Electromagnetism HW 4 - conductors

due Mon 5th Oct

Exercise 1. A spherical conducting shell of radius b is concentric with and encloses a conducting spherical ball of radius a.
1.1 Suppose the shell is grounded and a charge Q is on the ball. How much charge lies on the inner and outer surfaces of the grounded shell?
1.2 Suppose the ball is grounded and there is charge Q on the shell. How much charge lies on (a) the ball, (b) the inner surface of the shell and (c) the outer surface of the shell ?

Exercise 2. Two parallel infinite conducting planes are held at zero potential at $z=-d$ and $z=d$. An infinite sheet with uniform charge per unit area, σ, is placed between them (lying parallel) at a position, z^{\prime}.
2.1 Show that the electric field for $z \leq-d$ and $z \geq d$ must be zero and explain on which surfaces of the plates is charge induced.
2.2 Find the charge density induced on each grounded plate.
2.3 Show that a force per unit area of $\frac{\sigma^{2}}{2 \epsilon_{0} d} z^{\prime} \hat{z}$ is felt by the sheet of charge.

Exercise 3. A perfect conductor contains a vacuum cavity of arbitrary shape. We showed in class that $\vec{E}=0$ in the cavity. Here we'll consider a different proof of the same result.

First we'll derive Earnshaw's theorem: "The scalar potential in a finite, charge-free region of space, V, takes its maximum or minimum values only on the boundary of V."
3.1 Suppose $\phi(\vec{r})$ has a local minimum at some point P inside V. Then $\hat{n} \cdot \vec{\nabla} \phi>0$ at all points on a small surface surrounding P, and it follows that

$$
\int_{S} d \vec{S} \cdot \vec{\nabla} \phi>0
$$

Show that this equation implies that $\operatorname{div} \vec{E} \neq 0$ in contradiction to the statement that region R is charge-free. It follows that there cannot be a minimum of $\phi(\vec{r})$ in V.
3.2 Explain how Earnshaw's theorem, along with the statement that $\vec{E}=0$ in a perfect conductor, ensures that $\vec{E}=0$ in a charge-free cavity.

Exercise 4. The electric field strength at the surface of a real conductor falls from its external value of E_{0} to zero within the conductor in a finite distance, δ. There is a corresponding volume density of charge, $\rho(x)$ near the surface of the conductor. Show that the quantity

$$
\int_{0}^{\delta} d x \rho(x)
$$

which we may associate with the surface charge density in a perfect conductor, has value $\epsilon_{0} E_{0}$ as we'd expect.

Exercise 5. A spherical metal shell carries a charge Q. Suppose this shell is cut in half and the two halves pulled infinitesimally apart.
5.1 Find the force of repulsion between the two hemispheres.
5.2 If we place a point charge at the origin we can prevent the hemispheres from flying apart. What charge would achieve this?

