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Abstract - This paper investigates design strategies for achieving 
reliable performance in VLSI adaptive filters that are prone to 
transient errors due to increasingly smaller feature dimensions 
and supply voltages of the CMOS circuits.  First it will be shown 
that stochastic search algorithms (e.g. Particle Swarm 
Optimization) have a natural resistance to transient errors.  It is 
then shown how modular hardware based on residue number 
system (RNS) coding can be designed to more effectively manage 
transient errors in adaptive filters with stochastic search 
algorithms. 

 
I. INRODUCTION AND BACKGROUND 

To achieve higher speed, higher density, and lower power 
dissipation MOS VLSI circuits continue to be scaled down in 
terms of feature sizes and power supply voltages, resulting in 
an increase of radiation induced (soft) errors in logic circuits 
[1].  In addition reducing supply voltages is a common 
method of reducing power consumption.  This requires 
threshold voltages to be scaled down, causing higher leakage 
currents and high power density.  Reducing supply voltages 
to reduce power consumption in DSP systems also causes 
increased gate delays in critical paths [2], which also leads to 
an increase of transient error rates.  

Reducing threshold voltages requires reducing the oxide 
layer thickness, which in turn results in increased leakage 
currents, larger quiescent power consumption, and increased 
operating temperatures.  Increased temperature has a 
substantial impact on the key figures of merit (performance 
parameters) of a VLSI circuit, including circuit speed, 
lifetime, and power dissipation.  Chip temperature is set by 
the power dissipation in the substrate and interconnects as 
well as the physical layout, routing resources, and power 
distribution network in the chip.  The following temperature 
effects were reported in [3]: 

• Logic gate delay change is about 4% with 40 C. 
temperature difference in a 130-nm industrial process. 

• Delay change for wire resulted in about 5% for 40 C. 
temperature changes. 

• Clock skew can be increased by as much as 10% of the 
clock cycle time when the junction temperature changes 
in the substrate by as much as 40 C. 

When adaptive echo cancellers, channel equalizers, noise 
cancellers, and LPC data compressors are implemented in 

nano-scale VLSI circuits there is a concern about how such 
systems will perform in the presence of transient errors.  
Previous work has shown that in many circumstances 
transient errors have the effect of resetting the system to 
arbitrary initial conditions.  In this case the adaptive system 
will re-adjust to meet the minimum MSE criterion and 
thereby bring the system back to a converged condition.  
However, there are other circumstances when transient errors 
can drive the system into instability, resulting in permanent 
system failure. 

Figure 1 shows an example of an adaptive FIR filter 
responding to a transient (soft) coefficient error.  A transient 
error at iteration 100 temporarily forces the filter to a non-
converged state as evidenced by the large jump in the MSE.  
The filter then re-adapts toward the global minimum error 
condition, suggesting that an adaptive filter will likely be 
tolerant to transient errors that occur during the calculation 
and storage of the filter coefficients.  

Section II reviews the principles of the Particle Swarm 
Optimization (PSO) algorithm and discusses how this type of 
stochastic search algorithm achieves inherent fault tolerant 
behavior.  Section III introduces fault tolerance for soft errors 
through hardware and arithmetic modularity via residue 
number system (RNS) arithmetic.  It is shown how the error 
magnification property of redundant RNS coding enhances 
the ability of the PSO strategy to maintain fault tolerance.  
Finally Section IV presents some experimental examples that 
demonstrate the fault tolerant behavior of PSO-based 
adaptive filters operating with RNS arithmetic. 

 
II. INHERENT TRANSIENT ERROR RESISTANCE OF  
STRUCTURED STOCHASTIC SEARCH ALGORITHMS  

Recently the Particle Swarm Optimization (PSO) 
algorithm has been researched for use in adaptive filters that 
have ill-conditioned mean squared error (MSE) surfaces [4].  
The conventional PSO algorithm begins by initializing a 
random swarm of M particles, each having R unknown 
parameters to be optimized.  At each epoch, the fitness of 
each particle is evaluated according to the selected fitness 
function (MSE).  The algorithm stores and progressively 
replaces the most fit parameters of each particle (pbesti, 
i=1,2,... M) as well as a single most fit particle (gbest) as 
better fit parameters are encountered.  The parameters are 
updated at each epoch (n) according to:  



 414 

veli(n) = w * veli(n −1)

+ acc1 * diag e1,e2,...,eR[ ]i1
*(gbest − pi(n −1))

+ acc2 * diag e1,e2,...,eR[ ]i2
* (pbesti − pi(n −1))

 
                               pi (n) = pi (n −1) + veli (n)  (2) 

where veli (n) is the velocity vector of the ith particle, er is a 
vector of random values within in the interval (0,1), acc1 and 
acc2 are the acceleration coefficients toward gbest and pbesti 
respectively, and w is the inertia weight.  It has been shown 
that premature stagnation can be overcome by adding the 
enhancements of mutation, re-randomization, and adaptive 
inertia into the PSO algorithm, resulting in the Modified PSO 
(MPSO) algorithm shown in figure 2 [4]. 

The structure of the MPSO algorithm makes it inherently 
fault tolerant to transient errors in the updating of the 
parameters according to equations (1) and (2), and also to 
transient errors that might occur in the filter calculations for 
each member of the population.  Transient errors introduce 
effects that are similar to re-randomization about gbest, as 
well as to the mutation of selected members of the population.  
If a transient error does not significantly damage the fitness of 
a particular particle, that particle continues to influence the 
swarm as the stochastic search progresses.  However, if a 
transient error produces a seriously unfit particle its influence 
is eliminated from the search process since the erroneous 
particle will not be selected in subsequent search updates. 
 

III. FAULT TOLERANT DESIGNS BASED ON MODULAR HARDWARE 

Additional fault tolerance can be introduced into VLSI 
chip designs through the use of residue number system (RNS) 
coding.  A general class of RNS arithmetic is constructed as a 
direct sum of simple modular structures (either fields or 
rings) that have moduli that are pairwise relatively prime 
integers (i.e. no two have a non-unity common factor).  If 
R(M) is a modular ring that defines the computational range 
of a particular signal processing task, where M = mlm2…mL 
and M = {m1, m2, . . . , mL} is the moduli set, then the 
arithmetic within the RNS is defined by: 

(x1, ... , xL) * (y1, ..., yL) = (z1, ..., zL) (3a) 

             where:   zi = (xi * yi) mod mi  for i = 1, . . . , L  (3b)  

where * denotes addition, subtraction, or multiplication.  
Since zi is determined entirely from xi and yi, RNS arithmetic 
is carry-free in the sense that there is no propagation of 
information from the ith digit to the jth digit for i ≠ j.  The lack 
of carry propagation in residue arithmetic systems means that 
an error occurring in one digit cannot be propagated into 
other digit position during subsequent operations of addition, 
subtraction, or multiplication.  Therefore the modularity of 
the arithmetic provides error isolation that limits the 
propagation of errors between the RNS modules [5]. 

In order to enable RNS error detection redundancy is 
constructed by including extra moduli that provide dynamic 
range beyond what is needed for the actual computation.  

Suppose that one redundant modulus is appended to the 
original moduli set, creating a total of L+1 moduli.  All of the 
L+1 moduli must be pairwise relatively prime to ensure a 
unique representation for each state in the RNS code.  It is 
well established that the addition of one redundant modulus, 
such that mL+1 > mi, i = 1, . . . L, is necessary and sufficient to 
provide error detection capability for all single residue digit 
errors [5].   

Error detection is typically implemented by converting an 
RNS number to an associated radix representation aL . . . a1, 
where the ai’s are defined by: 

              x = aL(mL-1
. . . .m1) + . . . + a2m2 + a2 (4) 

If no errors occur x will be constrained to the legitimate range 
[0, M-1].  However if any one of the RNS digits is corrupted 
an error the result will be mapped into the illegitimate range 
[M, Mr-1], where Mr= mL+1M. (see figure 3).  Therefore 
single RNS digit error detection is achieved through single 
digit redundancy (SDR) and a simple check (via mixed radix 
conversion or otherwise) to determine if the resulting 
calculation overflows the legitimate range of the RNS system.  

Modularity induced by an RNS arithmetic code introduces 
three important properties that aid in managing the effects of 
transient errors [7,8]:   

i) Hardware modularity - RNS arithmetic is executed in short 
word length modules that tend to break long delay paths into 
shorter parallel paths.  The negative effects of increased gate 
delays due to supply voltage scaling are mitigated.  The basic 
building blocks of an RNS module consist of a short word 
length ripple carry adder and a small ROM, both of which are 
relatively insensitive to the ill effects of parameter scaling [9]. 

ii) Arithmetic modularity - results in the lack of error propagation 
among modules and facilitates error detection strategies that are 
not so easily implemented in conventional long (2’s-
complement) word length processors.    

iii) Error magnification – error magnification results from the fact 
that all single digit errors map the result to large values that will 
make the erroneous result appear as an unfit member of the 
population, and hence will have little influence on the 
stochastic search algorithm. 

IV. EXPERIMENTAL EXAMPLES 
To illustrate error magnification in a redundant RNS an 

example of a 233-tap FIR notch filter is presented in figure 4.  
This filter is used to eliminate noise from the frequency band 
1.2 – 1.3 MHz. in a random noise radar system [6].  The filter 
was implemented in a redundant RNS with moduli {71, 79, 
83, 89, 97}, where 97 was defined to be the redundant 
modulus.  In figure 4a the output of the RNS-SDR filter is 
shown operating on a noisy input signal without the 
occurrence of transient errors.  In figure 4b the output of the 
filter is shown with RNS single digit transient errors 
occurring at iteration n = 1000 and held in the same error 
condition for 100 iterations.  During the occurrence of the 
error the output of the filter is magnified (i.e. it is mapped 
into the illegitimate range), thereby revealing that a single 
digit error has occurred. 

(1)
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Experimental results showing the fault tolerant behavior 
of an adaptive filter using the PSO adaptive algorithm 
implemented in a redundant RNS arithmetic code are 
presented in figures 5 – 9.  In these experiments each of the 
particle filters was implemented in RNS arithmetic, although 
the updates were implemented in 2’s-complement binary 
arithmetic [9].  These experiments all used a population of 10 
and were implemented in the same RNS system used in the 
previous FIR filter example.  Figure 5 shows the baseline 
learning curve for a length N = 4 FIR adaptive filter used in 
the system identification configuration to identify an FIR 
system with a unit pulse response of h = [2.0, -0.5, 0.5, 1.0]T.  
In this case no transient errors were injected.  The learning 
curve of the PSO-RNS combination is seen to achieve rapid 
convergence.   

In figure 6 the previous experiment was repeated but with 
a single RNS digit error introduced in gbest at iteration 10.  
This represents a severe error condition because the 
erroneous gbest suddenly moves the entire swarm of particles 
to a new location in the parameter space.  After a serious 
transient response in the learning curve the adaptation rapidly 
recovers as the erroneous value of gbest is replaced with new 
values.  Figure 7 shows an extreme case where an error was 
created at iteration 10 in the pbest associated with the most fit 
particle.  In this case there is a smaller transient in the 
learning curve after which the adaptation rapidly recovers.   

Finally, figure 8 shows two additional experiments where 
5-out-of-10 and 8-out-of-10 of the values of pbest are 
corrupted at iteration 10 by single digital errors.  Figure 9 
shows two similar cases where transient errors were made in 
the particles themselves (rather than in gbest or the pbest’s).  
In all cases the PSO-RNS learning curves show modest 
disturbances due to injection of transient errors.  In all cases 
examined rapid recovery occurred in the adaptation process 
due to the modular structure of the RNS arithmetic and the 
error magnification property provided by RNS single digit 
redundancy. 
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Figure 1.  Learning curve for a 4-tap FIR filter with a transient (soft) 

coefficient error occurring at iteration 100. 

 

Figure 2.  Flow chart for the Modified PSO algorithm. 

Random effects similar 
to the effect of soft 
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Figure 3.   Various ranges of a redundant RNS 

 

Figure 4.  Error magnification of transient errors in a 233-tap FIR notch filter 
used in a random noise radar (notch from 1.2 - 1.3 MHz).  

 

 
Figure 5.  Baseline learning curve for the PSO-RNS algorithm. 

 

 
Figure 6.  PSO-RNS algorithm with an error in gbest. 

 

 

 
Figure 7.  RNS - PSO algorithm with an error in pbest of the most fit 

particle. 

 

 
Figure 8.  RNS – PSO with multiple errors in pbests. 

  
Figure 9.  PSO-RNS algorithm with multiple particle errors.  

a) no errors 

b) with errors 


