Electromagnetism HW 3 – Multipoles

due Mon 28th Sept.

Exercise 1. Three point charges lie on the z-axis, a charge +q at z = +a, a charge -2q at z = 0 and a charge +q at z = -a.

1.1 Compute the multipole moments, $A_{\ell m}$, with $\ell \leq 2$, for this charge distribution. [*if you are able to, find an expression for* $A_{\ell m}$ *valid for all* ℓ]

1.2 Keeping only the lowest order term in the multipole expansion write an expression for the potential.

1.3 By superposing the potentials from each charge, find the exact potential at any point in the x - y plane. Show that the result obtained in **1.2** correctly describes the potential at distances from the charge distribution must larger than a.

Exercise 2. Consider a spherical shell of radius R which carries a surface charge density of $\sigma(\theta, \phi) = \sigma_0 \sin \theta \cos \phi$.

2.1 Find the exterior spherical multipole moments for this charge distribution.

2.2 Find the potential outside the sphere.

2.3 Find the potential inside the sphere.

2.4 Check that the potential and electric field obey the correct matching conditions at the sphere.

2.5 What is the electric dipole moment of the sphere ?

Exercise 3. Two point dipoles, moments $\vec{p_1}$ and $\vec{p_2}$, are separated by a distance R. Suppose $\vec{p_1}$ lies at the origin, and choose the z-axis in the direction of $\vec{p_1}$ and the x-axis to be along the line from $\vec{p_1}$ to $\vec{p_2}$. Suppose $\vec{p_2}$ lies in the *xz*-plane and makes an angle α with the *z*-axis.

Describe the force and torque on \vec{p}_2 due to the presence of \vec{p}_1 . Is there a stable equilibrium orientation for \vec{p}_2 ?

You may use the results we obtained in class for

- (a) the potential energy of a dipole \vec{p} in an external field \vec{E} , $U = -\vec{p} \cdot \vec{E}$, (b) the force on a dipole \vec{p} in an external field \vec{E} , $\vec{F} = (\vec{p} \cdot \vec{\nabla})\vec{E}$,
- (c) the torque on a dipole \vec{p} in an external field \vec{E} , $\vec{\tau} = \vec{p} \times \vec{E}$.

Exercise 4. An origin-centered uniform ring of charge lies in the x - y plane with total charge Q and radius a. A coplanar and concentric uniform ring of charge has radius b > aand total charge -Q.

Using a multipole expansion, keeping only the lowest nonzero moment, find an expression for the potential valid at large distances from the rings.

Exercise 5. Interior and exterior spherical multipole expansions can be written

$$\phi_{\text{ext.}}(\vec{r}) = \frac{1}{4\pi\epsilon_0} \sum_{\ell,m} A_{\ell,m} \frac{1}{r^{\ell+1}} Y_{\ell m}(\theta,\phi)$$

$$\phi_{\text{int.}}(\vec{r}) = \frac{1}{4\pi\epsilon_0} \sum_{\ell,m} B_{\ell,m} r^{\ell} Y_{\ell m}^*(\theta,\phi).$$
(1)

The Laplacian operator in spherical coordinates takes the form

$$\nabla^2 = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial}{\partial r} \right) + \frac{1}{r^2} \left[\frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \right) + \frac{1}{\sin^2 \theta} \frac{\partial^2}{\partial \phi^2} \right]$$

Using the fact that the spherical harmonic functions satisfy the differential equation

$$\left[\frac{1}{\sin\theta}\frac{\partial}{\partial\theta}\left(\sin\theta\frac{\partial}{\partial\theta}\right) + \frac{1}{\sin^2\theta}\frac{\partial^2}{\partial\phi^2}\right]Y_{\ell m}(\theta,\phi) + \ell(\ell+1)Y_{\ell m}(\theta,\phi) = 0,$$

show that each term in the expansions in Eq. 1 satisfies $\nabla^2 \phi(\vec{r}) = 0$, and hence that the sums also satisfy Laplace's equation.

Exercise 6. In this problem we'll consider a continuous charge distribution which viewed on large scales corresponds to a dipole layer, and show that it gives rise to a change in the electric potential that viewed on large scales would appear to be a discontinuity.

6.1 Plot the function

$$\rho(z) = \frac{1}{L^2} \frac{\sinh z/L}{\cosh^3 z/L}$$

for a range of L values.

6.2 Find the electric potential, $\phi(z)$, corresponding to the charge distribution given in **5.1** using Poisson's equation $\frac{d^2\phi}{dz^2} = -\rho/\epsilon_0$. Plot the potential for a range of *L* values.

6.3 Show that the derivative of $\frac{(2L)^{-1}}{\cosh^2 z/L}$ is $-\rho(z)$, and justify the claim that

$$\lim_{L \to 0} \frac{(2L)^{-1}}{\cosh^2 z/L} = \delta(z).$$

Show that the singularity in $\rho(z)$ as $L \to 0$ matches our description in lectures of a dipole layer.