
HW 4 - WAVEGUIDES AND CAVITIES

All problems due Wed 2nd March.

1. A rectangular cavity

Consider a rectangular cavity of dimensions a×b×d featuring a field oscillating in the TM011

mode (i.e. kz = 0 and the longest wavelength behavior in the x and y directions).

(a) Find the charge density and surface current density everywhere on the walls of the
cavity.

(b) Check that ∇ ·K + ∂σ
∂t = 0 everywhere.

2. A circular waveguide with a baffle

A perfectly conducting waveguide has a circular cross-section of radius R. An infinitesi-
mally thin metal baffle plate is inserted into the interior so it runs from the center out to
a point on the circumference (see the diagram).

Show that the presence of the baffle increases the lowest cutoff frequency for TM modes,
but decreases the lowest cutoff frequency for TE modes.
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3. A TEM mode in a coaxial cable

A transmission line consists of two concentric circular cylinders of metal with conductivity
σ as shown, with the gap between them filled with a uniform lossless dielectric (ε, µ).

Unlike in the case of a cylindrical waveguide (as discussed on page 48 of the notes), TEM
modes can propagate along this line. A TEM mode propagating in the ẑ direction has
Ez = Hz = 0 and ZH⊥ = ẑ×E⊥.

E⊥ must satisfy ∇⊥×E⊥ = 0 and ∇⊥ ·E⊥ = 0, so we can define a potential, E⊥ = −∇⊥ϕ,
which must be a solution of the two-dimensional Poission equation, ∇2

⊥ϕ = 0.

(a) Convince yourself that ϕ(ρ) = A log ρ is the only azimuthally symmetric solution pos-
sible so E⊥ = −A1

ρ ρ̂. Show that for any value of z, the following monochromatic waves

satisfy the conditions needed to be an acceptable TEM wave,

E(ρ, φ, z, t) = ZH0(z)
a

ρ
ei(kz−ωt)ρ̂

H(ρ, φ, z, t) = H0(z)
a

ρ
ei(kz−ωt)φ̂, (1)

but at this stage we will not determine how H0(z) should depend upon z – we’ll determine
this by considering the energy losses in the walls.

(b) Show that, assuming the forms above, the time-averaged power flow along the line
is

〈P 〉 = Z πa2
∣∣H0(z)

∣∣2 log b/a (2)

(c) Since the metal walls are imperfect conductors, some energy is lost in them by Ohmic
heating. Recall that in the notes we showed that

d〈Ploss〉
dA

=
1

2σδ

∣∣Keff

∣∣2, (3)
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where Keff is the effective surface current (the surface current we’d have if the conductor
were perfect).

Show that the power lost in this way per unit length of line is

d〈Ploss〉
dz

=
π

σδ

∣∣H0(z)
∣∣2a(1 +

a

b

)
, (4)

(d) Show that the transmitted power is attenuated as 〈P 〉(z) = 〈P 〉(0) e−βz with

β =
1

σδ

1

Z

a−1 + b−1

log b/a
(5)

[for you to ponder: if we plug Eq. 1 into Maxwell’s equations inside the waveguide, we’ll get
an equation for H0(z) which isn’t compatible with the exponential damping shown above
– somewhere we built in an inconsistent assumption ... ]

4. Joining two waveguides

Two rectangular waveguides meet as shown in the figure. Waveguide 1 continues to
z → −∞ and waveguide 2 continues to z →∞.

waveguide 1
waveguide 2

perfectly conducting
outer surfaces

If a TE10 mode (Hz ∝ cos
[
πx/a1

]
) propagates in waveguide 1 in the +ẑ direction, find

the amplitudes of the various modes excited in waveguide 2.


