HW 1 - THE MATHEMATICS OF WAVES

All problems due Wed 27th Jan.

1. CHECKING THE SOLUTION OF THE WAVE EQUATION

In lecture we derived the solution,

$$\psi(\mathbf{r},t) = -\frac{1}{4\pi} \int d^3 \mathbf{r}' \, \frac{1}{|\mathbf{r} - \mathbf{r}'|} \, f\left(\mathbf{r}', t - \frac{1}{c}|\mathbf{r} - \mathbf{r}'|\right),\tag{1}$$

of the inhomogeneous wave equation,

$$\left[\nabla^2 - \frac{1}{c^2} \frac{\partial^2}{\partial t^2}\right] \psi(\mathbf{r}, t) = f(\mathbf{r}, t).$$
(2)

Show that Eqn. 1 solves Eqn. 2 by direct substitution.

2. Another derivation of the Green function

In lecture we derived the Green function,

$$G(\mathbf{r},t;\mathbf{r}',t) = \frac{1}{|\mathbf{r}-\mathbf{r}'|} \,\delta\Big(t-t'\pm\frac{1}{c}|\mathbf{r}-\mathbf{r}'|\Big) \tag{3}$$

for the wave equation,

$$\left[\nabla^2 - \frac{1}{c^2} \frac{\partial^2}{\partial t^2}\right] G(\mathbf{r}, t; \mathbf{r}', t) = -4\pi \,\delta(\mathbf{r}' - \mathbf{r}) \,\delta(t' - t).$$

In this problem we'll explore an alternative derivation using Fourier methods.

Firstly, realize that we can rewrite the defining equation using variables $\rho = \mathbf{r} - \mathbf{r}'$ and $\tau = t - t'$, as

$$\left[\nabla_{\rho}^{2} - \frac{1}{c^{2}}\frac{\partial^{2}}{\partial\tau^{2}}\right]G(\boldsymbol{\rho},\tau) = -4\pi\,\delta(\boldsymbol{\rho})\,\delta(\tau).$$
1

and eliminate the explicit time-dependence by using a Fourier transform of G,

$$G(\boldsymbol{\rho},\tau) = \frac{1}{2\pi} \int_{-\infty}^{\infty} d\omega \, g(\boldsymbol{\rho},\omega) \, e^{-i\omega\tau},$$

and the Fourier representation of the delta function,

$$\delta(\tau) = \frac{1}{2\pi} \int_{-\infty}^{\infty} d\omega \, e^{-i\omega\tau},$$

to obtain the equation

$$\left[\nabla_{\rho}^{2} + k^{2}\right]g(\boldsymbol{\rho},\omega) = -4\pi\,\delta(\boldsymbol{\rho}),\tag{4}$$

where $k = \omega/c$.

By writing a Fourier representation of $g(\boldsymbol{\rho}, \omega)$,

$$g(\boldsymbol{\rho},\omega) = \frac{1}{(2\pi)^3} \int d^3 \mathbf{k}' \, \tilde{g}(\mathbf{k}',\omega) \, e^{i\mathbf{k}' \cdot \boldsymbol{\rho}},\tag{5}$$

solve Eqn. 4 to show that $\tilde{g}(\mathbf{k}', \omega) = -4\pi \left(|\mathbf{k}|^2 - |\mathbf{k}'|^2 \right)^{-1}$. Perform the angular integration in Eqn. 5 to leave an integral

$$\frac{1}{i\pi\rho} \int_{-\infty}^{\infty} dk' \frac{k'}{k'^2 - k^2} e^{ik'\rho}.$$
 (6)

Introduce a regulator by replacing k^2 with $k^2 + i\epsilon$, considering ϵ to be small and positive. Identify the singularity structure of the integrand and by choosing a suitable contour in the complex k'-plane compute the integral, and show that you recover one of the two sign choices in Eqn. 3 in the limit $\epsilon \to 0$ – the other sign choice follows if ϵ is considered small and negative.

3. A simple example of dispersion - waves on a string

(a) A string of mass per unit length μ is held under tension, T. The unperturbed string lies along the x-axis. Show that transverse waves on the string satisfy

$$\frac{\partial^2 y}{\partial t^2} = c^2 \frac{\partial^2 y}{\partial x^2}$$

with $c^2 = T/\mu$ (you may look this up in a book if you're unfamiliar with the construction). Monochromatic waves, $y(x,t) = A e^{i(kx-\omega t)}$ (take the real part to get physical waves), then have dispersion relation $\omega = kc$ and the phase and group velocities are identical and equal to c.

(b) Now consider the case shown in the figure, where the string is attached to a (continuous) distribution of springs (obeying Hooke's law) that have their other end fixed to a wall. When the string is unperturbed, the springs are at their equilibrium length.

		~		~	~	_	~	~		~	~	~	~	~	~	~	~
		_	~	_	_	_	_	-	~	_	~	~	~	~	~	~	~
	_	-	-	-	_	-	-	-	-	-	-	-	-	-	-	-	_
		_	_	_	_	_	_	_	_	_	_	-	_	_	_	-	_
			_	_	_			_	_	_	_	_	_	_	_	_	
		\geq	_	_	_	_	_	_	>	_	_	_	_	_	_	_	
_		_	_	_	_	_		_	_	_	_	_	_	_		_	
		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
		>		>			$ \ge $	>	$ \ge $	>			>	$ \rightarrow $	>	>	
		$ \ge $	$ \ge $	$ \ge $	$ \rightarrow $	$ \rightarrow $	$ \ge $		$ \ge $	$ \rightarrow $	$ \rightarrow $	$ \rightarrow $	$ \ge $	$ \rightarrow $	$ \ge $	$ \rightarrow $	
_		_	_	_	_		_	_	_	_	_		_	_	_	_	_
_			-	-	-	-	-		-	-	-	-	-	-	-	-	
					\geq			\geq		\geq		\simeq		\geq		\geq	
_	\sim	\sim	\leq	\leq	<u></u>	\leq	\sim	\sim	\leq	\sim	\leq	\sim	\leq	\leq	\leq	\leq	∽.
	\sim		\sim			\sim	\sim		\sim				\sim		\sim		~

If the "spring constant per unit length (in x)" is σ , show that waves on the string now must satisfy

$$\frac{\partial^2 y}{\partial t^2} = c^2 \frac{\partial^2 y}{\partial x^2} - \omega_s^2 y,$$

with $\omega_s^2 = \sigma/\mu$. Find the dispersion relation in this case and consider the phase and group velocities. What form do solutions to this equation with $\omega < \omega_s$ take ?

(c) Suppose the original tensioned string is immersed in a viscous fluid, so that there is a drag force proportional to speed. Show that waves on the string now must satisfy

$$\frac{\partial^2 y}{\partial t^2} = c^2 \frac{\partial^2 y}{\partial x^2} - \beta \frac{\partial y}{\partial t}.$$

Find the dispersion relation and consider the form of solutions for x > 0 when β is small. How to these waves differ from those with $\omega < \omega_s$ in part (b) ?