
Electromagnetism HW 7 – magnetostatics

1-4 due Mon 16th Nov, 5-8 due Mon 23th Nov

Exercise 1. A cylindrical conductor of radius a has a hole of radius b bored parallel to, and
centered a distance d from the cylinder axis. The current density is uniform throughout the
remaining metal of the conductor and is parallel to the cylinder axis. Use Ampere’s law and
the principle of superposition to find the magnetic field in the hole.

[ Hint: Show that the magnetic field inside a cylindrical conductor with its axis pointing
along the z-axis carrying a uniform current density of J is

~B =
µ0J

2
ẑ × (~ρ− ~d),

if ~d is the position of the cylinder axis. ]

Exercise 2. Show that each of the following vector potentials corresponds to a uniform
~B-field pointing along the z-axis.

~A(1)(~r) = xB0ŷ

~A(2)(~r) = −1
2
yB0x̂+ 1

2
xB0ŷ

~A(3)(~r) = −yB0x̂

~A(4)(~r) = αyzx̂+ (αxz + xB0)ŷ + αxyẑ

~A(5)(~r) = α sin(βy)eγzx̂+ (αβx cos(βy)eγz + xB0)ŷ + αγx sin(βy)eγz ẑ

2.1: In each case (2)−(5) find the gauge transform function Ψ(~r) in ~A(n)(~r) = ~A(1)(~r)+ ~∇Ψ.

2.2: In which cases (1)− (5) does the Coulomb gauge condition hold ?
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Exercise 3. A flat sheet of infinite extent lies in the xy plane carrying a uniform surface
current, K0, in the x̂ direction. Show that the magnetic field is 1

2
µ0K0 in the −ŷ direction

above the sheet (z > 0) and 1
2
µ0K0 in the +ŷ direction below the sheet (z < 0) by

(a) considering an appropriate closed path in Ampere’s law, and

(b) by using the Biot-Savart law.

Exercise 4. A cylindrical solenoid, of circular cross section with radius a, is of finite length,
L, and features n turns per unit length. If the current carried is I, show that the magnetic
field on the cylinder axis in the limit nL→∞ is

Bz =
µ0nI

2

(
cos θL + cos θR

)
,

where the angles are defined in the figure.

z
a

L

[ Hint: You might try superimposing the field from a number of circular coils before
taking the limit. ]

2



Exercise 5. In this exercise we’ll consider the field from a pair of long parallel wires carry-
ing equal current in opposite directions.

5.1: A single long straight wire carries current I along the z-axis. Using Ampere’s law show
that the field is ~H = I

2πρ
φ̂. Away from the location of the current we can write ~H = −~∇ϕM .

Show that ϕM(ρ, φ) = − I
2π
φ gives the correct magnetic field.

5.2: Two wires lie parallel to the z-axis at positions x = ±d/2, y = 0 carrying a current I
in opposite directions. Show that in the limit of small d, the magnetic scalar potential is

ϕM ≈ −
I

2π

d

ρ
sinφ+O

(
d

ρ

)2

[ Hint: one way to get this is to use cartesian (x, y) coordinates and consider the expansion
of tan(φ+ ε) for small ε.]

5.3: Find the magnetic field from the pair of wires in the limit of small d and roughly sketch
the field lines in the xy plane.

Exercise 6. Suppose the pair of wires in the previous exercise is surrounded by a circular
cylinder of magnetic material of inner radius a � d, outer radius b, having permeability
µ = µrµ0. Show that the field outside the cylinder is reduced by a factor

4µr(b
2/a2)

(µr + 1)2(b2/a2)− (µr − 1)2
.

How much shielding do we get for a 2 mm thick steel cylinder (µr ∼ 200) of inner radius 1
cm ?

Exercise 7. A hollow sphere of internal radius a and external radius b has a uniform spon-
taneous magnetization, M . Show that there is zero magnetic field in the cavity (r < a) and

that the external field (r > b) is the same as that of a dipole moment ~m = 4π
3

(b3 − a3) ~M .
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Exercise 8. We’ve previously considered ‘electrostatic’ situations in which point electric
charges remain in the same location and found that Coulomb’s law describes the forces be-
tween them. However we know from special relativity that the physics must be independent
of the frame from which we view the system. If we viewed the electrostatic system from a
moving frame, the charges would appear to be in motion. This problem applies the frame
transformation properties of special relativity to explore what happens (we’ll consider this
in more detail next semester).

Suppose frame 2 moves with velocity ~u = ux̂ with respect to frame 1, then the space-time
co-ordinates of a point in frame 2 are related to those in frame 1 by,

x(2) = γ
(
x(1) − ut(1)

)
; y(2) = y(1); z(2) = z(1); t(2) = γ

(
t(1) − u

c2
x(1)
)
, (1)

where γ =
(
1 − u2

c2

)1/2
. The momentum and energy of a particle of rest mass, m, moving

with velocity ~v are ~p = γm~v, E = γmc2 and they transform according to

p(2)x = γ
(
p(1)x − u

c2
E(1)

)
; p(2)y = p(1)y ; p(2)z = p(1)z ; E(2) = γ

(
E(1) − up(1)x

)
. (2)

8.1: Suppose a particle is at rest in frame 2 and feels a force ~F (2). Show that the force it
feels in frame 1 is

F (1)
x = F (2)

x ; F (1)
y = 1

γ
F (2)
y ; F (1)

z = 1
γ
F (2)
z . (3)

[ Hint: F
(1)
i =

dp
(1)
i

dt(1)
= dt(2)

dt(1)
dp

(1)
i

dt(2)
]

8.2: Suppose a charge qa is at rest at the origin of frame 2, and a charge qb is at rest at
position (x(2), y(2), 0). Write down the components of the Coulomb force on qb due to qa in
frame 2. Find the force on qb as observed in frame 1, measured at time t(1) = 0, and show
that it can be written

qb

[
γ
qa

4πε0

~r(1)(
γ2x(1)2 + y(1)2

)3/2 + ~u×

{
γ

qau

4πε0c2
y(1)ẑ(

γ2x(1)2 + y(1)2
)3/2

}]
, (4)

which we might write as qb

[
~E + ~u× ~B

]
. The first term in this expression can indeed be

identified with the Coulomb field from charge qa, as can be seen be taking the limit u→ 0.
The second term features the magnetic field, and we see that special relativity insists that
if electric fields exist, so must magnetic fields, and they must be related to each other in a
very particular way.
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