Electromagnetism HW 1 - math review

Problems 1-5 due Mon 7th Sep, 6-11 due Mon 14th Sep

Exercise 1. The Levi-Civita symbol, $\epsilon_{i j k}$, also known as the completely antisymmetric rank-3 tensor, has the following properties:
(a) $\epsilon_{123}=\epsilon_{231}=\epsilon_{312}=+1$
(b) $\epsilon_{213}=\epsilon_{321}=\epsilon_{132}=-1$
(c) all other entries are zero.

It follows that $\epsilon_{j i k}=-\epsilon_{i j k}$ and similar antisymmetric relations hold.
1.1 Using a notation in which repeated indices are summed over, show that
(a) $\epsilon_{i j k} \epsilon_{i l m}=\delta_{j l} \delta_{k m}-\delta_{j m} \delta_{k l}$,
(b) $\epsilon_{i j k} \epsilon_{i j m}=2 \delta_{k m}$, and
(c) $\epsilon_{i j k} \epsilon_{i j k}=6$,
where the Kronecker delta, $\delta_{i j}$, is equal to +1 if $i=j$ and zero if $i \neq j$.
1.2 Show that $C_{i}=\epsilon_{i j k} A_{j} B_{k}$ has the same components as the vector $\vec{C}=\vec{A} \times \vec{B}$
1.3 Using properties of the Levi-Civita symbol, prove that
(a) $\vec{A} \times \vec{B} \times \vec{C}=(\vec{A} \cdot \vec{C}) \vec{B}-(\vec{A} \cdot \vec{B}) \vec{C}$,
(b) $(\vec{A} \times \vec{B}) \cdot(\vec{C} \times \vec{D})=(\vec{A} \cdot \vec{C})(\vec{B} \cdot \vec{D})-(\vec{A} \cdot \vec{D})(\vec{B} \cdot \vec{C})$,
(c) $(\vec{A} \times \vec{B}) \times(\vec{C} \times \vec{D})=(\vec{A} \cdot \vec{C} \times \vec{D}) \vec{B}-(\vec{B} \cdot \vec{C} \times \vec{D}) \vec{A}$,
(d) $\vec{\nabla} \cdot(\vec{\nabla} \times \vec{g})=0$,
(e) $\vec{\nabla} \times(\vec{\nabla} \times \vec{g})=\vec{\nabla}(\vec{\nabla} \cdot \vec{g})-\nabla^{2} \vec{g}$,
$(\mathbf{f}) \vec{\nabla} \cdot(f \vec{g})=f \vec{\nabla} \cdot \vec{g}+\vec{g} \cdot \vec{\nabla} f$,
(g) $\vec{\nabla} \times(f \vec{g})=f \vec{\nabla} \times \vec{g}-\vec{g} \times \vec{\nabla} f$,
(h) $\vec{\nabla} \cdot(\vec{f} \times \vec{g})=\vec{g} \cdot(\vec{\nabla} \times \vec{f})-\vec{f} \cdot(\vec{\nabla} \times \vec{g})$,
(i) $\vec{\nabla} \times(\vec{f} \times \vec{g})=\vec{f}(\vec{\nabla} \cdot \vec{g})-\vec{g}(\vec{\nabla} \cdot \vec{f})-(\vec{f} \cdot \vec{\nabla}) \vec{g}+(\vec{g} \cdot \vec{\nabla}) \vec{f}$, and
(j) $\vec{\nabla} \times(\vec{g} \times \vec{r})=2 \vec{g}+r \frac{\partial}{\partial r} \vec{g}-\vec{r}(\vec{\nabla} \cdot \vec{g})$, where $\vec{r}=x \hat{x}+y \hat{y}+z \hat{z}$

Exercise 2. The determinant of the Jacobian matrix, J, relates volume elements when changing variables in an integral. For example if we change from variables $\vec{x}=\left(x_{1}, x_{2} \ldots x_{N}\right)$ to variables $\vec{y}=\left(y_{1}, y_{2} \ldots y_{N}\right)$, the volume elements are related by

$$
d^{N} x=|\mathbf{J}(\vec{x}, \vec{y})| d^{N} y=\left|\begin{array}{cccc}
\frac{\partial x_{1}}{\partial y_{1}} & \frac{\partial x_{2}}{\partial y_{1}} & \ldots & \frac{\partial x_{1}}{\partial y_{N}} \\
\frac{\partial x_{2}}{\partial y_{1}} & \frac{\partial x_{2}}{\partial y_{2}} & \ldots & \frac{\partial x_{2}}{\partial y_{N}} \\
& \vdots & & \\
\frac{\partial x_{N}}{\partial y_{1}} & \frac{\partial x_{N}}{\partial y_{2}} & \ldots & \frac{\partial x_{N}}{\partial y_{N}}
\end{array}\right| d^{N} y .
$$

Starting from the volume element in cartesian coordinates, $d x d y d z$, use the Jacobian to show that the volume element is
(a) $\rho d \rho d \phi d z$ in cylindrical coordinates, and
(b) $r^{2} \sin \theta d r d \theta d \phi$ in spherical coordinates.

Exercise 3. Starting from the divergence theorem,

$$
\int_{V} d^{3} r \vec{\nabla} \cdot \vec{F}=\int_{S} d \vec{S} \cdot \vec{F},
$$

show that
(a) $\int_{V} d^{3} r \vec{\nabla} \phi=\int_{S} d \vec{S} \phi$ for a scalar field $\phi(\vec{r})$
[Hint: choose $\vec{F}=\vec{c} \phi(\vec{r})$ with a constant vector \vec{c}],
(b) $\int_{V} d^{3} r \vec{\nabla} \times \vec{A}=\int_{S} d \vec{S} \times \vec{A}$ for a vector field $\vec{A}(\vec{r})$
[Hint: choose $\vec{F}=\vec{A}(\vec{r}) \times \vec{c}$ with a constant vector \vec{c}],
(c) $\int_{V} d^{3} r\left(\phi \nabla^{2} \psi-\psi \nabla^{2} \phi\right)=\int_{S} d \vec{S} \cdot(\phi \vec{\nabla} \psi-\psi \vec{\nabla} \phi)$,
(d) for a closed surface, S, enclosing a volume, $V, \int_{S} d \vec{S}=0$, and $\int_{S} d \vec{S} \cdot \vec{r}=3 V$.

Exercise 4. Show that a vector field with zero curl can be expressed as the gradient of a scalar field, $\vec{F}(\vec{r})=\vec{\nabla} \Phi(\vec{r})$.

Show that the line integral, $\int_{\vec{r}_{i}}^{\overrightarrow{r_{f}}} d \vec{\ell} \cdot \vec{F}$, of a curl-less vector field, \vec{F}, between two points $\vec{r}=\vec{r}_{i}$ and $\vec{r}=\vec{r}_{f}$ is independent of the path taken between the two points.

For the particular field

$$
\vec{F}=\frac{-y \hat{x}+x \hat{y}}{x^{2}+y^{2}}
$$

show that
(a) $\vec{\nabla} \times \vec{F}=0$,
(b) the line integral between $(x=-1, y=0)$ and $(x=1, y=0)$ has value $-\pi$ for each of the paths, A, B, C, shown in the figure.

(c) Find a scalar field, $\Phi(x, y)$, such that $\vec{F}=\vec{\nabla} \Phi$.
[Hint: integrate $\vec{F} \cdot d \vec{\ell}$ from $(0,0)$ to (x, y) choosing a path that makes the integrals as simple as possible]

Exercise 5. Evaluate $\int_{S} d \vec{S} \cdot \vec{F}$ where

$$
\vec{F}=\left(y^{2}-x^{2}\right) \hat{x}+(2 x y-y) \hat{y}+3 z \hat{z}
$$

for the entire surface of the tin can bounded by the cylinder $x^{2}+y^{2}=16, z=-3, z=3$,
(a) by explicitly computing the surface integral, and
(b) by using the divergence theorem.

Exercise 6. Consider the following vector field, expressed in cylindrical coordinates, $\vec{W}(\rho, \phi, z)=\frac{\alpha}{\rho} \hat{\phi}$. Show that the z-component of the curl is zero everywhere except at the origin and

$$
(\vec{\nabla} \times \vec{W})_{z}=\frac{\alpha}{\rho} \delta(\rho)
$$

Exercise 7. In lectures we showed, using the divergence theorem, that

$$
\nabla^{2} \frac{1}{r}=-4 \pi \delta(\vec{r}) .
$$

Let's explore another way of deriving the same result:
(a) Show that the function $\Lambda(r, a)=\nabla^{2} \frac{1}{\sqrt{r^{2}+a^{2}}}$ is $\Lambda(r, a)=\frac{-3 a^{2}}{\left(r^{2}+a^{2}\right)^{5 / 2}}$, and plot $\Lambda(r, a)$ versus r for a range of values of a decreasing toward zero.
(b) Show that the integral over all space of $\Lambda(r, a)$ is of value -4π.
(c) Explain how we can conclude that $\lim _{a \rightarrow 0} \Lambda(r, a)=-4 \pi \delta(\vec{r})$

Exercise 8. The Helmholtz theorem for a divergence-less and curl-less vector field: Suppose a vector field satisfies $\vec{\nabla} \cdot \vec{E}=0$ and $\vec{\nabla} \times \vec{E}=0$ everywhere in a volume, V, bounded by a surface, S. Use a derivation like the one we used in lecture to show that $\vec{E}(\vec{r})$ can be found everywhere in V if its value is known at all points on the surface, S.

Notice that your result shows that if \vec{E} is zero everywhere on the boundary, then \vec{E} is also zero everywhere inside the volume - this will be realized when we consider an empty cavity in a perfect conductor.

Exercise 9. The Legendre differential equation is

$$
\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}-2 x \frac{d y}{d x}+\ell(\ell+1) y=0
$$

One set of solutions to this equation, when ℓ takes positive integer values, are known as the Legendre polynomials, $y(x)=P_{\ell}(x)$. They are polynomials of order ℓ that are normalized such that $P_{\ell}(1)=1$. The first few are $P_{0}(x)=1, P_{1}(x)=x, P_{2}(x)=\frac{1}{2}\left(3 x^{2}-1\right), P_{3}(x)=\frac{1}{2}\left(5 x^{3}-3 x\right), \ldots$
9.1 Sketch graphs of $P_{0}(x), P_{1}(x), P_{2}(x), P_{3}(x)$ in the range $-1 \leq x \leq 1$.
9.2 We can prove that the solutions to Legendre's equation also satisfy Rodrigues' formula,

$$
P_{\ell}(x)=\frac{1}{2^{\ell} \ell!} \frac{d^{\ell}}{d x^{\ell}}\left(x^{2}-1\right)^{\ell} .
$$

(a) Check that you can obtain $P_{0}(x) \ldots P_{3}(x)$ using Rodrigues' formula.
(b) Using Rodrigues' formula show that $\int_{-1}^{+1} d x x^{m} P_{\ell}(x)=0$ if $m<\ell$.
9.3 The "generating function" for Legendre polynomials is

$$
\Phi(x, h)=\frac{1}{\sqrt{1-2 x h+h^{2}}}=\sum_{\ell=0}^{\infty} h^{\ell} P_{\ell}(x) .
$$

(a) Show that the functions $P_{\ell}(x)$ in the sum here do indeed satisfy Legendre's equation and have the property $P_{\ell}(1)=1$. [Hint: consider $\frac{\partial \Phi}{\partial x}, \frac{\partial^{2} \Phi}{\partial x^{2}}$ and $h \frac{\partial^{2}}{\partial h^{2}}(h \Phi)$]
(b) Prove the identity $x P_{\ell}^{\prime}(x)-P_{\ell-1}^{\prime}(x)=\ell P_{\ell}(x)$. [Hint: consider $\frac{\partial \Phi}{\partial x}$ and $\frac{\partial \Phi}{\partial h}$]
9.4 The Legendre polynomials form a complete orthogonal basis with the property that

$$
\int_{-1}^{+1} d x P_{\ell}(x) P_{m}(x)=\delta_{m \ell} N_{\ell}
$$

(a) Show that $N_{\ell}=\frac{2}{2 \ell+1}$ using the identity derived in $\mathbf{9 . 3 (b)}$ and the result obtained in $9.2(\mathrm{~b})$.
(b) Prove that the $P_{\ell}(x)$ are complete on the interval $-1 \leq x \leq 1$ by showing that $D\left(x, x^{\prime}\right)=\sum_{\ell=0}^{\infty} \frac{2 \ell+1}{2} P_{\ell}(x) P_{\ell}\left(x^{\prime}\right)$ is a representation of the Dirac delta function, $D\left(x, x^{\prime}\right)=\delta\left(x-x^{\prime}\right)$. [Hint: Start from an arbitrary function $f(x)$ expanded as a infinite superposition of $P_{\ell}(x)$ and then show that $\left.\int_{-1}^{+1} d x D\left(x, x^{\prime}\right) f(x)=f\left(x^{\prime}\right)\right]$

Exercise 10. The Bessel differential equation is

$$
x^{2} \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}+\left(x^{2}-p^{2}\right) y=0 .
$$

If we restrict ourselves to $x \geq 0$ and integer values of p, the linearly independent solutions to this equation are known as Bessel functions, $J_{p}(x)$, and Neumann functions, $N_{p}(x)$. The first few such functions are plotted below. Note that the Neumann functions diverge at the origin.

10.1 Bessel functions are orthogonal, but in a way that might look strange:

$$
\int_{0}^{1} d x x J_{p}\left(a_{n} x\right) J_{p}\left(a_{m} x\right)=\delta_{n, m} N_{n}
$$

In this equation, a_{n} and a_{m} are positions of zeros of the Bessel function, i.e. $J_{p}\left(a_{n}\right)=0$. Prove the orthogonality expression by taking the following steps:
(a) Show that $J_{p}(a x)$ satisfies the equation

$$
x \frac{d}{d x}\left(x \frac{d}{d x} J_{p}(a x)\right)+\left(a^{2} x^{2}-p^{2}\right) J_{p}(a x)=0 .
$$

(b) Show that

$$
J_{p}(b x) \frac{d}{d x}\left(x \frac{d}{d x} J_{p}(a x)\right)-J_{p}(a x) \frac{d}{d x}\left(x \frac{d}{d x} J_{p}(b x)\right)+\left(a^{2}-b^{2}\right) x J_{p}(a x) J_{p}(b x)=0
$$

and integrate this expression in the case that a and b are chosen to be two different zeroes of the Bessel function $J_{p}(x)$ to obtain the orthogonality relation.
(c) Finally, show that $N_{n}=\frac{1}{2}\left(J_{p}^{\prime}\left(a_{n}\right)\right)^{2}$ [Hint: you might want to consider the proof in (b) but only assuming that b is a zero of J_{p} and not a, and be careful taking the limit $a \rightarrow b]$.
10.2 Bessel functions get used when we solve problems with cylindrical symmetry. Consider the following functions of cylindrical coordinates, ρ, z (and independent of ϕ),

$$
\begin{aligned}
& f_{1}(\rho, z)=\frac{1}{\sqrt{\rho^{2}+z^{2}}} \\
& f_{2}(\rho, z)=\int_{0}^{\infty} d k A(k) J_{0}(k \rho) e^{-k|z|}
\end{aligned}
$$

(a) Show that these functions both satisfy Laplace's equation $\nabla^{2} f=0$.
(b) Assuming that $f_{1}=f_{2}$, by considering $\rho=0$ show that $A(k)=1$ and thus that,

$$
\frac{1}{\sqrt{\rho^{2}+z^{2}}}=\int_{0}^{\infty} d k J_{0}(k \rho) e^{-k|z|}
$$

which is known as a Fourier-Bessel representation of $\frac{1}{\sqrt{\rho^{2}+z^{2}}}$.

Exercise 11. Functions can often usefully be expanded as superpositions of orthogonal basis functions, for example as Fourier series and transforms.
11.1 Show that the function $f(x)=|x|$ on the interval $-\frac{\pi}{2}<x<\frac{\pi}{2}$ has a Fourier series representation

$$
\frac{\pi}{4}-\frac{2}{\pi} \sum_{\text {odd } n} \frac{1}{n^{2}} \cos 2 n x
$$

11.2 Show that the function $f(x)=\left\{\begin{array}{lc}1, & -1<x<1 \\ 0, & |x|>1\end{array}\right.$ has a Fourier representation

$$
f(x)=\frac{2}{\pi} \int_{0}^{\infty} d k \frac{\sin k}{k} \cos k x
$$

Using the result that $\int_{-\infty}^{\infty} d y \frac{\sin y}{y}=\pi$, explicitly compute the above integral in the cases $|x|<1$ and $|x|>1$ and check that you get 1 and 0 respectively.

