Electromagnetism HW 1 — math review

Problems 1-5 due Mon 7th Sep, 6-11 due Mon 14th Sep

Exercise 1. The Levi-Civita symbol, €, also known as the completely antisymmetric
rank-3 tensor, has the following properties:

(a) €123 = €931 = €310 = +1

(b) €213 = €321 = €132 = —1
(c) all other entries are zero.
It follows that €j;, = —€;;, and similar antisymmetric relations hold.

1.1 Using a notation in which repeated indices are summed over, show that

(a) €ijk€itm = 910km — OjmOki,
(b) €ijk€ijm = 20km, and
(c) €iji€ijr =6,

where the Kronecker delta, ¢;;, is equal to +1 if ¢ = 5 and zero if 7 # j.

1.2 Show that C; = €;;,A; By, has the same components as the vector C=AxB

1.3 Using properties of the Levi-Civita symbol, prove that

(e) V x (Vxg) =V(V-j) - V%

() V- (f5)=fV-G+3-Vf,

(8) VX (f§)=fVxg—gxVf

(W) V-(Fx)=G-(Vxf)=F-(Vx7),

D Vx(xg=FV-9 =gV -f)=(F-V)§+ (G- V)], and
() Vx(Gx7)=274+rZ5—#(V-g), where ¥ = 2@ + yj + 22



Exercise 2. The determinant of the Jacobian matrix, J, relates volume elements when
changing variables in an integral. For example if we change from variables & = (z1,zs...2y)
to variables ¥ = (y1, %2 . . . yn), the volume elements are related by
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Starting from the volume element in cartesian coordinates, dx dy dz, use the Jacobian to
show that the volume element is

(a) pdpdpdz in cylindrical coordinates, and

(b) r?sin @ dr df d¢ in spherical coordinates.

Exercise 3. Starting from the divergence theorem,

/d?’rﬁ-ﬁ:/dg-ﬁ,
Vv S

(a) [,,d*r V¢ = [4dS ¢ for a scalar field ¢(7)
[Hint: choose F' = C¢(F) with a constant vector ¢ |,

show that

(b) fvd?’rﬁ Xg:_fsdg x A for a vector field A(7)
[Hint: choose F' = A(T) x ¢ with a constant vector ¢ ],

() [, &r (¢V) — pV2) = [ dS - (6VY — V),

(d) for a closed surface, S, enclosing a volume, V| fsd§ =0, and fsdg- r=3V.



Exercise 4. Show that a vector field with zero curl can be expressed as the gradient of a

scalar field, F(7) = V&(7).

Show that the line integral, f;f dl-F , of a curl-less vector field, ﬁ, between two points ¥ = 75

and 7 = 7 is independent of the path taken between the two points.

For the particular field
- —yT 4y
F=—
24y
show that
(a) V x F =0,

(b) the line integral between (z = —1,y = 0) and (z = 1,y = 0) has value —= for each
of the paths, A, B, C, shown in the figure.
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(c) Find a scalar field, ®(z,y), such that F = V.
[Hint: integrate F - dl from (0,0) to (z,y) choosing a path that makes the integrals as
simple as possible |



Exercise 5. Evaluate fsdg . F where

—

F = (y*— 2%+ 20y — y)§ + 322

for the entire surface of the tin can bounded by the cylinder 22 4+ y?> = 16, 2 = —3, z = 3,
(a) by explicitly computing the surface integral, and

(b) by using the divergence theorem.

-

Exercise 6. Consider the following vector field, expressed in cylindrical coordinates, W (p, ¢, z) = %gzg
Show that the z-component of the curl is zero everywhere except at the origin and

(V% 17), = 5(0)

Exercise 7. In lectures we showed, using the divergence theorem, that

vl = uns(i).

r

Let’s explore another way of deriving the same result:

(a) Show that the function A(r,a) = vz\/r21+7a2 is A(r,a) = %, and plot A(r,a)

versus r for a range of values of a decreasing toward zero.
(b) Show that the integral over all space of A(r,a) is of value —4m.

(c) Explain how we can conclude that lim, .o A(r,a) = —47d(7)

Exercise 8. The Helmholtz theorem for a divergence-less and curl-less vector field: Sup-
pose a vector field satisfies V-E=0and VX E =0 everywhere in a volume, V', bounded
by a surface, S. Use a derivation like the one we used in lecture to show that E(7) can be
found everywhere in V' if its value is known at all points on the surface, S.

Notice that your result shows that zfﬁ 15 zero everywhere on the boundary, then E is also
zero everywhere inside the volume — this will be realized when we consider an empty cavity
i a perfect conductor.



Exercise 9. The Legendre differential equation is

d’y  dy

— = 2=+l + 1)y =0.
T2 x . +Lll+1)y=0

One set of solutions to this equation, when ¢ takes positive integer values, are known as the
Legendre polynomials, y(x) = P(z). They are polynomials of order ¢ that are normalized

(1—a?)

such that Py(1) = 1. The first few are Py(z) = 1, Pi(z) = z, Py(z) = 1(32% — 1), Py(z) = (523

9.1 Sketch graphs of Py(z), Pi(z), Px(x), P3s(x) in the range —1 <z < 1.

9.2 We can prove that the solutions to Legendre’s equation also satisfy Rodrigues’ formula,

1 df
2Lq1 dxe(

(a) Check that you can obtain Py(z) ... Ps(x) using Rodrigues’ formula.

Pix) = — 1)t

(b) Using Rodrigues’ formula show that fjlld:c 2" Py(x) =0if m < /.

9.3 The “generating function” for Legendre polynomials is

O(x,h) =

\/1—2xh+h2 ez:

(a) Show that the functions P(z) in the sum here do indeed Satlsfy Legendre’s equa-

tion and have the property (1) = 1. [Hint: consider 42, gi%’ nd h 88}12 (h®) |

(b) Prove the identity xP/(z) — P,_,(z) = (P,(z). [Hint: consider 22 and 22 ]

9.4 The Legendre polynomials form a complete orthogonal basis with the property that
+1
/ de’Pg(l‘)Pm(ZL’) = (5mg Ng
-1

(a) Show that N, =
in 9.2(b).

ST ~7 using the identity derived in 9.3(b) and the result obtained

(b) Prove that the Py(x) are complete on the interval —1 < z < 1 by showing that

—3x),...

D(z,z') =372, 252 P)(z) Py(2') is a representation of the Dirac delta function, D(x, 2') = §(z — 2').

2
| Hint: Start from an arbitrary function f(x) expanded as a infinite superposition of P(z)

and then show that fjllda: D(x,2')f(x) = f(2') ]



Exercise 10. The Bessel differential equation is

dy | dy

2 2 2

T trv—+ (27— =0.

T T+ (@ =)y

If we restrict ourselves to x > 0 and integer values of p, the linearly independent solutions
to this equation are known as Bessel functions, J,(z), and Neumann functions, N,(z). The
first few such functions are plotted below. Note that the Neumann functions diverge at the

origin.
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10.1 Bessel functions are orthogonal, but in a way that might look strange:

1
/ de x Jy(anx) Jy(amz) = 6pm Ny
0

In this equation, a, and a,, are positions of zeros of the Bessel function, i.e. Jy(a,) = 0.
Prove the orthogonality expression by taking the following steps:
(a) Show that J,(az) satisfies the equation

d d
T <m%(]p(ax)) + (a®2* — p*)J,(ax) = 0.



(b) Show that

J,(bx) % (:cd%Jp(ax)> — Jy(azx) % (x%Jp(bx)) + (a* — b*) x Jp(ax) J,(bx) = 0,

and integrate this expression in the case that a and b are chosen to be two different zeroes
of the Bessel function J,(z) to obtain the orthogonality relation.

(c) Finally, show that IV, = %(Jj;(an))2 [ Hint: you might want to consider the proof
in (b) but only assuming that b is a zero of J, and not a, and be careful taking the limit
a—b].

10.2 Bessel functions get used when we solve problems with cylindrical symmetry. Consider
the following functions of cylindrical coordinates, p, z (and independent of ¢),

fi(pr2) = ——

falp,2) = /0 dk A(k) Jo(kp)e 2.

(a) Show that these functions both satisfy Laplace’s equation V2 f = 0.

(b) Assuming that f; = fs, by considering p = 0 show that A(k) = 1 and thus that,

1 e.)
— = / dk Jo(kp)e *,
/p2 + 22 0

which is known as a Fourier-Bessel representation of —=

Exercise 11. Functions can often usefully be expanded as superpositions of orthogonal ba-
sis functions, for example as Fourier series and transforms.

11.1 Show that the function f(x) = |z| on the interval —F < x < 7 has a Fourier series
representation

T 2 1

- — — g — Cos 2nx
2
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1, -1<z<1

has a Fourier representation
0, Jz|>1

11.2 Show that the function f(z) = {

2 [ si
flz) = —/ dk sl k cos kx.
0 k

™

Using the result that ffooody % = 7, explicitly compute the above integral in the cases
|z] < 1 and |z| > 1 and check that you get 1 and 0 respectively.



