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Abstract— Recent work has shown that a P300-based brain-

computer interface (BCI) can provide effective long-term 

communication for individuals with amyotrophic lateral 

sclerosis (ALS).  BCI users can experience significant variation 

in day-to-day BCI performance that can both frustrate and 

discourage users and caregivers alike.  This study seeks to 

characterize this performance variation using measures of 

causality between electrode locations in scalp-EEG recorded 

from individuals with and without ALS during use of a P300-

based BCI.  Results show that there are statistically significant 

causal relationships between channels, particularly in the high 

beta frequency range, that are consistent across subject groups.  

Moreover, the connectivity patterns in the group with ALS 

appear to be more diffuse when compared to controls.  These 

preliminary findings suggest that there may be differences in 

brain activity between individuals with and without ALS, as 

well as in the activity across successful and unsuccessful task 

sessions using a P300-based BCI.  Ultimately, this information 

may lead more reliable BCI use for people with ALS. 

 

I. INTRODUCTION 

Amyotrophic lateral sclerosis (ALS) is a 
neurodegenerative disease that causes muscle weakness and 
atrophy as a result of degradation of the motor cortex, spinal 
cord, and brainstem [1]. ALS can lead to locked-in syndrome 
(LIS), a condition that can render the person unable to 
communicate.  Exploring the functional brain networks in 
individuals with ALS can provide a better understanding of 
the neuropathology and possibly lead to more effective 
interventions [2]. Most recent studies with ALS patients have 
investigated the functional connectivity between different 
brain regions during specific cognitive tasks and resting state 
[3-5]. However, few existing studies characterize the effect of 
ALS on brain network connectivity [3, 6].  

A study by Mohammadi et al. using ICA based fMRI 
analysis in a resting mode found a decreased connectivity in 
the default-mode network as well as the sensorimotor 
network for ALS subjects compared to healthy controls [5]. 
A later study by Douaud et al. using resting state fMRI data 
from ALS subjects found a distinct pattern of connectivity 
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spanning sensorimotor, premotor, prefrontal and thalamic 
regions in the people with ALS compared to healthy controls 
[4].  Another recent study by Blain-Moraes et al. using 
normalized symbolic transfer entropy during a cognitive 
spelling task found a significantly higher connectivity in the 
parietal to frontal feed-forward connections in people with 
ALS compared to healthy controls. However, this study did 
not show a significant difference between feedback 
connectivity between these two groups [3]. 

The aim of this study is to further investigate brain 
connectivity in ALS by evaluating the causal relationship of 
scalp-EEG recording during the execution of the P300 
Speller Task by people with ALS as compared to healthy 
controls.  This analysis can provide insight to the 
neurophysiological differences that impact task performance 
and may lead to improved processing techniques for future 
BCIs. 

II. METHODOLOGY 

A.  Subjects and Data Collection 

Data were collected from 9 male BCI home users with a 
diagnosis of ALS and a functional rating scale (ALSFRS-R) 
scores that range from 0-32 (48 pt. scale).  All of the data in 
the ALS group were collected in the patients’ homes over 2 
to 10 months [13]. Subjects with ALS exhibited considerable 
day-to-day variation in P300 performance. For comparison, 
data were collected from 13 able-bodied subjects using the 
same P300 paradigm in the laboratory during a single 
session. All studies were approved by the Institutional 
Review Boards of Helen Hayes Hospital or Old Dominion 
University.   

EEG data were recorded using an elastic cap (Electro-Cap 
International) as shown in Figure 1.  The signals were 
amplified using g.USBAmp amplifier (g-tec Medical 
Technologies) with a reference and ground to the right and 
left mastoid respectively, digitized at 256 Hz, and band pass 
filtered at 0.5-30 Hz. All data acquisition, real-time signal 
processing, and feedback process were controlled by 
BCI2000 [14]. In each run, subjects were presented by a 
matrix of alphanumerical letters that were flashed based on 
the checkerboard paradigm (CBP) [15].   Subjects were asked 
to attend to a predetermined sequence of target characters and 
silently count the number of times the target character 
intensified. The number of trials before feedback was given 
was optimized for each subject individually.  

B. Adaptive Directed Transfer Function  

Directed transfer function (DTF) analysis is a method 
which measures the causal relationship between two or more 
signals and can be considered the extension of the bivariate 
connectivity measuring methods. Adaptive directed transfer 
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function (ADTF) is the extended version of DTF that has the 
advantage of measuring the rapid changes of the connectivity 
relationships between different brain regions.  Specifically, it 
can be used for non-stationary signals and the signals with 
short duration such as event related potentials (ERPs) [7-9]. 
The method takes into account how a specific signal (i.e., 
brain activity) is influenced by other signals in the region of 
interest based on adaptive multivariate autoregressive 
(AMVAR) modeling.  

 

Figure 1. A subject wearing an electrode cap attends to the 9X8 matrix of 

items displayed on a monitor as used for calibration copy spelling in the 

home. Lower right inset: the 9X8 matrix. Lower left inset: the 8-channel 
electrode montage with the 6 electrodes used for the analysis indicated by 

the dashed circles. 

Equation (1) shows an AMVAR model where 𝑦(𝑘) is a 

𝑑-dimentional vector at time point 𝑘, 𝑦𝑑 is the 𝑑𝑡ℎ dimension 
of 𝑦,  ε  is a Gaussian white noise, 𝐴(𝑟,𝑘) (i,j)  is the 𝑑 𝑥 𝑑 

dimension time varying model parameters or AMVAR model 
coefficients and can measure the influences from variable 𝑖 to 
𝑗 after 𝑟 time points at time point 𝑘. 
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𝑝 is the AMVAR model order which can be optimally 
determined based on Final Prediction Error (FPE) criterion 
[10] and Schwarz Bayesian Criterion (SBC) [11]. The 
coefficient matrix 𝐴 can be estimated based on Kalman filter 
algorithm [12]. By getting the Fourier transform of the 
estimated time varying AMVAR coefficients 𝐴 we can obtain 
𝐴𝑘(𝑓) which shows the AMVAR coefficients at both time 
point 𝑘 and frequency 𝑓 as below: 

𝐴𝑘(𝑓) =  ∑ 𝐴(𝑟,𝑘)𝑒
−𝑖2𝜋𝑓𝑟𝑝

𝑟=1                   (2)  

We can write the transfer function of the multivariate 
regression model in equation (1) as below: 

𝐻𝑘(𝑓) = [𝐼 − 𝐴𝑘(𝑓)]−1             (3) 

Using the time varying transfer matrix elements obtained 
from equation (3), the ADTF values can be determined as 
below [8]: 

𝛾𝑖𝑗
2(𝑓, 𝑘) =

|𝐻(𝑘,𝑖,𝑗)(𝑓)|
2

∑ |𝐻(𝑘,𝑖,𝑚)(𝑓)|
2𝐻

𝑚=1

                       (4) 

where H is the number of channels.  

C. Connectivity Statistical Analysis  

The resulting ADTF values cannot be evaluated until a 
significance test is performed to compare the resulting 
connectivity values to the values obtained from surrogate 
data. The method for generating the surrogate data used for 
the present analysis was based on phase shuffling, which 
preserves the power spectrum of the signal as well as the 
linear correlation between the time series. To do this, the FFT 
of the original signal was obtained and the resulting phase 
angles were shuffled using a random permutation of the 
order.  An inverse FFT was used to convert the phase-
shuffled signal back to the time domain. This shuffling 
process is repeated many times and the significant 
connectivity is computed based on the distributions generated 
by the surrogate data.  

D. Data Processing  

Due to the considerable day-to-day performance 
variations for the ALS subjects, runs with actual online 
accuracies ≥ 70% were labeled as successful and all other 
runs were labelled as unsuccessful [16].  All runs for the 
control group were successful using this criterion. 

Six EEG channels that are standard for the P300 speller 
were used to assess brain connectivity: Fz, Cz, Pz, PO7, PO8, 
and Oz [13].  Average target ERPs segmented from 0-800 ms 
were used for the connectivity analysis.  For consistency, the 
first 360 trials related to the target ERPs for both successful 
and unsuccessful runs of both groups were included in the 
analysis. For each trial, baseline correction was performed by 
removing the mean of each response.  Significant ADTF 
values were obtained using eConnectome software [8] with 
the maximum model order set to 5. The statistical test was 
performed using 200 surrogate samples with a significance 
level of 𝛼 = 0.05.  

The significant and the non-significant ADTF values 
were set to 1 and 0, respectively, to show the percentage of 
subjects with significant connectivity values for each 
connection and time point. To investigate the connectivity 
pattern in different frequency bands, the values averaged over 
the frequency bands of interest; delta (1-3 Hz), theta (4-7 
Hz), alpha (8-14 Hz), low beta (15-18 Hz) and high beta (19-
30 Hz).  

III. RESULTS 

For the healthy controls there was little significant 

connectivity outside of the high-beta band.  For the ALS 

group, significant connectivity was found in the high-beta 

band, and broadly distributed in the other frequency bands as 

compared to the controls.  Thus, the analysis is focused on 

the high-beta band for both subject groups.  Figure 2 shows 

the percentage of subjects in each group with significant 

high-beta band ADTF values for all the channel pairs and 

time points.  For the ALS subjects, the connectivity analysis 

was computed on the successful and unsuccessful runs 

separately.   
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Figure 2. The percentage of significant high-beta band ADTF values for all 
subjects.  Top: controls (all successful), Middle: successful ALS runs, 

Bottom: unsuccessful ALS runs. 

 
 

 
 

 

 
 

Figure 3. The percentage of signal outflow to inflow information rate for the 
high-beta band at t = 600 ms.  Top: controls (all successful), Middle: 
successful ALS runs, Bottom: unsuccessful ALS runs 
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Figure 3 shows the percentage of signal outflow to 

inflow information rate for the high-beta band at t = 600 ms. 

This time point represents the location of the highest 

percentage of subjects with significant ADTF values across 

subject groups. This directional arrows illustrate the 

information flow of connectivity between two channels. The 

color and width of arrows correspond to the percentage of 

subjects having a statistically significant information flow 

rate. Only connections in the range of 50% to 100% of the 

maximum value are displayed. 

IV. DISCUSSION 

There was higher percentage of subjects with significant 
connectivity in both subject groups in the high-beta band 
compared with the other frequency bands. These findings can 
possibly be explained by the association of networks of 
inhibitory inter-neurons with the neural oscillations in the 
beta frequency range [17].  The results also indicate a 
generally broader distribution of significant connections for 
the ALS patients compared with the control group. This 
corresponds with the findings obtained by Douaud et al. [4], 
which attributed the increased brain connectivity in ALS 
patients to a physiological, compensatory response to 
disease-related loss of structural network integrity.  However, 
this broader distribution may also be partially attributed to 
higher variability in the connectivity patterns for the ALS 
group. 

It is interesting to note that the channel pairs and 
approximate time instances with the highest percentage of 
significant beta-band connectivity across subjects are 
consistent for the successful ALS runs and the control group, 
which consists of all successful runs.  This may be associated 
with task engagement for the successful runs since this 
pattern appears sufficiently suppressed for unsuccessful ALS 
runs.  It is also interesting to note that the highest percentage 
of peak activity is observed around 600 ms at the 
bidirectional connection of Fz-Cz for the ALS and control 
groups.  While the peak of the P300 is generally later for 
ALS patients, this connectivity analysis may reflect common 
connectivity patterns in the later stages of the P300 response 
across groups.  The directivity analysis shows that there are 
few, very distinct connections that only exist between 
adjacent electrode pairs for the control group.  The 
information flow at 600 ms is largely focused bi-directionally 
at Cz, with PO7 flowing to Pz and Oz.  The highest 
percentage of flow is from Fz to Cz.  In contrast, there are 
complex information flow patterns for both the successful 
and unsuccessful runs of the ALS patients. This also supports 
the findings in Douaud et al. [4], but does not clearly 
discriminate the performance groupings. 

The purpose of this study was to determine if a 
comparison of measures of causality derived from EEG data 
recorded from people with and without ALS while using a 
P300-based BCI could shed light on day-to-day variations 
observed during home use by people with ALS.  These 
preliminary findings suggest that there may be differences in 
brain activity between individuals with and without ALS, 
and, more importantly, between successful and unsuccessful 
sessions.  As expected, the number of significant connections 
was lower for the unsuccessful ALS group as compared to 

the successful ALS group and the control group. Consistent 
with prior research, both of the ALS groups exhibited more 
overall connectivity than the control group, although it 
remains unclear whether this is a result of inter-subject 
variability or more expansive connectivity in ALS subjects.  
Based on these results, criteria can be established to provide 
home users with information about their readiness to use a 
BCI. Ultimately, it may lead to improved methods to assess 
and improve BCI performance for all BCI users.  
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