The last two rows show the mean and standard deviation (STD). The best method
for each subject is marked boldface.

HSD1 HSD2 HSD3 HPC SFFS

S1 59.2 58.4 59.9 66.4 65.9
S2 89.4 97.0 94.0 94.7 89.4
S3 65.8 71.5 74.1 66.6 69.1
S4 86.8 88.9 95.3 88.0 77.4
S5 67.9 69.2 71.7 72.7 67.8
S6 67.0 65.5 69.9 68.1 69.1
S7 100.0 100.0 100.0 100.0 100.0
S8 71.5 74.3 75.1 80.0 73.6
S9 87.7 88.7 92.8 91.9 70.6
S10 90.5 92.4 93.3 92.2 84.0
S11 76.4 79.3 84.0 85.3 66.5
S12 90.4 89.5 90.9 86.4 84.5
S13 83.9 84.2 85.3 86.3 72.8
S14 90.2 93.9 98.2 95.0 86.2

a
t
f
m
H
r

dition, whereas the ERD data was, in general, poorly separable. The
shapes of the true and artificial hybrid classification time courses

F
g

F
0
c

Mean 80.5 82.3 84.6 83.8 76.9
STD 12.3 12.8 12.4 11.3 10.3

nd HSD3 (smoothing length 1.5 s) were both significantly better
han HSD1 (smoothing length 0.5 s). There was no significant dif-
erence between HSD3 and HPC, although the mean of the former
ethod was slightly higher. On the other hand, HPC outperformed
SD3 by over 5% in subjects S1 and S8. Fig. 3(a) summarizes the

esults of the post hoc tests.

ig. 3. (a) Results from the post hoc test in analysis 1. Shaded boxes mark significant diff
reater than the condition on top. White boxes indicate non-significant differences. (b) R

ig. 4. Time course of classification accuracies obtained by a running classifier in 0.125
.5 s, 1.0 s, and 1.5 s (from left to right). The three conditions ERD (red, dotted), SSVEP (blu
ondition is plotted in green (dash-dotted).
ce Methods 188 (2010) 165–173 169

3.2. Analysis 2: improved SSVEP feature extraction in the hybrid
runs using harmonics and harmonic phase coupling

In contrast to the SSVEP condition, there is only a marginally
significant difference between the methods in the hybrid runs
(F6,78 = 3.30, Greenhouse–Geisser adjusted p = 0.060). The means
of the seven conditions H1–H6, SFFS (as listed in Table 2) are as fol-
lows: 83.1, 85.2, 86.1, 83.4, 84.3, 84.7, and 81.0. Clearly, the old
method performs worst, but the difference is not large enough
to be significant. Interestingly, subjects S1 and S8 performed best
when using the method based on SFFS, whereas the classification
accuracy of all other subjects improves when using the new SSVEP
feature extraction methods.

3.3. Analysis 3: true versus artificial hybrid condition

There was no significant difference between the true hybrid
and artificial hybrid conditions (F5,65 = 1.64, Greenhouse–Geisser
adjusted p = 0.215).

Nevertheless, when comparing the separability of the data with
a running classifier, it appears that the artificial hybrid condition
resulted in a higher discriminability than the true hybrid condition
throughout the whole trial (see Fig. 4). Moreover, the real hybrid
condition yielded a slightly higher separability than the SSVEP con-
are almost identical. Therefore, we cannot answer the question if
the two task in the true hybrid condition were performed simulta-
neously or sequentially from this analysis.

erences, and the “<” or “>” signs indicate if the condition on the left was smaller or
esults from the post hoc test in analysis 4.

ms segments. The plots show results for the three different smoothing windows
e, dashed), and hybrid (magenta, solid) are shown; in addition, the artificial hybrid
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.4. Analysis 4: ERD-only and hybrid runs using only ERD features

This analysis showed that ERD performance decreases when a
isual attention task is added to the motor imagery task. The ANOVA
ielded a significant difference of the six conditions (F5,65 = 4.38,
reenhouse–Geisser adjusted p < 0.05). The performance in the
RD runs was generally higher than in the hybrid runs when using
nly ERD features. More specifically, a Newman–Keuls post hoc test
evealed significant differences for ERD1 in the ERD condition ver-
us ERD1, ERD2, and ERD3 in the hybrid condition, respectively.
n addition, ERD2 in the ERD runs yielded a significantly higher
ccuracy than the same feature type in the hybrid condition (see
lso Fig. 5(left)). The results of the post hoc test are summarized in
ig. 3(b).

The decreased ERD performance in the hybrid condition is also
pparent in the ERDS maps of the motor channels C3 and C4 (Fig. 6,
rst and third row). Clearly, the contralateral ERD in the lower
lpha band (around 8–10 Hz) starting shortly after the cue is more
ateralized in the ERD condition than in the hybrid condition. We
ypothesize that this resulted in a decreased ERD performance in

he hybrid runs.

ig. 5. Left: Error bars indicating the ERD performance in the ERD-only and hybrid
uns (analysis 4). The crosses mark the mean classification accuracy, while the
ars denote the 95% confidence intervals around the means. Right: Classification
erformance in the three conditions ERD-only, SSVEP-only, and hybrid (analysis 6).
ce Methods 188 (2010) 165–173

3.5. Analysis 5: SSVEP-only and hybrid runs using only SSVEP
features

In contrast to the previous analysis with ERD features, the per-
formance in a visual attention task (SSVEP) did not decrease when a
motor imagery task (ERD) was performed simultaneously (F7,91 =
2.75, Greenhouse–Geisser adjusted p = 0.066). In fact, the means
between the SSVEP and hybrid condition are almost identical
(82.81 and 82.59, respectively). We confirmed this with a two-
way ANOVA with the factors “condition” (two levels “SSVEP” and
“hybrid”) and “method” (four levels). While the factor “method”
was highly significant (F3,39 = 8.82, p < 0.01), the more interest-
ing factor “condition” was not significant (F1,13 = 0.03, p = 0.868),
as expected.

These results are corroborated by ERDS maps shown in Fig. 6
(second and fourth row). In contrast to the ERD features (analysis 4),
there is no obvious difference between the SSVEP-only and hybrid
condition when examining the SSVEP channels O1 and O2. This was
reflected in an identical SSVEP performance in both the SSVEP-only
and hybrid runs.

3.6. Analysis 6: comparison of ERD-only, SSVEP-only, and hybrid
conditions

The comparison between the ERD-only, SSVEP-only, and hybrid
conditions resulted in a highly significant difference (F12,156 =
11.64, Greenhouse–Geisser adjusted p < 0.01). A Newman–Keuls
post hoc test revealed that the ERD condition (for all three feature
types, ERD1, ERD2, and ERD3) is significantly worse than both the
SSVEP and the hybrid condition (see Fig. 5(right)). There was no
significant difference between the hybrid and SSVEP conditions. In
nine of 14 subjects, our classifier could most accurately distinguish
left versus right tasks in the hybrid condition. Our classifier was
most accurate for four subjects in the SSVEP condition, and one
subject in the ERD condition.

The hybrid condition had the fewest illiterates, followed by
the SSVEP and then the ERD conditions. By definition, an illiterate
subject cannot effectively control a BCI, meaning that the classifi-
cation accuracy is below a certain threshold. We used a threshold
of 70% in our offline simulation, a value often used in the liter-
ature (Perelmouter and Birbaumer, 2000; Kübler and Birbaumer,
2008). Specifically, there were 11 illiterates in the ERD condition,
3 in the SSVEP condition, and 1 in the hybrid condition (averaged
over the different methods used within a condition). We conducted
a non-parametric Cochran test to assess the differences between
the number of illiterates in the three conditions. This test was
highly significant (Q = 15.27, p < 0.01). Subsequently, we used a
Bonferroni-corrected non-parametric McNemar test to assess pair-
wise differences between the conditions. The number of illiterates
was significantly lower (p < 0.01) in the hybrid condition than
in the ERD condition. We did not find statistically significant dif-
ferences between hybrid and SSVEP as well as ERD and SSVEP
conditions, respectively.

3.7. Analysis 7: ERD-only runs using only ERD features and both
ERD and SSVEP features

This analysis compared the ERD condition with either ERD fea-

tures only or both ERD and SSVEP features. The ANOVA did not
yield a significant difference between the conditions (F5,65 = 1.00,
p = 0.426). This implies that a greater number of features (and also
feature types) could not improve classification accuracy in the ERD
condition.
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ig. 6. Grand average ERDS maps of the three conditions ERD (C3, C4), SSVEP (O1,
he cue. For a detailed description, see main text.

.8. Analysis 8: SSVEP-only runs using only SSVEP features and
oth ERD and SSVEP features

Similar to the previous investigation, this analysis compared the
SVEP condition when using either SSVEP features only or both ERD
nd SSVEP features. Surprisingly, the ANOVA resulted in a highly
ignificant difference (F5,65 = 8.08, Greenhouse–Geisser adjusted
< 0.01). However, the Newman–Keuls post hoc test revealed sig-
ificant differences between the pairs HSD3–HSD1, HSD3–HSD2,
1–HSD3, H2–HSD3, H3–HSD1, and H3–H1. From these results,
e could not conclude whether there actually was a difference
etween using only SSVEP features versus using both SSVEP and
RD features. Therefore, we conducted another ANOVA with two
actors (first factor “features” with two levels “SSVEP” and “SSVEP
nd ERD”, second factor “smoothing window” with three levels
.5 s, 1.0 s, and 1.5 s). This time, the factor that was most interest-
nd hybrid (C3, C4, O1, O2). The vertical line at second 2 denotes the occurrence of

ing for this analysis (“features”) was not significant (F1,13 = 1.36,
p = 0.265), which implies that using both feature types and/or
more features did not improve performance. The factor “smoothing
window” was highly significant (F2,26 = 13.48, p < 0.01), whereas
the interaction between the two factors turned out to be not sig-
nificant (F2,26 = 0.31, p = 0.738).

4. Discussion

In summary, the results lead to four conclusions. First, the newer
techniques in this study could improve classification accuracy. Sec-
ond, the addition of a secondary task produced no significant effect

on SSVEP activity, and led to less discriminable ERD patterns. How-
ever, our third conclusion is that, despite this latter result, this ERD
impairment was overcome by the benefit of adding SSVEP activity
that could improve classification. Our fourth conclusion is that the
hybrid BCI approach might reduce illiteracy, although there was no
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ignificant difference in classification accuracy between the SSVEP
nd hybrid condition.

We could significantly improve accuracy in the SSVEP condition
y using more advanced techniques. The harmonic phase coupling
pproach (HPC) and the band power method with three harmon-
cs and a smoothing window of 1.5 s performed particularly well.
he improved SSVEP methods could also improve classification
ccuracy in the hybrid runs, although this improvement was only
arginally significant.
The hybrid condition did not yield significantly higher classifi-

ation accuracies than the SSVEP condition. However, the classifier
ielded the highest classification accuracies in the hybrid condi-
ion for nine out of 14 subjects. This underscores an important
enefit of the hybrid approach, which is also apparent from other
nalyses. Our study, like most BCI studies, revealed significant
nter-subject differences. Some subjects might not benefit from
he hybrid approach. This is consistent with results from our ini-
ial study, in which one subject (S7) attained 100% accuracy in
he SSVEP-only condition, and thus gained no improvement from
dding an imagined movement task and resulting ERD activity.
lthough this analysis showed that the hybrid condition produced
o significant improvement over all subjects, it also yielded a con-
iderable benefit for some subjects. Therefore, although a hybrid
CI based on our current dual task approach might not help some
ubjects, it could substantially help other subjects. It could effec-
ively reduce the number of illiterates from 11 in the ERD condition
nd 3 in the SSVEP condition to 1 in the hybrid condition (averaged
ver the different methods).

The hybrid condition described here was essentially a dual task
aradigm, which leads to two questions. Does the addition of a sec-
nd task distract subjects, yielding less discriminable ERD and/or
SVEP activity? Second, if the classification accuracy resulting from
ne of the two brain signals (ERD or SSVEP) declines, would over-
ll classification accuracy necessarily decline as well? Analyses 4
nd 5 addressed the first question by showing that ERD activity
as less apparent when an SSVEP task was added, but that SSVEP

ctivity was not significantly affected by a secondary ERD task. The
hird analysis addressed the second question. An artificial hybrid
ondition, which combined ERD-only and SSVEP-only conditions,
howed no significant difference from the true hybrid condition, in
hich subjects performed two tasks. The second and sixth analy-

es further suggested that the hybrid condition was comparable
o or better than either of the other two conditions. Therefore,
ven though the dual task approach diminished ERD activity, the
upporting information available from a secondary brain signal (at
east) made up for any resulting classification reduction.

Distraction is a concern with any BCI system, especially in real-
orld settings. BCI users must perform intentional mental tasks

o accomplish goals. If the user is distracted by external events or
ther tasks – including tasks required to generate additional brain
ignals in a hybrid system – then BCI performance may decline.
SVEP activity is reduced when subjects must divide activity among
ultiple tasks or different regions (Müller et al., 2003; Toffanin et

l., 2009). Similarly, work involving event-related potential (ERP)
easures of visual attention found that the amplitude of the P300

nd other ERPs may diminish when subjects must perform a sec-
ndary task, including a visual or motor task (Isreal et al., 1980;
ickens et al., 1983; Sirevaag et al., 1989; Kok, 2001; Matthews et

l., 2006, 2009).
However, our study found that simultaneous performance of

n imagined movement task did not impair classification of SSVEP

ctivity. This apparent inconsistency with prior literature may stem
rom the low “distraction quotient” of the secondary task in this
tudy. The dual task studies mentioned above, and other work,
ypically note that the destructive interference introduced by a
econdary task may be reduced if the secondary task involves a
ce Methods 188 (2010) 165–173

different modality or processing resources, and/or seems easy or
automatic to the user. Hybrid BCIs should draw on existing prin-
ciples of dual task integration and strive to minimize destructive
interference between the different tasks used to convey infor-
mation. For example, a P300 BCI that required users to imagine
pressing a button instead of counting might be difficult to combine
with an ERD BCI based on imagined hand movement. However, a
P300 BCI based on imagined counting might be difficult to com-
bine with a BCI that requires users to perform a math task, such
as in Millán et al. (2004). Had we instructed subjects to imagine
movement observation (third-person imagery) instead of move-
ment execution (first-person imagery) (Neuper et al., 2005), they
might have had more trouble focusing visual attention on the LEDs,
and thus exhibited worse SSVEP performance in the hybrid condi-
tion. Subjects’ dual task performance, and the separability of their
associated EEG patterns, might improve with training.

Finally, the seventh and eighth analyses showed that the
improvement in the hybrid condition did not result from addi-
tional features and/or feature types. This result was not surprising.
The SSVEP BCI literature has confirmed results from earlier SSVEP
research: SSVEP activity is strongest over occipital sites at the fun-
damental frequency of the oscillating stimuli and its harmonics
(Müller-Putz et al., 2005, 2008; Allison et al., 2008). Therefore, we
hypothesized that adding features from central sites at different
frequencies would not improve performance. Similarly, the ERD
BCI literature, like earlier ERD literature, showed that ERD activ-
ity resulting from imagined hand movement is strongest around
9–13 Hz in central sites (Pfurtscheller et al., 1996; Pfurtscheller and
Lopes da Silva, 1999).

The tasks described here could lead to a hybrid BCI system that
combines ERD and SSVEP BCIs in a particular fashion to improve
accuracy. Many other task combinations and potential hybrid BCIs
are possible. Different tasks might increase the number of signals or
dimensions available, and/or reduce the time per selection, instead
of increasing accuracy. When subjects perform two tasks, the EEG
activity elicited by either task might be weaker, stronger, or about
the same as the EEG activity that either task would have produced
in isolation. Novel task combinations might even yield constructive
interference, such as by helping subjects to focus on each task. For
example, if the left LED were replaced with an oscillating image of a
hand grasping, then this visual image might help people focus more
strongly on left hand motor imagery. Furthermore, the grasping
hand could change with the user’s brain activity, thus providing a
realtime feedback mechanism.

Hybrid BCIs should minimize the “distraction quotient” of the
additional task by avoiding task combinations that confuse sub-
jects, overburden a particular sensory modality or mental process,
or create conflicts between automatic and controlled tasks (Stroop,
1935; Shiffrin and Schneider, 1984). Subjects might perform two
tasks sequentially rather than simultaneously (Pfurtscheller, 2009;
Pfurtscheller et al., 2010), which could substantially reduce dual
task interference. Indeed, it is impossible to rule out the possibility
that subjects were rapidly switching between ERD and SSVEP tasks
in our current paradigm, and this possibility also merits further
study.

In conclusion, a hybrid BCI based on our current protocol and
analysis methods might improve accuracy and/or reduce the num-
ber of illiterate subjects relative to a comparable simple BCI based
on only one task and associated brain signal. This improvement
would likely vary across subjects. Hence, some subjects could ben-
efit considerably from this hybrid approach, possibly enough to

attain proficiency even if their accuracy with a comparable simple
BCI is not adequate for effective communication. This hypothesis
should be explored with a BCI (that is, an online system with real-
time feedback). We hope that our work also encourages research
with other hybrid BCI approaches.
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