Electromagnetism HW 5 - dielectrics

due Wed 14th Oct

Exercise 1. A polarizable sphere of radius R, having dielectric constant κ, is filled with free charge of uniform density ρ_{f}.
1.1 Find the polarization, $\vec{P}(\vec{r})$
1.2 Find the volume polarization charge density and the surface polarization charge density and confirm that the total polarization charge is zero.

Exercise 2. A spherical conductor of radius R_{1} is surrounded by a polarizable medium which extends from R_{1} to R_{2} with dielectric constant κ.
2.1 If the conductor carries a charge Q, find \vec{E} everywhere and the distribution of polarization charge, and confirm that the total polarization charge is zero.
2.2 If the conductor is grounded and the entire system placed in a uniform electric field \vec{E}_{0}, find the potential everywhere and determine how much charge is drawn up from ground to the conductor.
[Hint: If the z-axis is chosen to be in the direction of \vec{E}_{0}, the system is independent of ϕ and the potential must take the form

$$
\begin{aligned}
\varphi\left(r>R_{2}, \theta\right) & =\sum_{\ell} A_{\ell} r^{\ell} P_{\ell}(\cos \theta)+\sum_{\ell} B_{\ell} \frac{1}{r^{\ell+1}} P_{\ell}(\cos \theta) \\
\varphi\left(R_{1}<r<R_{2}, \theta\right) & =\sum_{\ell} C_{\ell} r^{\ell} P_{\ell}(\cos \theta)+\sum_{\ell} D_{\ell} \frac{1}{r^{\ell+1}} P_{\ell}(\cos \theta) .
\end{aligned}
$$

Apply suitable boundary and matching conditions to determine the coefficients.]

Exercise 3. The dielectric constant of the dielectric between the plates of a parallel plate capacitor varies linearly with distance from one plate to the other. If the values at the two plates are κ_{1}, κ_{2}, where $\kappa_{2}>\kappa_{1}$, and the plates are separated by a distance, d, show that the capacitance per unit area is

$$
\frac{\epsilon_{0}}{d} \frac{\kappa_{2}-\kappa_{1}}{\log \kappa_{2} / \kappa_{1}} .
$$

[Hint: if the plates carry charge Q and $-Q$ respectively, the capacitance can be defined as $Q /$ (difference in potential between the plates)]

Exercise 4. An infinitely long cylindrical shell of dielectric has inner radius a and outer radius b and dielectric constant κ. Suppose this object is placed in a previously uniform electric field of magnitude E_{0} with the cylinder axis perpendicular to the field.
4.1 Find the potential and electric field everywhere.
[Hint: the most general solution to Laplace's equation in cylindrical coordinates takes the form,

$$
\varphi(\rho, \phi)=A+B \log \rho+\sum_{m=1}^{\infty}\left(C_{m} \rho^{m}+D_{m} \frac{1}{\rho^{m}}\right)\left(E_{m} \sin m \phi+F_{m} \cos m \phi\right)
$$

but the $\sin m \phi$ terms aren't required in this case (why not?)]
4.2 Find the polarization surface charge distributions.
4.3 Examine the limiting case that gives a solid dielectric cylinder. Approximately sketch the field lines in this case, and indicate the regions of high and low surface charge density.
4.4 Examine the limiting case that gives a cylindrical cavity in a uniform dielectric.

