## HW 1 - THE MATHEMATICS OF WAVES

All problems due Wed 27th Jan.

## 1. Checking the solution of the wave equation

In lecture we derived the solution,

$$
\begin{equation*}
\psi(\mathbf{r}, t)=-\frac{1}{4 \pi} \int d^{3} \mathbf{r}^{\prime} \frac{1}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} f\left(\mathbf{r}^{\prime}, t-\frac{1}{c}\left|\mathbf{r}-\mathbf{r}^{\prime}\right|\right) \tag{1}
\end{equation*}
$$

of the inhomogeneous wave equation,

$$
\begin{equation*}
\left[\nabla^{2}-\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}}\right] \psi(\mathbf{r}, t)=f(\mathbf{r}, t) . \tag{2}
\end{equation*}
$$

Show that Eqn. 1 solves Eqn. 2 by direct substitution.

## 2. Another derivation of the Green function

In lecture we derived the Green function,

$$
\begin{equation*}
G\left(\mathbf{r}, t ; \mathbf{r}^{\prime}, t\right)=\frac{1}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} \delta\left(t-t^{\prime} \pm \frac{1}{c}\left|\mathbf{r}-\mathbf{r}^{\prime}\right|\right) \tag{3}
\end{equation*}
$$

for the wave equation,

$$
\left[\nabla^{2}-\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}}\right] G\left(\mathbf{r}, t ; \mathbf{r}^{\prime}, t\right)=-4 \pi \delta\left(\mathbf{r}^{\prime}-\mathbf{r}\right) \delta\left(t^{\prime}-t\right)
$$

In this problem we'll explore an alternative derivation using Fourier methods.

Firstly, realize that we can rewrite the defining equation using variables $\boldsymbol{\rho}=\mathbf{r}-\mathbf{r}^{\prime}$ and $\tau=t-t^{\prime}$, as

$$
\left[\nabla_{\rho}^{2}-\frac{1}{c^{2}} \frac{\partial^{2}}{\partial \tau^{2}}\right] G(\boldsymbol{\rho}, \tau)=-4 \pi \delta(\boldsymbol{\rho}) \delta(\tau)
$$

and eliminate the explicit time-dependence by using a Fourier transform of $G$,

$$
G(\boldsymbol{\rho}, \tau)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} d \omega g(\boldsymbol{\rho}, \omega) e^{-i \omega \tau},
$$

and the Fourier representation of the delta function,

$$
\delta(\tau)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} d \omega e^{-i \omega \tau},
$$

to obtain the equation

$$
\begin{equation*}
\left[\nabla_{\rho}^{2}+k^{2}\right] g(\boldsymbol{\rho}, \omega)=-4 \pi \delta(\boldsymbol{\rho}) \tag{4}
\end{equation*}
$$

where $k=\omega / c$.

By writing a Fourier representation of $g(\boldsymbol{\rho}, \omega)$,

$$
\begin{equation*}
g(\boldsymbol{\rho}, \omega)=\frac{1}{(2 \pi)^{3}} \int d^{3} \mathbf{k}^{\prime} \tilde{g}\left(\mathbf{k}^{\prime}, \omega\right) e^{i \mathbf{k}^{\prime} \cdot \boldsymbol{\rho}}, \tag{5}
\end{equation*}
$$

solve Eqn. 4 to show that $\tilde{g}\left(\mathbf{k}^{\prime}, \omega\right)=-4 \pi\left(|\mathbf{k}|^{2}-\left|\mathbf{k}^{\prime}\right|^{2}\right)^{-1}$. Perform the angular integration in Eqn. 5 to leave an integral

$$
\begin{equation*}
\frac{1}{i \pi \rho} \int_{-\infty}^{\infty} d k^{\prime} \frac{k^{\prime}}{k^{\prime 2}-k^{2}} e^{i k^{\prime} \rho} . \tag{6}
\end{equation*}
$$

Introduce a regulator by replacing $k^{2}$ with $k^{2}+i \epsilon$, considering $\epsilon$ to be small and positive. Identify the singularity structure of the integrand and by choosing a suitable contour in the complex $k^{\prime}$-plane compute the integral, and show that you recover one of the two sign choices in Eqn. 3 in the limit $\epsilon \rightarrow 0$ - the other sign choice follows if $\epsilon$ is considered small and negative.

## 3. A simple example of dispersion - waves on a string

(a) A string of mass per unit length $\mu$ is held under tension, $T$. The unperturbed string lies along the $x$-axis. Show that transverse waves on the string satisfy

$$
\frac{\partial^{2} y}{\partial t^{2}}=c^{2} \frac{\partial^{2} y}{\partial x^{2}}
$$

with $c^{2}=T / \mu$ (you may look this up in a book if you're unfamiliar with the construction). Monochromatic waves, $y(x, t)=A e^{i(k x-\omega t)}$ (take the real part to get physical waves), then have dispersion relation $\omega=k c$ and the phase and group velocities are identical and equal to $c$.
(b) Now consider the case shown in the figure, where the string is attached to a (continuous) distribution of springs (obeying Hooke's law) that have their other end fixed to a wall. When the string is unperturbed, the springs are at their equilibrium length.


If the "spring constant per unit length (in $x$ )" is $\sigma$, show that waves on the string now must satisfy

$$
\frac{\partial^{2} y}{\partial t^{2}}=c^{2} \frac{\partial^{2} y}{\partial x^{2}}-\omega_{s}^{2} y
$$

with $\omega_{s}^{2}=\sigma / \mu$. Find the dispersion relation in this case and consider the phase and group velocities. What form do solutions to this equation with $\omega<\omega_{s}$ take?
(c) Suppose the original tensioned string is immersed in a viscous fluid, so that there is a drag force proportional to speed. Show that waves on the string now must satisfy

$$
\frac{\partial^{2} y}{\partial t^{2}}=c^{2} \frac{\partial^{2} y}{\partial x^{2}}-\beta \frac{\partial y}{\partial t}
$$

Find the dispersion relation and consider the form of solutions for $x>0$ when $\beta$ is small. How to these waves differ from those with $\omega<\omega_{s}$ in part (b) ?

