HW 6 - SPECIAL RELATIVITY

All problems due April 6th.

1. Rapidity

For a boost of speed v in the z-direction, the Lorentz transformation for the variables $z_{ \pm} \equiv c t \pm z$ can be written $z_{ \pm}^{\prime}=e^{\mp \eta} z_{ \pm}$, where η is called the rapidity.

Find an equation for η as a function of v.
Show that a boost with rapidity η_{1} followed by a boost with rapidity η_{2} is equivalent to a single boost of rapidity $\eta_{1}+\eta_{2}$, and using this result derive again the relativistic velocity addition formula.

2. Doppler shift

Show that if an emitter of radio waves is receding from a stationary observer with a constant speed of $v=\beta c$, then the frequency ν_{0} of the wave in the reference frame of the emitter and the frequency ν in the reference frame of the receiver are related by

$$
\nu=\nu_{0} \sqrt{\frac{1-\beta}{1+\beta}} .
$$

[Try to construct the derivation yourself without looking it up in a book - think about the time between arriving wavefronts as measured by the observer]

3. REFLECTION FROM A MOVING MIRROR

A plane mirror moves perpendicular to its plane surface at constant speed $v=\beta c$. If in the lab frame, the angle of incidence of light is θ_{1}, show that the angle of reflection, θ_{2}, is given by

$$
\sin \theta_{2}=\sin \theta_{1} \frac{1-\beta^{2}}{1+\beta^{2}-2 \beta \cos \theta_{1}}
$$

4. Worldines

The figure shows the worldlines of two identical clocks that move from A to $B, x=v_{0} t$ and $x=\frac{1}{2} a_{0} t^{2}$ with v_{0}, a_{0} constants. For each clock find the proper time between A and B and state which clock has the smaller proper time.

