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An automatic safe landing-site detection system is proposed
for aircraft emergency landing based on visible information
acquired by aircraft-mounted cameras. Emergency landing
is an unplanned event in response to emergency situations.
If, as is usually the case, there is no airstrip or airfield that
can be reached by the unpowered aircraft, a crash landing or
ditching has to be carried out. Identifying a safe landing-site is
critical to the survival of passengers and crew. Conventionally,
the pilot chooses the landing-site visually by looking at the
terrain through the cockpit. The success of this vital decision
greatly depends on external environmental factors that can
impair human vision and on the pilot’s flight experience, which
can vary significantly among pilots. Therefore, we propose a
robust, reliable, and efficient detection system that is expected
to alleviate the negative impact of these factors. We focus on the
detection mechanism of the proposed system and assume that
image enhancement for increased visibility and image stitching
for a larger field-of-view (FOV) have already been performed
on the terrain images acquired by aircraft-mounted cameras.
Specifically, we first propose a hierarchical elastic horizon
detection algorithm to identify the ground in the image. Then,
the terrain image is divided into nonoverlapping blocks, which
are clustered according to a “roughness” measure. The adjacent
smooth blocks are merged to form potential landing-sites, whose
dimensions are measured with principal component analysis
and geometric transformations. If the dimensions of a candidate
region exceed the minimum requirement for safe landing, the
potential landing-site is considered a safe candidate and is
highlighted on the human machine interface. At the end the pilot
makes the final decision by confirming one of the candidates,
and also by considering other factors such as wind speed and
wind direction, etc. Preliminary experimental results show the
feasibility of the proposed system.
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I. INTRODUCTION

The top-five leading factors of unplanned landing,

which is also called emergency landing, are engine

failure, running out of fuel, extremely bad weather,

medical emergency, and aircraft hijack. Under the two

most emergent situations, engine failure and running

out of fuel, the aircraft may quickly lose flying power,

and its maneuverability may be restricted to gliding.

Once these happen a forced landing process has to

be immediately carried out. If, as is usually the case,

there is no airport, or even a runway, that can be

reached by the unpowered aircraft, a crash landing

or ditching is inevitable.

Finding a safe landing-site is vital to the survival

of the passengers and the pilot. Conventionally the

emergency landing-site is visually selected by the

pilot by looking at the terrain through the cockpit.

This is a required, fundamental skill acquired in the

flight training program. However, many external

environmental factors, i.e., fog, rain, illumination,

etc., can significantly affect human vision so that

the decision of choosing the optimal landing-site

greatly depends on the pilot’s flight experience–the

most significant internal factor–which can vary

a lot among different pilots. In addition the visual

angle that the human eyes can simultaneously cover

is limited: when the pilot looks to the left, what is

on the right is missed and vice versa. Since time

is of supreme importance in the scenario we are

considering, the inability to simultaneously scan on

both sides of the cockpit is a distinct disadvantage.

Imaging sensors can alleviate this problem by

creating panorama images that encompass the entire

field-of-view (FOV) in front of the aircraft. In

order to compensate for the natural inadequacies

of human vision and also to alleviate the negative

effects of both external and internal factors, a robust,

reliable, and efficient process for safe landing-site

detection is greatly desirable. Therefore, we present

a vision-based, automatic safe landing-site detection

system [1, 2].

Before introducing the design of the system,

we first investigate appropriate criteria to assess

the safeness of the landing-sites. Two geographic

concepts, elevation and landform, are taken into

consideration. The gradient of elevation generally

determines the roughness of the terrain. Landform

describes terrain covering, i.e., forest, grass, water,

rock, buildings, etc. Smooth elevation gradient

by itself is not sufficient to guarantee a safe

landing-site since the associated landform could

be hazardous to the landing procedure. In addition

the landing-site must have sufficient length and

width–which can vary with the type of airplane–to

enable a safe emergency landing. In summary we

evaluate the “safeness” of a potential landing-site by

considering its surface roughness and its dimensions.
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A landing-site is considered safe only if its surface

is smooth and if its length and width are adequate.

The proposed safe landing-site detection system is

designed to automatically detect landing-sites that

meet both of the requirements.

Many of the achievements of autonomous

landing have been accomplished [3—10] by utilizing

vision-based approaches to guide unmanned aerial

vehicles (UAVs) or helicopters to known landing-sites.

Landing marks, which often appear in high-contrast

in the image so that can be easily detected, play an

important role in these approaches by providing

relative position information for state estimation and

control. Nevertheless, for a landing strategy to be

feasible in unknown environments, which is usually

the case for emergency landings, the dependence on

known landing marks is limiting, and, therefore, a

flexible means of finding safe landing-sites is desired.

To date there are relatively few publications on

automatic aircraft safe landing-site detection. As stated

in [11]—[13], no automated forced landing research

or automated forced landing system was available

at their time of writing. In [11] Garcia-Pardo, et al.

designed a two-step autonomous safe landing-site

detection strategy. First, they applied a local contrast

descriptor ¹=¾, which is derived by normalizing the

neighborhood of the to-be-tested pixel and then by

calculating the mean ¹ and the standard deviation ¾

of its neighborhood, to assess the roughness of the

ground under the assumption that the boundaries of

hazards appear as high-contrast edges in the image,

reflected by small values of ¹=¾. A contrast threshold

needs to be selected to differentiate smooth areas

and boundaries, and the optimal contrast threshold

is found to have a linear relationship with the ratio

of mean and standard deviation of the whole image.

Second, round landing-sites with a sufficient size

are found in the smooth areas. The system was

tested in an off-line fashion on 10 image sequences,

which are captured by real flights over a synthesized

environment, i.e., placing white boxes (obstacles) on

grassy ground. The detection results are evaluated by

a “failure rate” defined as the percentage of images in

which the system fails to find any safe landing-site.

Fitzgerald, et al. also applied a two-step safe

landing-site detection strategy [12]. First, Canny edge

detector [14] is employed to describe the edges in

the image. This detection is computationally more

efficient than the local contrast descriptor mentioned

above. Second, the safe landing-sites are found by

scanning the smooth area with a set of rectangular

masks that are predefined in different scales and

rotation angles. Three problems associated with the

second step are as follows. 1) It is inconvenient,

or even impossible, to predefine a sufficiently large

number of masks with all possible scales and angles.

For example, if a potential safe landing-site has

a shape which is not covered in the predefined

mask set, the system is very likely to miss it.

2) Various aircrafts have different requirements for

safe landing-sites in terms of the minimum length

and width. Using a predefined set of masks limits

the application of the system to different aircrafts.

3) It is computationally expensive to move all the

masks over the smooth area. The computational cost

is proportional to the number of masks so that the

requirement of time conflicts with the requirement of

detection accuracy.

Related research of spacecraft landing has been

conducted by many groups in recent years. The

NASA Jet Propulsion Laboratory (JPL) proposed a

LIDAR-based hazard avoidance approach for safe

landing on Mars [15]. They made use of elevation

maps generated by scanning synthetic terrains with

a simulated LIDAR model. Later, JPL introduced a

fuzzy rule-based safety index to assess landing-sites

[16, 17]. Furthermore, they brought multi-sensor

images into their approach [18]. Based on a ballistic

analysis, the JPL also proposed a method to estimate

the reachable area for the spacecraft [19]. In addition

to its application to landing on Mars, autonomous

landing and hazard avoidance technologies (ALHAT)

are also utilized for lunar landing [20—22] and UAV

landing [12]. Therefore, the proposed system has a

wide range of potential applications.

The contributions of the present paper consist

of the following. 1) A delicate automatic safe

landing-site detection mechanism is developed by

seamlessly combining some existing image-processing

and analysis techniques, including the block-wise

roughness assessment, the classification of blocks

based on their edge strength, the segmentation of

candidate safe landing-sites, the dimension assessment

of candidate landing-sites, and the visualization of

detected safe landing-sites on the human-machine

interface. 2) We propose a hierarchical elastic horizon

detection algorithm to identify the ground in the

aerial image so that the camera is relieved from the

limitation of looking straight down to the ground. In

the looking-forward mode, the system can detect safe

landing-sites in front of the aircraft, thus providing

more time to the pilot to prepare for landing, which is

especially helpful for unpowered aircraft in emergency

situations. 3) We improve the efficiency of the

detection system by applying the Canny edge detector,

instead of the local contrast descriptor [11], as a

part of the roughness assessment algorithm and by

utilizing the principle component analysis as the

means to measure the dimension of smooth areas,

instead of using a predefined set of masks [12]. 4) We

develop a performance metric to comprehensively

evaluate the detection results.

The remainder of the paper is organized as

follows. In Section II we describe modules of the

proposed system in details. Experimental results are

shown in Section III. We discuss the necessity and the
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Fig. 1. Flow diagram of proposed automatic safe landing-site

detection system.

feasibility of the vision-based system in Section IV,

followed by conclusions in Section V.

II. METHODS

The safeness of an emergency landing-site is

mainly determined by its surface roughness and

dimensions. In general the roughness of the terrain

can be measured by the gradient of elevation. If we

have the elevation map of the terrain, the gradient

information can be easily found, and the safeness

can be accurately estimated. However, in this specific

scenario, safe landing is not only determined by the

elevation variation of the land but also threatened by

hazards upon the ground, i.e., trees, rocks, vehicles,

etc., which are usually not captured in elevation

maps. Therefore, a vision-based information channel

is necessary, which provides real-time imagery of

the ground. Ideally, when the aircraft is flying in

the upper air, it can be guided to an approximately

smooth area according to the gradient information

extracted from the elevation map. Then, the proposed

computer-aided-detection (CAD) system leads the

aircraft to a safe landing-site. In practice most aircrafts

do not have either a database of elevation maps

or a LIDAR sensor system. The imagery captured

by aircraft-mounted cameras is the only available

information source, so the proposed CAD system

plays a crucial role in this scenario.

The proposed safe landing-site detection

system consists of eight main modules as shown in

Fig. 1. In the first module images are acquired by

aircraft-mounted cameras. Each camera looks in a

specific direction that covers a portion of the region

in front of the airplane. Multi-spectrum sensors are

preferred to obtain complementary information.

In the second module the separate images that are

acquired at the same time instant are registered and

stitched together to form a larger panorama image

that covers the full FOV in front of the airplane. In

the third module, if the images are captured under

poor illumination or weather conditions, we make use

of the nonlinear retinex image-enhancement method

[23, 24] to ameliorate the effect of environmental

factors and to improve the contrast and sharpness

of the images. The first three modules are necessary

for getting high-quality images and directly affect the

performance of the subsequent modules. However, we

do not further discuss the preprocessing procedures in

this paper since the emphasis of this paper is not on

the development of the preprocessing procedures but

on the safe landing-site detection algorithm.

A. Horizon Detection

Before assessing the roughness of the ground,

the first problem that we need to solve is to identify

where the ground is when the sky and the ground

both appear in the image. Many efforts have been

conducted in horizon detection. Williams and Howard

proposed a horizon detection algorithm for a specific

ground-based rover application of segmenting the

foreground plane from distant mountains and the sky

in glacial environments [25]. Due to the specialty

of that application, the following two strong but

reasonable assumptions were made in the algorithm.

1) It is assumed that the bottom third of the image

is ground because the camera is mounted on a

ground-based rover. 2) The ground is assumed to

appear all white with very little variance because the

rover is in glacial environments. Based on these two

assumptions, the edge map, generated by applying

a Canny edge detector to the original image, is

examined column by column. An edge point in a

column can be considered a point of the horizon

when the pixels below it in that column appear

all white with little variance. The problem of this

algorithm is that the two assumptions often fail in

other environments, so we do not further discuss it.

Dusha, et al. [26] applied the Hough transform

to recognize straight lines from the binary edge

map, which is also generated by using Canny edge

detection, based on the assumption that the horizon is

the strongest boundary in the image. That assumption

does not always hold and can be easily disturbed by

the appearance of other strong edges.

Ettinger, et al. proposed a horizon detection

method in a greedy search manner [27] based on

two assumptions: 1) the horizon is a straight line

that partitions the image into two parts, namely sky

and ground, and 2) little variance appears in either

part, i.e., pixels of the sky part look like pixels of

the sky part and not like pixels of the ground part,

and vice versa. Thus, the detection of the horizon

becomes to search for the optimal straight line such

that the sum of the variances of both parts reaches the

lowest value. The lines of all possible locations and

angles are tested, and the optimal one that meets the

above criteria is considered the horizon. Two concerns

of that method are found: 1) it is computationally

expensive due to the greedy search scheme, and

2) the second assumption fails when a part of the sea,
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Fig. 2. Sample image.

rivers, or anything that has similar colors to the sky

appear in the ground part of the image.

In the present paper a hierarchical elastic horizon

detection algorithm is proposed to provide a robust

and efficient way, which is detailed as follows. First

of all the original image, as shown in Fig. 2, is blurred

by a low-pass filter, i.e., a Gaussian low-pass filter

with a large sigma value, so that all the fine edges

are ignored and only the strongest bounds remain.

Secondly, an edge detector is utilized to find the major

bounds. In this paper we make use of the Canny edge

detector [14] because it can provide edge-strength

information in addition to edge-location information.

Based on the edge strength of each pixel of the image,

an edge-strength histogram is computed, and the top

p% of the points are obtained as possible points that

comprise the horizon. It is worthy to note that the

edge-strength threshold p is adaptive for different

images. On one hand the value of p should be a small

number because, by experience, we know that the

horizon is the strongest bound in the image most of

the time. On the other hand it is not always the case,

so the value of p should not be too small. In other

words we would rather conservatively include some

nonhorizon points in this step and exclude them in a

later step than hastily lose some horizon points in this

step. By experiments we set

p=
1

NH
£ 500 (1)

where NH is the total number of columns in the

image, which varies among images. In general images

in this particular application usually consists of

hundreds or thousands of columns so that the value

of p can be guaranteed to take values that are less

than or equal to 100. Based on the p value and on

the corresponding edge-strength threshold, a binary

map can be generated. Then, the standard Hough

transform (SHT) [28] is applied to search probable

lines in the binary map. Ideally, the horizon should

Fig. 3. Coarse adjustment.

be the highest peak of the voting result of the SHT

so that, by taking the highest peak value, we can

find the slope and the intercept of the horizon in

the image. However, the horizon is not always the

highest peak in the SHT result. Therefore, we cannot

just simply take the highest peak as the horizon.

Instead, we take into account the top NL highest peaks

by comparing the average edge strength within the

dual-side narrow bands along the NL lines. The line

that has the highest average edge strength within

the dual-side narrow bands is called the true peak

of the Hough transformation. By experiments, we

set NL to 5. This strategy makes the detection of

the horizon reliable and robust. In Fig. 3, the green

line is the true peak of the Hough transformation

along with two yellow lines, which are among the

top NL highest peaks but not the true peak. Since the

horizon is not often a strictly straight line, the Hough

transformation result may not perfectly match the real,

curvy horizon. Therefore, it is necessary to adjust the

line in a pixel-wise manner by searching the dual-side

neighborhood of each pixel. The coarse adjustment, as

shown in Fig. 3, is applied based on the edge map

of the blurred image. The subfigure inside Fig. 3

provides a closer view at a local segment. The yellow

arrows denote the directions of adjustment, and the

red dots denote the position of each horizon-point

after the coarse adjustment.

After coarsely finding the position of the horizon,

we get back to the original image and do a fine

adjustment to accurately locate the horizon, as shown

in Fig. 4. For each pixel of the coarsely-found horizon

rendered in green, we search its dual-side narrow band

in a fine-edge map rendered in a gray scale, which is

computed from the original image, and then slightly

adjust its position to the pixel that has the largest edge

strength of that neighborhood. Yellow arrows point to

the directions of adjustment, and red points denote the

position after the fine adjustment. Noisy points may

emerge due to the discontinuity of the horizon in the
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Fig. 4. Fine adjustment.

Fig. 5. Detected horizon.

fine-edge map. We remove these discontinuous points

by interpolation based on their neighboring points on

the left and right. In this paper we use the B-spline

interpolation method [29, 30]. After removing all the

noisy points, a smoothing technique is applied to local

segments of the detected horizon to get the smooth

final detection result as shown in Fig. 5. Then, the

roughness assessment can be applied to the ground

part in the image.

B. Roughness Assessment

The roughness of the ground and the presence

of hazards are often reflected as boundaries and as

a high-variance of pixel intensity values in visible

images. If high-resolution elevation maps are not

available, it is plausible to assume that identifying

rough areas or hazardous objects on the ground

is equivalent to the process of edge detection in

visible images. The Canny edge detector [14] is an

efficient tool for computing the sharpness of edges,

which is, from smoothest to sharpest, quantified to

the range from 0 to 255. This method is applied at

Fig. 6. Sample image.

Fig. 7. Edges found with Canny detector.

the beginning of the roughness assessment module.

Figure 6 shows a sample image provided by Google

Earth®, and its edge detection result using the Canny

detector is shown in Fig. 7. Brighter pixels represent

sharper edges, and vice versa.

Different edge patterns appear among diverse

regions in terms of the edge strength within a certain

range. To characterize the difference the edge map is

first divided into nonoverlapping blocks. We define

the cumulative hazard strength (CHS) of each block as

follows

CHSB =
X
p2B

H(ESp) (2)

H(ESp) =

½
1 ESp > T

0 ESp · T
(3)

where ESp is the edge strength of each pixel p in

block B, and H( ) is the hazard-indicator function. If

ESp is greater than the prespecified safeness threshold

T, then the pixel p is considered hazardous, and the

CHS of block B, CHSB , is incremented by 1. In

contrast, if ESp is no greater than T, then the pixel p
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is considered safe, and CHSB remains the same. Thus,

blocks of smooth areas have a zero or low CHS value,

but blocks of rough areas have a high CHS value.

The block size (BS) in the unit of pixels is adaptively

determined based on the height of the camera hc in

the unit of ft

BS =

8><>:
20£ 20 hc · 10000 ft
15£ 15 10000 ft< hc · 20000 ft
10£ 10 hc > 20000 ft

: (4)

For example, if the aircraft is flying at a higher

elevation, the image covers a relatively larger area

on the ground, and the realistic size of each pixel is

relatively larger is compared with the image captured

at a lower height. As a result, to keep the consistency

of the realistic area of each block to some extent,

the BS is set as a smaller number when the image

is captured at a higher height, and vice versa. In

addition the prespecified safeness threshold T is

related to the requirement of acceptable smoothness.

A lower value of T means a stricter requirement for

smoothness because the edge strength of more pixels

will be beyond the safeness threshold, and they will

be considered hazardous. It is more reasonable to

utilize a unified strict safeness threshold rather than an

adaptive safeness threshold according to the change of

hc, because loosing the requirement for smoothness as

the hc increases will bring risk to the landing process.

It is empirically determined that T is not sensitive to

the final detection results if its value is picked in the

range from 15 to 30 since the edge strength of the

hazards’ boundaries is usually much higher than 30.

In this paper, T is selected to be 20 as a relatively

stricter requirement for smoothness.

C. Classification and Segmentation

The classification module utilizes the K-mean

clustering method [31, 32] to classify the CHS of

each block into a number of clusters. For example,

if the number of clusters is specified as seven, the

clusters can be interpreted as “very rough,” “rough,”

“moderate rough,” “median,” “moderate smooth,”

“smooth,” and “very smooth.” The number of

clusters is, first, set to seven by default and then,

automatically, reduced in the clustering procedure.

That is, if any cluster loses all of its members,

that cluster will be removed [31, 32]. Figure 8

shows the clustering results of the sample image

shown in Fig. 6. In this case four clusters are

obtained: dark blue renders the smoothest areas,

red renders the roughest areas, and green and light

blue represent the areas in between. Based on the

clustering result, the adjacent “smoothest” blocks

are merged to form larger, smooth areas by using

the region-growing method [33]. The result of

connected areas is shown in Fig. 9, where each area

is labeled with a unique color. For the concern of

Fig. 8. Clustering result based on CHS.

Fig. 9. Multi-region growing result.

efficiency, isolated tiny spots and narrow branches

of merged areas can be removed by applying the

morphological operation of image erosion [33]

without assessing their dimensions since they are

obviously undersized.

D. Dimension Assessment

After the above steps potential landing-sites are

obtained as shown in Fig. 10. In this module we

measure their realistic dimensions and determine

which are qualified to be candidate landing-sites. The

realistic dimensionality of each potential landing-site

is measured by converting its size from the image

coordinate system to the realistic world coordinate

system. In flight dynamics changing the orientation

of the aircraft to any direction can be decomposed

to three kinds of rotations: yawing, rolling, and

pitching, which are, respectively, to rotate the aircraft

along the vertical axis, the longitudinal axis, and

the lateral axis. Given those three rotation angles,

this procedure can be described by the intrinsic

or extrinsic matrices composition [34, 35] with
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Fig. 10. Potential landing-sites identified and realistic dimensions measured.

which one can map the world coordinate system to

the aircraft coordinate system, and vice versa. In

other words two arbitrary points in an aerial image

can be mapped to the world coordinate system so

that the realistic distance between the two points

on the ground is measurable if the three rotation

angles are known. In practice most aircrafts have

the necessary equipment to record the three angles

so that they can be synchronically stored with

real time aerial images. We use images provided

by Google Earth® in this pilot study. Because of

the lack of the information of the three rotation

angles, we simplify the imaging process with only

pitching but no yawing and rolling. Therefore, the

imaging model in the vertical direction of the image

coordinate system can be described as shown in

Fig. 12. Then, the realistic size of each pixel along

the vertical direction of the image can be computed as

follows

d0 = hc ¢ tan
μ
®¡ FOVV

2

¶

di = hc ¢ tan
0@®¡ FOVV

2
+

iX
j=1

μj

1A¡ i¡1X
k=0

dk

(5)

where hc is the height of camera, ® is the pitching
angle, FOVV is the FOV along the vertical direction
of the image, NV is the total number of pixels along
the vertical direction, d0 is the distance between
the vertical line and the first pixel, and μi and di
(i= 1,2, : : : ,NV) are, respectively, the angle and the
realistic distance corresponding to pixel pi along the
vertical direction. For large NV μi(i= 1,2, : : : ,NV) can
be considered to have the same approximate value μ
so that (5) can be simplified as

di = hc ¢ tan
μ
®¡ FOVV

2
+ iμ

¶
¡

i¡1X
k=0

dk

μ =
FOVV
NV

:

(6)

In addition, since it is assumed that there is no yawing
or rolling rotation, the realistic size of the pixels along
the horizontal direction of the image is the same

dH =
2hc
NH

tan

μ
FOVH
2

¶
(7)

where FOVH is the FOV along the horizontal direction
of the image and where NH is the total number of
pixels along the horizontal direction.
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Fig. 11. Landing-sites sorted in descending order based on areas for pilot to evaluate candidates.

The dimensions of each potential landing-site are

estimated by measuring the major axis and minor axis

of its best fit ellipse, which are obtained using the

principle component analysis method [36]. Once the

major axis and the minor axis are found, the realistic

length L and the width W in the unit of feet can be

gained as

L=

vuuut(dH(xa2¡ xa1))2 +
0@ ya2X
k=ya1

dk

1A2

W =

vuuut(dH(xb2¡ xb1))2 +
0@ yb2X
k=yb1

dk

1A2

(8)

where (xa1,ya1), (xa2,ya2) are coordinates of the two

end-points of the major axis and (xb1,yb1), (xb2,yb2)

are coordinates of the two end-points of the minor

axis, in the image coordinate system. Figure 10 shows

the length and the width of each potential landing-site

in the unit of ft. Small areas with insufficient length

or width are ruled out, and only large areas with

sufficient length and width can be considered safe

emergency landing-sites.

E. Visualization

The visualization module is designed to highlight,
at most, the five largest safe landing-site candidates
on the human-machine interface for the pilot’s final
decision, though the system may detect more than five
safe landing-sites. If the system provides the pilot with
all the possible choices, he may get confused when
seeing too many recommended areas on the screen,
and the time cost of making a decision is very critical
under the emergency situation. Therefore, only up
to five largest candidate landing-sites are visualized
on the human-machine interface and labeled with
preference indices. The landing-sites are sorted in
a descending order based on their areas as shown
in Fig. 11, so that the pilot can efficiently evaluate
the recommended candidates in a rational order.
The pilot will make his final decision by choosing
one emergency landing-site from the recommended
candidates and by taking into account other factors as
well, i.e., wind direction, wind speed, maneuvering
ability, etc. In general larger areas are preferable when
compared with smaller ones.

F. Performance Metric

To quantitatively evaluate the results generated by

the proposed system, we ask two veteran professional
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TABLE I

Four Possible Results of the Detection of Landing-Sites

# Categories Ground-Truth Results CAD System Results

1 True Positive The area is safe for emergency landing and labeled

as a candidate.

Hazards are not found in the area small capsand its

dimensions equal or exceed the requirement.

2 False Positive The area is not safe for landing. Hazards are not found in that area small capsand its

dimensions equal or exceed the requirement.

3 True Negative The area is not safe for landing. Hazards are found in that area small capsor its

dimensions are below the requirement.

4 False Negative The area is safe for emergency landing and labeled

as a candidate.

Hazards are found in that area small capsor its

dimensions are below the requirement.

Fig. 12. Simplified imaging model.

pilots to manually pick all the possible landing-sites in

the original images. Their judgment is mainly based

on the apparent smoothness of the areas shown in

the images. Next, the realistic dimensions of these

manually-selected areas are measured by using the

same dimension assessment module mentioned above.

This step is necessary because it is hard to accurately

estimate the length and the width of candidate

landing-sites in the images captured at different

heights by just looking at them. As shown in the left

column of Fig. 15, if the dimensions of a selected area

meet the minimum requirement, it is labeled in green

as a safe landing-site. Otherwise, it is labeled in red

as an unsafe landing-site. After manual selection all

the selected regions are sorted in a descending order

according to area. To fully evaluate the performance

of the proposed CAD system, the manually-selected

and labeled regions are utilized as the ground-truth,

with which we compare the complete detection results

produced by the proposed CAD system, that is, the

results before the visualization module, including

the five largest safe landing-sites shown on the

human-machine interface and the remaining smaller

ones omitted in the visualization module.

If an area is found as a candidate landing-site by

the proposed CAD system, the detection result of

this area is considered positive. Furthermore, if this

detection result is consistent with the ground-truth,

it is called a true positive (TP) detection. Otherwise,

it is a false positive (FP) detection. Similarly, if an

area is not selected as a candidate landing site by

the proposed CAD system, the detection result of

this area is considered negative. In addition, if this

detection result is consistent with the ground-truth, it

is called a true negative (TN) detection. Otherwise,

it is a false negative (FN) detection. Table I lists the

interpretations of the four exclusive and exhaustive

situations. TP and TN are desired correct diagnoses.

FP and FN are wrong diagnoses and have to be

eliminated. It is worth noting that an FP is the

worst situation since it can mislead the aircraft to a

dangerous place.

A scoring mechanism is proposed to quantitatively

evaluate the performance of the proposed CAD system

S = S0 + SB ¡ SP

S0 =

NX
j=1

pj , SB =

MX
i=1

biTi

SP =

NX
j=1

pjFj:

(9)

For each test image the score S consists of

three parts: bonuses SB for TP detections, penalties

SP for FP detections, and the base score S0. In

the ground-truth of each test image, there are M

manually-selected areas. According to the priority

index, different bonus weights bi (i= 1, : : : ,M) are

given to these M areas in a descending order of

size. If the CAD system successfully detects the ith

largest safe landing-site in the ground-truth, then

bonus bi is earned. Ti is the flag that indicates if the

ith largest area in the ground-truth was successfully

detected by the system. In addition to the reward

mechanism, a punishment mechanism is also used.

The complete detection results produced by the

system before the visualization module contain N

candidates, where N may be greater than five and

different from M. Penalty pj (j = 1, : : : ,N) is imposed

if the jth recommended candidate landing-site is
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an FP detection. Fj is the flag indicating if the jth

detected area is an FP detection. The initiative of

using bonus and penalties with different weights is

to emphasize the priority of each safe landing-site in

the ground-truth. In general the larger the dimensions

of the landing-site are, the easier and safer the forced

landing process is. Therefore, it is reasonable to

give higher bonuses for TP detection of larger safe

landing-sites. Also, since an FP detection result

labeled as a higher priority has more negative effect

than an FP detection result labeled as a lower priority,

it is reasonable to impose higher penalties to the

former. In this paper we set bi, respectively, with

30, 25, 20, 15, 10 for 1· i· 5 and 5 for i¸ 6. In
the same way we set pj , respectively, 30, 25, 20, 15,

10 for 1· j · 5 and 5 for j ¸ 6. The base score S0
is the potential maximum of penalties that a set of

detection results can get. It is used to guarantee that

S is nonnegative, even if in the worst case all of the N

detection results are FP, S = 0 is the lowest score that

the CAD system can get. Since N can significantly

vary among images, the scores need to be normalized

to a unified range. The normalized score is computed

as follows,

Ŝ = 100

μ
S

SFM

¶
, SFM = S0 +

MX
i=1

bi (10)

where Ŝ is the normalized score that is obtained

by normalizing S using SFM . SFM is the possible

full score for each experiment when all detection

results are consistent with the ground-truth. After

normalization, scores range from 0 to 100: a score of

100 shows a perfect match, while lower scores show

decreasing matches between the ground-truth and the

CAD results. Equation (10) can also be interpreted as

follows

Ŝ = 100

μ
S0 ¡ Smin
Smax¡ Smin

¶
= 100

μ
S0+ S0
SFM

¶
,

Smin =¡
NX
j=1

pj , Smax =

MX
i=1

bi

S0 = SB ¡ SP , SFM = Smax¡ Smin

(11)

where S0 is the actual performance of the N detection

results, Smin and Smax are, respectively, the lower and

upper bound of S0. S0 ¡ Smin is equivalent to S0+ S0
shown in (9), both of which transfer S0 from the

interval [Smin,Smax] to the interval [0,SFM] so that S is

guaranteed to be nonnegative. Then, Ŝ is obtained by

normalizing S from the interval [0,SFM] to the unified

interval [0,100].

Equation (10) fails under two scenarios. 1) For

images captured above rough terrains, there may

be no safe landing-sites in the ground-truth (M =

0, Smax = 0), so the best corresponding detection

result should be no recommendations (N = 0, SB =

0, S0 = 0, SP = 0). For this special case (10) is ill

defined since its denominator is 0. 2) When all the

detection results are FP (SB = 0, S0 = SP), (10) fails

to differentiate results with different numbers of FPs

since the numerators of those situations are all zero.

For example, suppose there is one safe landing-site

in the ground-truth (M = 1, Smax = 30), the detection

result of zero TP and zero FP (SB = 0, S0 = 0, SP = 0)

should be better than the result of zero TP and two

FPs (SB = 0, S0 = 55, SP = 55). However, based on

(10), Ŝ of both the above is 0, which means it fails to

differentiate between these two scenarios.

To solve these two problems, a correction is made

to (10) by adding a small augment ® to the numerator

and denominator,

Ŝ = 100

μ
S+®

SFM +®

¶
, SFM = S0 +

MX
i=1

bi: (12)

® should be a relatively small number so that it has

little effect on the ratio of the non-zero numerator

and the denominator when there is at least one

TP in the detection results (SB > 0). In this paper

® is 1. By using (12) both problems are solved:

in scenario 1, Ŝ gets the expected score 100; in

scenario 2, the normalized scores of the two scenarios

are, respectively, 3.2 and 1.2. Thus, the two scenarios

get different scores. Though both are relatively

low, “no recommendations” is better than false

recommendations in this particular application.

III. EXPERIMENTAL RESULTS

The validation of the proposed system consists of

three parts in this pilot study.

A. Experiment 1

We tested the reliability of the proposed

hierarchical horizon detection algorithm on 108

sample images provided by Google Earth®. The

horizon in the 108 sample images appears in various

angles, and those images are captured at different

elevations, which range from 1000 ft to 30000 ft

and over different types of terrains. We also tested

on the same set of images with the Hough transform

method [26], the greedy search method [27], and the

simplified version of the proposed method in which

the finer adjustment step is omitted. To quantitatively

compare the accuracy of the above horizon detection

methods, we develop a measurement, average

maximum bias (AMB) defined as follows,

AMB=
1

HM

HMX
h=1

MBh, HM = LH £ 0:1 (13)

where LH is the total pixel number of the detected

horizon, HM is one-tenth of LH , and MBh (h=

1,2, : : : ,HM) is the hth maximum bias from the

detected horizon to the position of the true horizon
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Fig. 13. Horizon detection results by using greedy search method [27], Hough transform [26], simplified version of proposed method,

and proposed method.

in the unit of pixel. The reason that we are only

interested in the top 10% of the maximum bias is

because the horizon is often long. If we compute the

average bias for the whole detected horizon, some

significant bias may be hidden by other well-aligned

parts of the detected horizon when the averaging

operation is taken. Therefore, evaluating the most

biased segment of the detected horizon can tell

us the true performance of the method. In other

words, if the most biased segment of the detection

result can be considered satisfactory, the rest of

the detected horizon can be guaranteed to be better

than the most biased segment. Figure 13 shows the

horizon detection results by using four methods,

respectively, the greedy search method [27], the

Hough transform method [26], the simplified version

of the proposed method, and the proposed method.

Five AMB intervals are used, which are, respectively,

perfect detection (AMB· 1), good detection (1<
AMB· 5), acceptable detection, (5<AMB· 10),
biased detection (10<AMB· 20), and false detection
(AMB> 20). The percentage shown above the bar of

each AMB interval reflects the ratio of the number

of images, for which the AMB value falls into that

AMB interval, to the total number of tested images.

For the greedy search method, it achieves perfect and

good detection (34% perfect detection and 37% good

detection), which means that the method successfully

finds the true horizon in 71% of the images, though

it fails in 22% of the images when a part of sea,

rivers, or anything that has similar colors to the sky

appears in the ground part of the image. The reason

that it cannot achieve perfect detection is because it

assumes that the horizon is a straight line so that it

cannot fit the curvature of the true horizon, though

the general position of the true horizon is detected.

For the Hough transform method, due to its intrinsic

mechanism, it is easily corrupted by other nonhorizon

edges shown in the image. This explains why it only

achieves 5% perfect detection but a high rate of good

and acceptable detection (44% and 46%). In addition,

when the nonhorizon edges are even stronger than

the horizon, the method fails as shown in 3% of

false detection. The proposed method achieves 90%

perfect detection and 8% good detection. Some results

generated by the proposed method are shown in

Fig. 14, in which the red line represents the detected

horizon. To show the importance of its hierarchical

detection strategy of coarse detection and fine

adjustment on the final detection accuracy, we also

tested a simplified version of the proposed method, in

which the fine adjustment is omitted. By doing so the

perfect detection rate significantly decreases to 41%,

and the good detection rate jumps to 57%. It is also

worth noting that both the proposed method and its

simplified version produced no false detections on the

test images. This robustness and reliability is achieved

by the examination of the top NL lines (NL = 5 in this

paper) generated by the Hough transform, instead of

only by examination of the top one line, as in [26].

B. Experiment 2

The reliability and accuracy of the proposed

system was validated on independent static sample

images with projection angles of 0± and 60±. A total
of 169 images captured at 1,000—30,000 ft, and 100
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Fig. 14. Results produced by proposed horizon detection algorithm.

images captured at 5,000 ft were used for testing the

CAD algorithm. The left column of Fig. 15 shows five

samples of the labeled manual selection, and the right

column shows the corresponding results produced

by the proposed CAD system. Two performance

metrics are applied to evaluate the detection results.

1) A group-wise TP detection rate (GTPR) is

defined as,

GTPR=

PNimg
i=1 DTPiPNimg
i=1 MTPi

£100% (14)

where DTPi is the number of TP detections in the

ith image, MTPi is the number of safe landing-sites

in the ith image provided by the ground-truth, and

Nimg is the total number of images in the testing set.

The GTPRs of the 1,000—30,000 ft testing set and

the 5,000 ft testing set are, respectively, 81.2% and

87.1%. 2) By using the performance metric presented

in Section II-F, normalized scores of detection

results of the two testing sets are obtained, and the

distribution of the normalized scores is shown in

Table II. 69.2% of the experimental results of the

first set and 74.0% of the experimental results of

the second set completely match the ground-truth

(Ŝ = 100), and 80.6% of the first set and 86.0%

of the second set generally match the ground-truth

(Ŝ ¸ 60), which demonstrates the feasibility of the
proposed CAD system. We did notice that there

were 18.3% failures in the first set and 14.0%

in the second set (Ŝ < 5). Two major causes are

found. 1) Fewer details can be seen from higher

elevations since the realistic area covered by each

pixel in the image becomes larger when camera

height increases, so some areas appear to be smooth

in the image, while in reality they are not. This

explains why the results of the 5,000 ft set is better

than that of the 1,000—30,000 ft set. This image

resolution problem is, of course, a characteristic of

the image-capture device. 2) Artificial or pseudo

boundaries may cause the system to miss safe

landing-sites. For example, an area may be flat, but

changes in its soil color or soil texture appear as

sharp edges that can confuse the CAD system. This

can be attributed to the assumption that elevation
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Fig. 15. Comparison between manual selection and automatic detection. (a) Manually-selected landing-sites. (b) Recommended

landing-sites detected by proposed system.

changes can be mapped by edges in visible images.

In the absence of elevation information (most small,

general aviation aircraft do not have an elevation

database on board), imagery captured by aircraft

cameras is the only source for computer algorithms

to evaluate the surface roughness. The proposed

CAD system can play an important role under this

situation.
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TABLE II

Distribution of Normalized Scores of Experimental Results

Normalized Score 0 1 2 3 4 5—45 50 55 60 65 70 75 80 85 90 95 100

Percentage (%), 1 k—30 k ft 0 4.1 8.9 0 5.3 0 1.2 0 3.0 0 0.6 0.6 1.8 3.6 0.6 1.2 69.2

Percentage (%), 5 k ft 0 0 9.0 0 5.0 0 0 0 4.0 0 1.0 2.0 5.0 0 0 0 74.0

C. Experiment 3

The consistency of detection results is important

because the proposed system eventually will

be utilized as a real-time system to detect safe

landing-sites as the aircraft moves. By applying

the proposed system to 10 sequences of images,

each of which has 10 to 15 images, the consistency

of detection system is validated. The motion of

the aircraft is reflected by the relative position of

the sequential images. For example, if the aircraft

moves along the direction parallel to the ground, the

corresponding sequence of images covers a band

along the trace of the aircraft. The distance between

centers of every two consecutive images is determined

by the flying speed. In other words two consecutive

images captured by an aircraft with lower speed have

more overlap than those captured by one with higher

speed. One sample sequence is shown in Fig. 16(a), in

which the distance between two consecutive images

is about 2.5 s of latitude and 0 s of longitude, that

is, approximately 253 ft or 77 m. In addition we

also tested 10 sequences of images captured over a

same spot but at different heights along the direction

perpendicular to the ground. Figure 16(b) shows a

sequence of images along the vertical direction. A

pair-wise consistency rate (CR) of detection results

between two adjacent images is defined as

CR =
CN

CM
£ 100% (15)

where CM is the number of common safe

landing-sites in the ground-truth between two adjacent

images and where CN is the number of common TP

detection results between two adjacent images. The

average consistency rate (ACR) is defined as

ACR=
1

F¡ 1
F¡1X
f=1

CRf (16)

where f is the index of images, F is the total number

of images in one sequence, and CRf is the consistency

rate between the fth image and the (f+1)th image.

The average ACR of 20 tested sequences is 84.1%.

IV. DISCUSSION

A vision-based real-time information source

is indispensable in the application of seeking safe

emergency landing-sites, although there is existing

advanced equipment that contains a database that

can indicate the locations of plain areas which are

suitable for emergency landing, because the system

should possess the capability to identify transitory

hazards or moving objects on a real-time basis.

The relatively low update frequency of the database

mentioned above often cannot satisfy this expectation.

Ideally, the proposed system can be combined with

such a database to work together. For example, if

the database can provide the location of a potential

safe area and if this area is within the reachable

radius of the aircraft, the pilot can first follow the

direction prompted from the database. As a result

the aircraft is expected to go in a generally correct

direction. Then, by using the proposed system, safe

landing-sites can be found after ruling out hazardous

sites in that generally safe area. This hierarchical

methodology is also applicable for exploratory landing

on the Moon, Mars, or other planets, in order to

eliminate damage to the spacecraft during the landing

procedure.

Image quality is directly related to the reliability

of the detection results. Given that the camera

is at the same height, few details can be seen

in a low-resolution image because each pixel

of the image covers a large area on the ground.

Similarly, for a given camera, fewer details can

be seen from the higher elevations, so some

areas appear to be smooth in the image, while in

reality they are not. The resolution is, of course,

a characteristic of the image-capture device,

and a high-quality imaging device is always

desirable.

In this paper the candidate landing-sites

recommended to the pilot are sorted in descending

order only according to their areas. We have not

taken into account the factor of maneuverability.

The assumption that we use in this paper is that a

larger and wider landing-site can provide relatively

more room for emergency landing, which is,

indeed, a positive factor for the emergency landing

process. However, in reality, access to the largest

candidate landing-site might not be the safest and

easiest option for the unpowered aircraft in terms

of maneuverability. Therefore, if we can develop a

method to estimate the degree of safeness, reliability,

and difficulty of landing at each candidate site by

evaluating the recommended candidate landing-sites

with other factors which are not reflected in the

image, i.e., the controllability of the aircraft, wind

direction, wind speed, and so on, the automatic

detection system can provide a comprehensive index
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Fig. 16. Detection results of sequential images. (a) Aircraft moves along direction parallel to ground. (b) Images captured over same

spot at different elevations.

of the priority of each candidate landing-site, which

will be a plus to the proposed system, although that is

out of the scope of this paper. Currently, we leave this

task to the pilot who will make the final decision by

evaluating the recommended candidate landing-sites in

an all-inclusive manner.
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V. CONCLUSIONS

This paper presents an automatic safe landing-site

detection system for robust, reliable, and efficient

emergency landing. The proposed system makes up

for the limitations of human eyes, assists the pilot to

find safe landing-sites, and more importantly, saves

time for the pilot to devote to other necessary actions

under emergency conditions. The promising results

show the feasibility of the vision-based system. In

the next step the proposed system will be further

developed to better meet practical demands and

applications.
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