GEOL 414/514

CHEMICAL KINETICS

Chapter 2

LANGMUIR

CHEMICAL EQUILIBRIUM & CHEMICAL KINETIC CONCEPTS

- Equilibrium data (Δ G, K_{eq}) denote tendency to react, but give no indication of rate of reaction
- Assume simple first-order reaction:

A ≒ B

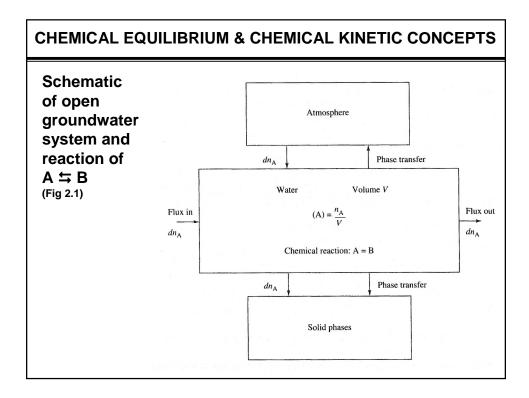
• Rates of forward and reverse reactions:

rate + =
$$k_{+}$$
 (A) and rate - = k_{-} (B)

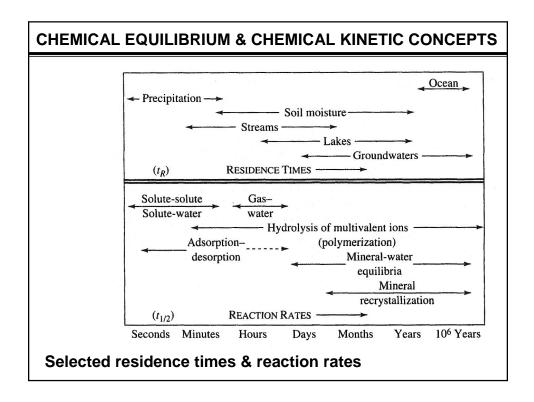
• At equilibrium: $k_{+}(A) = k_{-}(B)$, two rates are equal

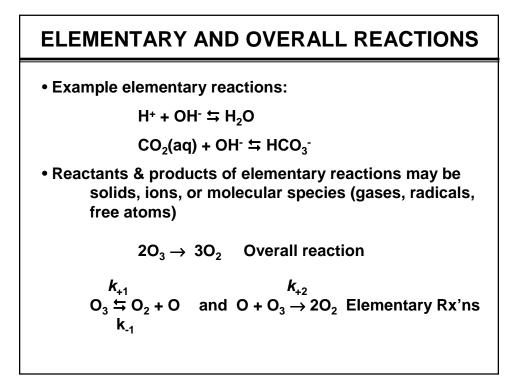
$$K_{eq} = \frac{k_{+}}{k_{-}} = \frac{(B)}{(A)}$$

CHEMICAL EQUILIBRIUM & CHEMICAL KINETIC CONCEPTS

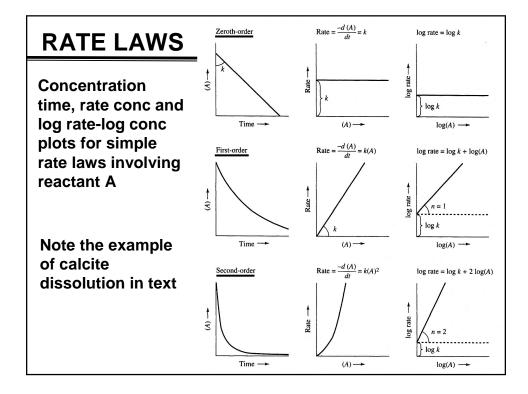

- In an open system, volume mixed, amounts of substances added or removed:
 - $t_R = V/Q$ t_R residence time; Q vol rate of flow

 $t_{1/2} = \ln 2/k_{+} = 0.0693/k_{+}$


- $t_{1/2}$ half-life or half-time of reaction
- Assuming that initially (B) = 0:


 $(A)/(B) = 1/K_{eq} + t_{1/2}/0.693 t_{R}$

- When $t_{\rm R} >> t_{\rm 1/2}$, the last term vanishes and we use the expression for K_{eq}
- When $t_{\rm R} << t_{\rm 1/2}$, kinetic concepts are needed to explain state of rea'n



RATE LAWSFor hypothetical elementary reaction A = B:Rate of forward rx'n A \rightarrow B, R₊ = $dA/dt = k_{.}(A)$ Rate of reverse rx'n B \rightarrow A, R- = $dB/dt = k_{.}(B)$ R₊ = $k_{+} \prod (A_{i})^{vi}$ and R₋ = $k_{-} \prod (A_{i})^{vi}$ reactants products v_{i} - stoichiometric coefficientAt chemical equilibrium, R₊ = R₋, and $k_{+}/k_{-} = K_{eq} = \prod (A_{i})^{vi}_{eq}$ reactants + productsFor simple ele rx'n, $K_{eq} = k_{+}(A) / k_{-}(B)$

RATE LAWS • The order of an elementary reaction is defined by the number of individual atoms or molecules involved • The concept of overall reaction order can only be applied to single-term, simple, product rate eq'ns such as: $R_{+} = k_{+} (A)^{nA} (B)^{nB} (C)^{nC}$ where exponents are whole numbers. • For example, rate of forward reaction: $A + 2B \rightarrow C$ can be written $-d(C) / dt = k_{+} (A) (B)^{2}$ • Reaction is first-order w/ respect to A & C, second-order

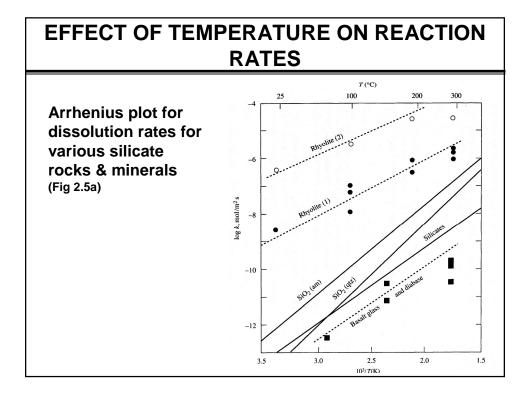
- w/ respect to B and third-order overall.
- Table 2.2 gives some simple rate laws look through

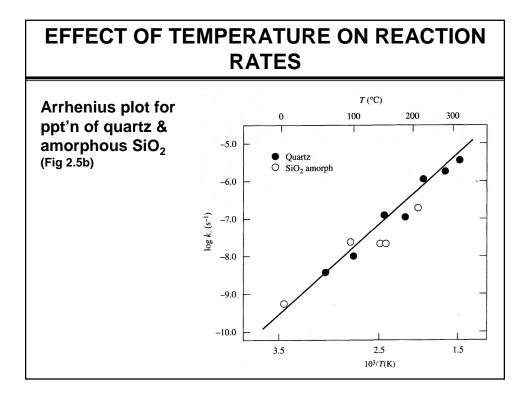
EFFECT OF TEMPERATURE ON REACTION RATES

• The reaction rate constant can be related to T(K) through the Arrhenius expression:

 $k = A_F \exp(-E_a/RT)$ or $\ln k = \ln A_F - E_a/RT$

- Where: A_F constant; Ea activation energy
- Differentiating:


 $d \log k / dT = E_a / 2.303 RT^2$


plot of log k vs 1/T is straight line, w/ slope = $-E_a/2.303R$

• Take log of Arrhenius eq'n for T₁ & T² and combine:

$$\log \frac{k_1}{k_2} = \frac{E_a}{2.303 \text{ R}} \left(\frac{1}{T_2} - \frac{1}{T_1} \right)$$

Rx'ns 2X as fast at T_2 than T_1

EFFECT OF TEMPERATURE ON REACTION RATES

Reaction or process	Typical range of E _a values (kcal/mol)
Physical adsorption	2 to 6
Aqueous diffusion	< 5
Cellular and life-related reactions	5 to 20
Mineral dissolution or precipitation	8 to 36
Mineral dissolution via surface reaction control	10 to 20
Ion exchange	> 20
Isotopic exchange in solution	18 to 48
Solid-state diffusion in minerals at low temperatures	20 to 120

of ions in solution

MINERAL PRECIPITATION/DISSOLUTION REACTION KINETICS

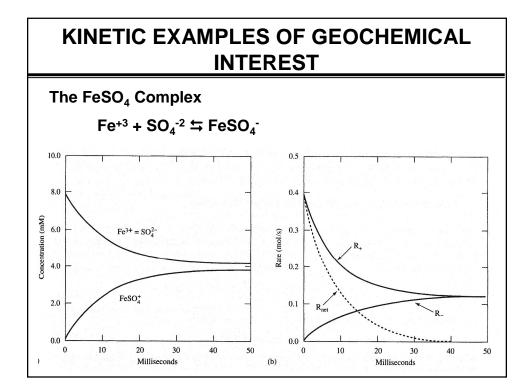
- We know very few of the component elementary reactions of geochemically important reactions
- This is especially for mineral dissolution/precipitation

• In groundwater important factors include mass transport, diffusion control, surface-reaction control; rate of groundwater flow

 $dC/dt = R - k_fC$

where dC/dt is rate of change of conc in a fixed vol, R is the rate of dissol'n, k_f is the flushing frequency

MINERAL PRECIPITATION/DISSOLUTION REACTION KINETICS


• For steady-state conditions (when dC/dt = 0)

 $C = k_{+}C_{S} / (k_{+} + k_{f})$ and $R = k_{+}k_{f}C_{S} / (k_{+} + k_{f})$

 At high groundwater flow (k_f>>k₊), these expressions reduce to:

 $C = k_+C_s / k_f$ and $R = k_+C_s$

- maximum solution rate is reached, independent of flow rate
- At slow groundwater flow $(k_f \rightarrow 0)$, C = C_S & R = k_fC_S ; rate of dissolution is controlled by flow rate
- Aqueous diffusion governs the slowest transportcontrolled dissolution/precipitation

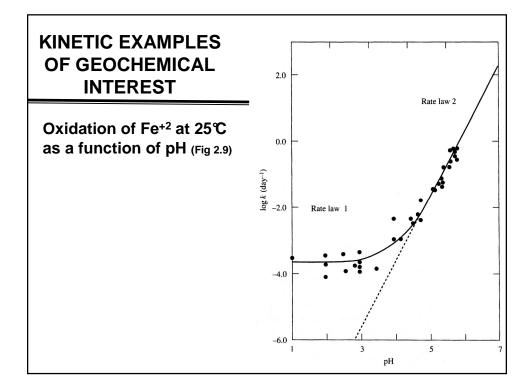
KINETIC EXAMPLES OF GEOCHEMICAL INTEREST

Radioactive decay: ¹⁴C • A first-order, usually irreversibly reaction, rate given by: $dn/dt = -k_{+}n$ integrating, we obtain $n = n_0 \exp(-k_{+}t)$ $n \& n_0$ are total no. of molecules present at t = 0 & t• The half-time of radioactive decay is $t_{1/2} = 0.693 / k_{+}$ • For ¹⁴C, $t_{1/2} = 5570$ y & $k_{+} = 0.693 / t_{1/2}$ • Substituting & converting to logs, $t(y) = 18,500 \log (13.56/d)$ d - disintegration rate

KINETIC EXAMPLES OF GEOCHEMICAL INTEREST

Oxidation of ferrous iron:

 $Fe^{+2} + 1/4O_2 + H^+ \rightarrow Fe^{+3} + 1/2 H_2O$


• Between pH 2.2 - 3.5, the overall reaction is:

 Fe^{+2} + 1/4O₂ + 1/2 H₂O \rightarrow FeOH⁺²

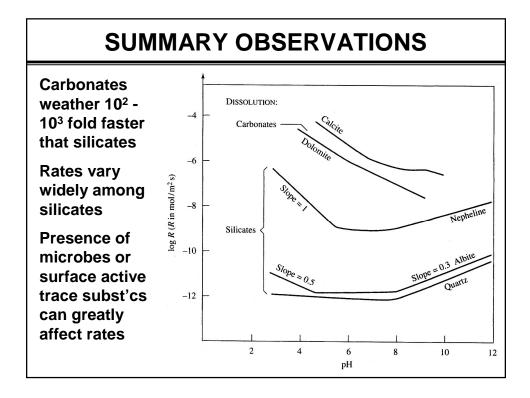
- rate is up to 10⁶ faster in presence of bacteria, 8 minutes vs 15 years
- Above pH = 4, the rate of Fe⁺² oxidation is related to:

 Fe^{+2} + 1/4O₂ + 5/2 H₂O \rightarrow Fe(OH)₃ + 2H⁺

• Since different reactions control rate at different pH ranges, we would expect a nonlinear rate curve.

KINETIC EXAMPLES OF GEOCHEMICAL INTEREST

Pyrite & Marcasite Oxidation by Fe⁺³


 $FeS_2 + 14Fe^{+3} + 8H_2O \rightarrow 15Fe^{+2} + 2SO_4^{-2} + 16H^+$

• The reaction is first-order and follows the empirical rate law:

 $d(Fe^{+3}) / dt = -k_{+} A_{w} / M (Fe^{+3})$

where A_w / M is the wetted surface area of reacting mineral per mass of solution

- k₊ values range from 1 x 10⁻⁴ to 2.7 x 10⁻⁴, same for pyrite or marcasite
- Thiobacteria can inc. oxid'n rates by orders of magnitude

