
Electromagnetism HW 1 – math review

Problems 1-5 due Mon 7th Sep, 6-11 due Mon 14th Sep

Exercise 1. The Levi-Civita symbol, εijk, also known as the completely antisymmetric
rank-3 tensor, has the following properties:
(a) ε123 = ε231 = ε312 = +1
(b) ε213 = ε321 = ε132 = −1
(c) all other entries are zero.
It follows that εjik = −εijk and similar antisymmetric relations hold.

1.1 Using a notation in which repeated indices are summed over, show that

(a) εijkεilm = δjlδkm − δjmδkl,

(b) εijkεijm = 2δkm, and

(c) εijkεijk = 6,

where the Kronecker delta, δij, is equal to +1 if i = j and zero if i 6= j.

1.2 Show that Ci = εijkAjBk has the same components as the vector ~C = ~A× ~B

1.3 Using properties of the Levi-Civita symbol, prove that

(a) ~A× ~B × ~C = ( ~A · ~C) ~B − ( ~A · ~B) ~C,

(b) ( ~A× ~B) · (~C × ~D) = ( ~A · ~C)( ~B · ~D)− ( ~A · ~D)( ~B · ~C),

(c) ( ~A× ~B)× (~C × ~D) = ( ~A · ~C × ~D) ~B − ( ~B · ~C × ~D) ~A,

(d) ~∇ · (~∇× ~g) = 0,

(e) ~∇× (~∇× ~g) = ~∇(~∇ · ~g)−∇2~g,

(f) ~∇ · (f~g) = f ~∇ · ~g + ~g · ~∇f ,

(g) ~∇× (f~g) = f ~∇× ~g − ~g × ~∇f ,

(h) ~∇ · (~f × ~g) = ~g · (~∇× ~f)− ~f · (~∇× ~g),

(i) ~∇× (~f × ~g) = ~f(~∇ · ~g)− ~g(~∇ · ~f)− (~f · ~∇)~g + (~g · ~∇)~f , and

(j) ~∇× (~g × ~r) = 2~g + r ∂
∂r
~g − ~r(~∇ · ~g), where ~r = xx̂+ yŷ + zẑ
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Exercise 2. The determinant of the Jacobian matrix, J, relates volume elements when
changing variables in an integral. For example if we change from variables ~x = (x1, x2 . . . xN)
to variables ~y = (y1, y2 . . . yN), the volume elements are related by

dNx =
∣∣J(~x, ~y)

∣∣ dNy =

∣∣∣∣∣∣∣∣∣
∂x1
∂y1

∂x2
∂y1

. . . ∂x1
∂yN

∂x2
∂y1

∂x2
∂y2

. . . ∂x2
∂yN

...
∂xN
∂y1

∂xN
∂y2

. . . ∂xN
∂yN

∣∣∣∣∣∣∣∣∣ d
Ny.

Starting from the volume element in cartesian coordinates, dx dy dz, use the Jacobian to
show that the volume element is

(a) ρ dρ dφ dz in cylindrical coordinates, and

(b) r2 sin θ dr dθ dφ in spherical coordinates.

Exercise 3. Starting from the divergence theorem,∫
V

d3r ~∇ · ~F =

∫
S

d~S · ~F ,

show that

(a)
∫
V
d3r ~∇φ =

∫
S
d~S φ for a scalar field φ(~r)

[Hint: choose ~F = ~c φ(~r) with a constant vector ~c ],

(b)
∫
V
d3r ~∇× ~A =

∫
S
d~S × ~A for a vector field ~A(~r)

[Hint: choose ~F = ~A(~r)× ~c with a constant vector ~c ],

(c)
∫
V
d3r
(
φ∇2ψ − ψ∇2φ

)
=
∫
S
d~S ·

(
φ~∇ψ − ψ~∇φ

)
,

(d) for a closed surface, S, enclosing a volume, V ,
∫
S
d~S = 0, and

∫
S
d~S · ~r = 3V .
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Exercise 4. Show that a vector field with zero curl can be expressed as the gradient of a
scalar field, ~F (~r) = ~∇Φ(~r).

Show that the line integral,
∫ ~rf
~ri
d~̀· ~F , of a curl-less vector field, ~F , between two points ~r = ~ri

and ~r = ~rf is independent of the path taken between the two points.

For the particular field

~F =
−yx̂+ xŷ

x2 + y2
,

show that

(a) ~∇× ~F = 0,

(b) the line integral between (x = −1, y = 0) and (x = 1, y = 0) has value −π for each
of the paths, A,B,C, shown in the figure.

(-1,0)

A

C

B

(1,0)

(0,1)

x

y

(c) Find a scalar field, Φ(x, y), such that ~F = ~∇Φ.

[Hint: integrate ~F · d~̀ from (0, 0) to (x, y) choosing a path that makes the integrals as
simple as possible ]
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Exercise 5. Evaluate
∫
S
d~S · ~F where

~F = (y2 − x2)x̂+ (2xy − y)ŷ + 3zẑ

for the entire surface of the tin can bounded by the cylinder x2 + y2 = 16, z = −3, z = 3,

(a) by explicitly computing the surface integral, and

(b) by using the divergence theorem.

Exercise 6. Consider the following vector field, expressed in cylindrical coordinates, ~W (ρ, φ, z) = α
ρ
φ̂.

Show that the z-component of the curl is zero everywhere except at the origin and(
~∇× ~W

)
z

=
α

ρ
δ(ρ)

Exercise 7. In lectures we showed, using the divergence theorem, that

∇2 1

r
= −4πδ(~r).

Let’s explore another way of deriving the same result:

(a) Show that the function Λ(r, a) = ∇2 1√
r2+a2

is Λ(r, a) = −3a2

(r2+a2)5/2
, and plot Λ(r, a)

versus r for a range of values of a decreasing toward zero.

(b) Show that the integral over all space of Λ(r, a) is of value −4π.

(c) Explain how we can conclude that lima→0 Λ(r, a) = −4πδ(~r)

Exercise 8. The Helmholtz theorem for a divergence-less and curl-less vector field: Sup-
pose a vector field satisfies ~∇ · ~E = 0 and ~∇× ~E = 0 everywhere in a volume, V , bounded
by a surface, S. Use a derivation like the one we used in lecture to show that ~E(~r) can be
found everywhere in V if its value is known at all points on the surface, S.

Notice that your result shows that if ~E is zero everywhere on the boundary, then ~E is also
zero everywhere inside the volume – this will be realized when we consider an empty cavity
in a perfect conductor.
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Exercise 9. The Legendre differential equation is

(1− x2)
d2y

dx2
− 2x

dy

dx
+ `(`+ 1)y = 0.

One set of solutions to this equation, when ` takes positive integer values, are known as the
Legendre polynomials, y(x) = P`(x). They are polynomials of order ` that are normalized
such that P`(1) = 1. The first few are P0(x) = 1, P1(x) = x, P2(x) = 1

2
(3x2 − 1), P3(x) = 1

2
(5x3 − 3x), . . .

9.1 Sketch graphs of P0(x), P1(x), P2(x), P3(x) in the range −1 ≤ x ≤ 1.

9.2 We can prove that the solutions to Legendre’s equation also satisfy Rodrigues’ formula,

P`(x) =
1

2``!

d`

dx`
(x2 − 1)`.

(a) Check that you can obtain P0(x) . . . P3(x) using Rodrigues’ formula.

(b) Using Rodrigues’ formula show that
∫ +1

−1
dx xmP`(x) = 0 if m < `.

9.3 The “generating function” for Legendre polynomials is

Φ(x, h) =
1√

1− 2xh+ h2
=
∞∑
`=0

h`P`(x).

(a) Show that the functions P`(x) in the sum here do indeed satisfy Legendre’s equa-
tion and have the property P`(1) = 1. [Hint: consider ∂Φ

∂x
, ∂

2Φ
∂x2

and h ∂2

∂h2
(hΦ) ]

(b) Prove the identity xP ′`(x)− P ′`−1(x) = `P`(x). [Hint: consider ∂Φ
∂x

and ∂Φ
∂h

]

9.4 The Legendre polynomials form a complete orthogonal basis with the property that∫ +1

−1

dxP`(x)Pm(x) = δm`N`

(a) Show that N` = 2
2`+1

using the identity derived in 9.3(b) and the result obtained
in 9.2(b).

(b) Prove that the P`(x) are complete on the interval −1 ≤ x ≤ 1 by showing that
D(x, x′) =

∑∞
`=0

2`+1
2
P`(x)P`(x

′) is a representation of the Dirac delta function, D(x, x′) = δ(x− x′).
[ Hint: Start from an arbitrary function f(x) expanded as a infinite superposition of P`(x)

and then show that
∫ +1

−1
dxD(x, x′)f(x) = f(x′) ]

5



Exercise 10. The Bessel differential equation is

x2 d
2y

dx2
+ x

dy

dx
+ (x2 − p2)y = 0.

If we restrict ourselves to x ≥ 0 and integer values of p, the linearly independent solutions
to this equation are known as Bessel functions, Jp(x), and Neumann functions, Np(x). The
first few such functions are plotted below. Note that the Neumann functions diverge at the
origin.

5 10 15 20 25

- 1.0

- 0.5

0.5

1.0

5 10 15 20 25

- 1.0

- 0.5

0.5

1.0

5 10 15 20 25

- 1.0

- 0.5

0.5

1.0

5 10 15 20 25

- 1.0

- 0.5

0.5

1.0

5 10 15 20 25

- 1.0

- 0.5

0.5

1.0

5 10 15 20 25

- 1.0

- 0.5

0.5

1.0

5 10 15 20 25

- 1.0

- 0.5

0.5

1.0

5 10 15 20 25

- 1.0

- 0.5

0.5

1.0

10.1 Bessel functions are orthogonal, but in a way that might look strange:∫ 1

0

dx x Jp(anx) Jp(amx) = δn,mNn

In this equation, an and am are positions of zeros of the Bessel function, i.e. Jp(an) = 0.
Prove the orthogonality expression by taking the following steps:

(a) Show that Jp(ax) satisfies the equation

x
d

dx

(
x
d

dx
Jp(ax)

)
+ (a2x2 − p2)Jp(ax) = 0.
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(b) Show that

Jp(bx)
d

dx

(
x
d

dx
Jp(ax)

)
− Jp(ax)

d

dx

(
x
d

dx
Jp(bx)

)
+ (a2 − b2)x Jp(ax) Jp(bx) = 0,

and integrate this expression in the case that a and b are chosen to be two different zeroes
of the Bessel function Jp(x) to obtain the orthogonality relation.

(c) Finally, show that Nn = 1
2

(
J ′p(an)

)2
[ Hint: you might want to consider the proof

in (b) but only assuming that b is a zero of Jp and not a, and be careful taking the limit
a→ b ].

10.2 Bessel functions get used when we solve problems with cylindrical symmetry. Consider
the following functions of cylindrical coordinates, ρ, z (and independent of φ),

f1(ρ, z) =
1√

ρ2 + z2
,

f2(ρ, z) =

∫ ∞
0

dk A(k)J0(kρ)e−k|z|.

(a) Show that these functions both satisfy Laplace’s equation ∇2f = 0.

(b) Assuming that f1 = f2, by considering ρ = 0 show that A(k) = 1 and thus that,

1√
ρ2 + z2

=

∫ ∞
0

dk J0(kρ)e−k|z|,

which is known as a Fourier-Bessel representation of 1√
ρ2+z2

.

Exercise 11. Functions can often usefully be expanded as superpositions of orthogonal ba-
sis functions, for example as Fourier series and transforms.

11.1 Show that the function f(x) = |x| on the interval −π
2
< x < π

2
has a Fourier series

representation

π

4
− 2

π

∑
oddn

1

n2
cos 2nx

11.2 Show that the function f(x) =

{
1, −1 < x < 1
0, |x| > 1

has a Fourier representation

f(x) =
2

π

∫ ∞
0

dk
sin k

k
cos kx.

Using the result that
∫∞
−∞dy

sin y
y

= π, explicitly compute the above integral in the cases

|x| < 1 and |x| > 1 and check that you get 1 and 0 respectively.
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