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The subject of meteorological optics is a fascinating one; it includes the study of the
above-mentioned phenomena as well as others too numerous to list here (a superb resource for all
these topics, containing many wonderful photographs, is Dr. Les Cowley’s website at
http://www.sundog.clara.co.uk/atoptics/phenom.htm). Obviously there is some physics involved in
the explanation of these phenomena, but fortunately it is not necessary to go into a lot of physical
detail in order to appreciate the use of trigonometry and elementary calculus used in modeling these
beautiful arcs on the sky. This article is presented as a possible resource for high school mathematics
teachers who are looking for non-traditional contexts from which to teach some of the traditional
precalculus and calculus topics. It has been field-tested several times, within the context of a college
class that contained more advanced material, but the student excitement about and involvement with
the subject matter was quite high once students had actually noticed some rainbows, halos and
glories (and also sundogs) for themselves! [The figures have yet to be added.]

Rainbows

A thorough account of what might be called the “ray theory” for the formation of rainbows was
provided in an NCTM publication, so it will not be necessary to reproduce the details of the article
here. The primary rainbow is caused by light from the sun entering the observer’s eye after it has
undergone one reflection and two refractions in myriads of raindrops (see Figure 1). Using
elementary geometry it is seen that the ray has undergone a total deviation of D�i� radians, where
D�i� � � � 2i � 4r�i�, in terms of the angles of incidence (i� and reflection (r) respectively. The
latter is a function of the former, this relationship being expressed in terms of Snell’s famous law of
refraction sin i � n sin r, n being the relative index of refraction (of water, in this case). This relative
index is defined as

n �
speed of light in medium I (air)

speed of light in medium II (water)
� 1.

Since the speed of light in air is almost that ‘in vacuo’, we will refer to n for simplicity as the
refractive index; its generic value for water is n � 4/3, but it does depend slightly on wavelength
(this is the phenomenon of dispersion, and without it we would only have bright “whitebows”.) By
examining the behavior of D�i� it is readily established that for i � �0,�/2� the condition for an
extremum, D��i� � 0 implies that the critical angle of incidence ic corresponding to an extremum of
D�i� is given by

ic � arccos n2 � 1
3

1/2
.     (1)

Although realistically k � 2 (for reasons mentioned below), for k internal reflections the
corresponding result is

ic � arccos n2 � 1
k�k � 2�

1/2

,     (2)

as is readily verified. Furthermore, for general k it can be shown that

Dk
��

�ic� �
2�k � 1��n2 � 1� tan r

n2 cos2r
� 0,     (3)

which is positive since n � 1 and 0 � r � �
2 , ignoring the special case of normal incidence, meaning



that the clustering of deviated rays corresponds to a minimum deflection D�ic� (for k � 1 in
particular). Note, however that the formulation for k � 2 in the above reference used, in effect, �D to
find a corresponding maximum deflection for this quantity. When k � 1, D�i� may be written with
sole dependence on i as

D�i� � � � 2i � 4 arcsin sin i
n .     (4)

Continuing with the case k � 1, some numerical values are in order. For a “generic” monochromatic
rainbow (the whitebow referred to above), the choice n � 4/3 yields

ic � arccos 7
27 � 59. 4° and D�ic� � 138°.

The supplement of this angle, 180° � D�ic� � 42° is the semi-angle of the rainbow ‘cone’ formed
with apex at the observer’s eye, the axis being along the line joining the eye to the antisolar point.

Next we mention dispersion, and we can also study this in an elementary way. While not exactly
standardized, the visible part of the electromagnetic spectrum extends from the ‘red’ end (about 700
– 650 nm) to the ‘violet’ end (about 425 – 400 nm), one nanometer (nm) being 10�9 m. For red light
of wavelength � � 656. 3 nm, the refractive index n � 1. 3318, whereas for violet light of
wavelength � � 404. 7 nm, the refractive index n � 1. 3435; a slight but very significant difference!
All that has to be done is the calculation of ic and D�ic� for these two extremes of the visible
spectrum, and the difference computed, and voilà! We have found the angular width of the primary
rainbow. In fact since D�ic� � 137. 75° and 139. 42° for the red and violet ends, respectively, the
angular width �D � 1. 67° � 1. 7°, or about three full moon angular widths.

Now we consider the secondary rainbow In this case there is an additional reflection, so the
geometry yields a total ray deviation of

D�i� � 2� � 2i � 6r � 2i � 6r �modulo 2�� � 2i � 6 arcsin sin i
n .     (5)

Proceeding as before we find that

ic � arccos n2 � 1
8

1/2
,     (6)

as is evident from equation (2). For our generic n-value of 4/3,

cos ic � 7
72 � 0. 3118, so ic � 71. 8°. Then

D�ic� � 2ic � 6 arcsin�0. 7125� � 143. 6° � 276. 6° � �129°.

The negative sign is of no significance here, since the ray geometry is cylindrically symmetric about
the central axis, but for this reason sometimes D�i� is defined as the negative of the expression used
here, so be careful which one you are using if you calculate D���ic�. Just as the supplement of D�ic�
for the primary bow is approximately 42°, so for secondary bow the supplementary angle is 51°;
thus the secondary bow is about 9° higher in the sky than the primary bow.

In general, for k internal reflections it can be shown that



D�i� � k� � 2i � 2�k � 1�arcsin sin i
n ,     (7)

and after an interesting trigonometric calculation, in particular it can be shown that when k � 1,

D�ic� � 2 arccos� 1
n2

4 � n2

3
3/2
�,     (8)

thus expressing the angle of minimum deviation (the “rainbow angle”) in terms of the refractive
index alone. In principle this can also be done for higher-order rainbows, although the algebra gets
messy. Substituting n � 4/3 into the above equation gives

D�ic� � 2 arccos� 9
16

20
27

3/2
� � 2 arccos�0. 3586� � 138°,

thus recovering the result for the primary bow. Regarding the tertiary and higher bows: these bows
are rarely, if ever seen, so don’t look for them; the tertiary is too close to the sun and the higher
orders are probably too faint!

Ice Crystal Halos

Halos are formed when sunlight is refracted, reflected or both from ice crystals in the upper
atmosphere and enters the eye of the observer, but even the common types are easily missed. They
are usually produced when a thin uniform layer of cirrus or cirrostratus cloud covers large portions of
the sky, especially in the vicinity of the sun. Surprisingly, perhaps, they may occur at any time of the
year, even during high summer, because above an altitude of about 10 km it is always cold enough
for ice crystals to form. Very many of these crystals are hexagonal prisms; some are thin flat plates
while others are long columns, and sometimes the latter have bullet-like or pencil-like ends. A
significant feature of all these crystals is that while any given type may have a range of sizes, the
angles between the faces are the same. Although they do not possess perfect hexagonal symmetry, of
course, they are sufficiently close to this that simple geometry based on such idealized forms suffices
to describe the many different arcs and halos that are associated with them. The halo formation that
results from cirrus cloud crystals depends on two major factors: their shape and their orientation as
they fall. Their shape is determined to a great extent by their history, i.e. the temperature of the
regions through which they drift as they are drawn down by gravity and buffeted around by winds
and convection currents.

Generally, halos may be seen several times a month in Europe and parts of the United States.
The most frequent is the 22° circular halo, followed by parhelia (sundogs) and then the upper tangent
arc. In my own rather limited experience, the sundogs are most common (at least as I walk to work!).
In order to explain the reasons for the various angles, e.g. 22°, etc., it is necessary to examine the
crystal geometry in more detail. There are several other fairly common halos and arcs to be seen,
depending on the orientation of the ray relative to the crystal, but we focus here solely on the 22°
halo. First, however, it is necessary to state things a little more formally in terms of theorems
(presented here without proof) concerning the refraction of light through prisms of apex angle � and
relative (to air) refractive index n.

Theorem 1: The deviation or deflection angle for light refracted through a prism is a minimum for
symmetric ray paths.



Theorem 2: The minimum deviation angle Dm for a prism satisfies the relation

n �
sin� 1

2 �� � Dm��

sin 1
2 �

.     (9)

From this result we may solve for Dm to obtain

Dm � 2 arcsin�n sin �
2 � � �.     (10)

We can use this result to explain the occurrence of the 22° halo. There are in fact three prism angles
in a hexagonal ice crystal prism: 60° (light entering side 1 and exiting side 3); 90° (light entering a
top or bottom face and exiting through a side) and 120° (light entering side 1 and being totally
internally reflected by side 2), but our concern here is with the first one only. The refractive index of
ice for yellow light is n � 1. 31. For the apex angle � � 60°, the minimum deviation is

Dm � 2 arcsin�1. 31 sin 30°� � 60° � 21. 8° � 22°,

For angle of incidence i, the deviation D�i� may also be written in terms of the constants of the
problem for a particular crystal, n and �, thus

D�i;�, n� � i � � � arcsin n sin�� � arcsin sin i
n � .     (11)

All of this goes to show, of course, that not only are ice crystals responsible for some magnificent
displays in the sky from time to time, but also they are associated with some rather impressive
looking transcendental equations! It is the case for the ray path sketched in figure 2 that the
minimum value Dm in occurs near 22° of arc. As in the case of the rainbow, all possible deviations
are present in reality, but it is the “clustering” of deviated rays near the minimum that provides the
observed intensity in the halos (but unlike the case of the rainbow, no reflection contributes to their
formation in these two cases). One way to verify analytically that there is a true minimum is of
course to show from equation (11) that when D��i� � 0, D���i� � 0, but this is left as an interesting
exercise; it’s not as bad as it looks. There are restrictions on the angle of incidence i such that outside
these, no value of D can be defined for real parameters n and �. These restrictions arise because of
the requirement from equation (11) that, in particular,

n sin�� � arcsin sin i
n � � 1,

(i lying within the first quadrant). This inequality places a lower bound on � by unfolding expression
(11) to obtain

i � arcsin n sin�� � arcsin 1
n � ,

where it should be recalled that the ‘sin’ function is a one-to-one function in the range �0,�/2�, so
that the ‘arcsin’ function is monotone increasing in its domain. For � � 60°, this corresponds to
i � 13. 5°. Other arguments enable limits to be placed on the sun’s altitude or the latitude of the
observer for certain types of halo to be visible (atmospheric conditions permitting). We illustrate this
for the circumzenithal arc.

The circumzenithal arc

The circumzenithal arc is a circular halo that is centered on the zenith point of the observer.



According to Les Cowley’s website: “The circumzenithal arc is the most beautiful of all the halos.
The first sighting is always a surprise, an ethereal rainbow fled from its watery origins and wrapped
improbably about the zenith. It is often described as an “upside down rainbow” by first timers.
Someone also charmingly likened it to “a grin in the sky”. Look straight up near to the zenith when
the sun if fairly low and especially if sundogs are visible. The centre of the bow always sunwards
and red is on the outside.”

Now for a little geometry and trigonometry. The sunlight enters from the top of the ice crystal (as
shown in Figure 3) and exits from the side. We can derive a condition on the sun’s altitude � for the
halo to be visible, i.e. � must be greater than (or less than) a certain angle, and will assume, as
before, that the refractive index of the ice is 1.31. From Figure 3 we can see that no ray will enter the
observer’s eye if total internal reflection takes place at B. This places restrictions on the angle of
internal incidence (measured from the normal to the vertical face) �2 and hence on the external angle
of incidence to the horizontal face, �1. Total internal reflection will occur if r2 � �/2, so taking the
equality as the limiting case we have

sin�2 � n2 sin r2 � n2 � n1
�1 � �1. 31��1 � 0. 76,

since this is an ice-to-air interface. Then

�2 � arcsin�0. 76� � 49. 7°.

Therefore r1 � 40. 3°, and for the air-ice interface, sin�1 � n1 sin r1, so total internal reflection
occurs when

�1 � arcsin�1. 31 sin�40. 3°�� � 57. 9°.

Under these circumstances no ray enters the observer’s eye, and therefore the circumzenithal arc can
only be seen when �1 � 57. 9°, i.e. when the sun’s altitude � (� 90° � �1� is less than about 32°.
Similar kinds of calculation apply to other halo types to yield the corresponding limitations on solar
elevation (and hence latitudes of visibility) or perhaps crystal orientation.

The glory

Mountaineers and hill-climbers have noticed on occasion that when they stand with their
backs to the low-lying sun and look into a thick mist below them, they may sometimes see a set of
colored circular rings (or arcs thereof) surrounding the shadow of their heads. Although an individual
may see the shadow of a companion, the observer will see the rings only around his or her head.
Again, many details of glories can be found from Les Cowley’s website. While not noted as
frequently as the rainbow, this phenomenon may be seen most commonly from the air, with the glory
surrounding the shadow of the airplane. Once an observer has seen the glory, if looked for, it is
readily found on many subsequent flights (provided one is on the shadow side of the aircraft!).

The phenomenon can be understood in the simplest terms as essentially the result of light
backscattered by cloud droplets, the light undergoing some unusual transformations en route to the
observer (with a correspondingly complicated mathematical description), transformations that are
not predictable by standard geometrical optics, unlike the basic description of the rainbow. That this
must be the case is easily demonstrated by noting a fallacy present in at least one popular
meteorological text. The glory, it is claimed, is formed as a result of a ray of light tangentially
incident on a spherical raindrop being refracted into the drop, reflected from the back surface and
reemerging from the drop in an exactly antiparallel direction into the eye of the observer (see Figure



4(a) ). If such a picture is correct, then since the angle of incidence of the ray is 90°, it follows by
Snell’s law of refraction that the angle of refraction is

r � arcsin 1
n

where n is the refractive index of the raindrop. For an air/water boundary, n � 4/3 (ignoring the
effects of dispersion here, though this does occur as noted above; note also that for a water/air
boundary the reciprocal of n must be used), and so r � 48. 6°. This means (by the law of reflection)
that at the back of the drop, the ray is deviated by more than a right angle, since 2r � 97. 2°, and by
symmetry the angle of incidence within the drop for the exiting ray is also 48. 6°, so the total
deviation angle (as we saw for the primary rainbow) is

D�i� � � � 2i � 4 arcsin sin i
n � � 4 arcsin 3

4 � �194. 4° or � 165. 6°

(modulo 2�) since i � 90°. This means that the exiting ray is about 14° short of being “antiparallel”.
It just won’t work as a mechanism for the glory! There are basically two potential ways out of this.
We could ask what value of refractive index n would be necessary for the diagram to be correct; thus
i � 90° as before but now r � 45°; this means that

n � sin i
sin r

� 2 � 1. 4,

i.e. between that of water and glass! What other option remains? One possibility is that somehow the
ray travels around the surface (as a surface wave) for part (or parts) of its “trip”, the surface portion
comprising the missing piece �, where from Figure 4(b) (drawn for the symmetric case only)

� � 180° � 2�180° � 2r� � 4r � 180° � 14. 4°

for r � 48. 6°. The resulting path in the droplet need not be symmetric to account for an antiparallel
exiting ray.

This article presents some of the basic mathematical ideas behind some common meteorological
phenomena, though sundogs have not been addressed here, the theory behind them is very similar to
that for the 22° halo, except that they are formed by light being refracted through horizontally
oriented hexagonal ice crystals. The analysis presented here is not, of course, new: it can be culled
from many sources because the subject of meteorological optics has been around for a long time!
What is new, it is hoped, is the presentation of these ideas as a potential topic for mathematical
modeling in the high school classroom. It should also be noted that many subtle features associated
with such optical effects in the atmosphere require much more powerful mathematical tools to
explain them. Thus a detailed study of the glory or of supernumerary rainbows is, regrettably, far too
complicated to go into here, but the interested reader is referred to the bibliography for references
and further details (and also to Philip Laven’s excellent website
http://www.philiplaven.com/index1.html).
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Figure Captions

Figure 1: the path of a ray of sunlight inside a spherical raindrop which contributes to the formation
of the primary rainbow upon exiting the drop.
Figure 2: a hexagonal ice crystal showing one possible (symmetric) ray path through the crystal and
the subsequent 22° minimum deviation corresponding to the 22° halo.
Figure 3: a ray path for the circumzenithal arc; it enters through a horizontal face of a hexagonal
prism, and exits through a vertical side. The dotted ray path inside the crystal indicates total internal
reflection.
Figure 4: (a) An incorrect (but commonly drawn) ray path in a spherical cloud droplet alleged to
contribute to the glory. Although the glory is essentially a backscattering phenomenon, it cannot be
produced exactly as shown, because a tangential incident ray will not be returned antiparallel to its
original path, as demonstrated in the text. Figure (b) illustrates one possible correct path; it involves
the ray traveling as a surface wave around a portion of the droplet surface for a total of about 14° (a
symmetric path is shown).


