GEOL 414/514

ACTIVITY COEFFICIENTS OF DISSOLVED SPECIES

Chapter 4

LANGMUIR

ACTIVITY & ACTIVITY COEFFICIENTS

• Earlier we studied common ion effect on decreasing the solubility

 $CaCO_3 \leftrightarrows Ca^{+2} + CO_3^{-2}$

- Add Ca⁺² or CO₃⁻² and decrease solubility
- Add other electrolyte and CaCO₃ solubility increases due to interaction of other electrolytes and H₂O and a shielding effect
- The Ca⁺⁺ might form a Cl⁻ complex and become shielded from reaction with CO₃⁻²
- Overall concentration of electrolytic solutions is very important in describing reactions that take place.

ACTIVITY & ACTIVITY COEFFICIENTS-1

• Instead of simple molality, the ionic strength is used and is described as:

 $I = \frac{1}{2} \sum (m_i z_i^2)$

• Where *m_i* is the concentration of the ion, *i z_i* is the charge of ion *i*

• Examples:

1m NaCI: $I = \frac{1}{2}(1 + 1^{2} + 1 + 1^{2}) = 1$

1m CaCl₂: $I = \frac{1}{2}(1 + 2^2 + 2 + 1^2) = \frac{1}{2}(1 + 4 = 2 + 1) = 3$

- *I*, in comparison to ∑ of molal conc's, emphasizes the effect of higher charges of multivalent ions
- I gives a good measure of the effect of electrolytes on solubility

ACTIVITY & ACTIVITY COEFFICIENTS-2

• Activity, a

- the effective concentration of a solute
- the extrapolated solubility at zero ionic strength; about equivalent to the solubility in D.I. H₂O
- At infinite dilution, a = m
- As the conc. increases, *m* becomes greater than a, where

a = γm γ = activity coefficient

• For CaCO₃: $a_{CaCO3} = \gamma_{CaCO3} * m_{CaCO3}$

 $a_{Ca++} = \gamma_{Ca++} * m_{Ca++}$ $a_{CO3-2} = \gamma_{CO3-2} * m_{CO3-2}$

• In dilute (I <0.001 m) solutions, $\gamma \approx 1$ and a $\approx c$

ACTIVITY & ACTIVITY COEFFICIENTS-3

Mean ion-activity coefficients

 $K_2SO_4(c) = 2K^+ + SO_4^{-2}$

• For which we obtain $K_{sp} = (\gamma_{K}^{2})(\gamma_{SO4})(mK^{+})^{2} (mSO_{4}^{-2})$

- Cannot measure individual ion activities, just total effect on $\rm K_{sp}$

 $\gamma_{\pm {\rm K2SO4}} = [(\gamma_{\rm K}{}^2)(\gamma_{\rm SO4})]^{1/3}$

 $K_{sp} = \gamma_{\pm}^{3}_{K2SO4} (mK^{+})^{2} (mSO_{4}^{-2})$

• So, mean ion-activity coefficient:

 $\gamma_{\pm} = [(\gamma_{+}^{n+}) (\gamma_{-}^{n-})]^{1/n}$

ACTIVITY & ACTIVITY COEFFICIENTS-4

• For more precise calculations, the Debye-Hückel theory yields the expression:

• Where

- A is a constant depending on T, density & the dielectric constant of the solvent (H₂O), \approx 0.51 in H₂O at 25 °C

- B is a constant related to the T & density of H₂O
- a is the effective diameter of the ion (Å)
- see text for explanation of these terms

ACTIVITY & ACTIVITY COEFFICIENTS-5

• A simplified version is sometimes useful at small values of *I*:

 $\log \gamma = -Az^2 I^{1/2}$

• Extension of the Debye-Hückel by Davis gives:

$$\log \gamma = -Az^2 \left[\frac{\sqrt{I}}{1 + \sqrt{I}} - 0.2I \right]$$

• Note γ as a function of *I* & *z* in Fig 4.2, page 128 in text

ACTIVITY & ACTIVITY COEFFICIENTS-6

CaCO₃ example in text:

- For CaCO₃ in 0.001m NaCl, the K_{sp} is increased by a factor of 1.15 over K_{sp} at infinite dilution
- Solubility of CaCO₃ in 0.5*m* NaCl is increased >4X that in a dilute solution & the K_{sp} – concentration product – is about 200X the activity product
- This example emphasizes the importance of *I* on solid phase solubilities

CONVENTIONS REGARDING SOLUBILITIES

- Activities are formally defined as dimensionless numbers
- Equilibrium constants expressed in terms of activities are true constants (are independent of composition)
- In dilute solutions, a ≈ m, but in concentrated solutions differences may be > 1 order of magnitude
- Activities of pure solids & pure liquids = 1, by definition
- Activity of H_2O in dilute solutions ≈ 1
- Unionized solutes (H₄SiO₄, SiO_{2(aq)}) have $\gamma \approx 1$
- Estimates of γ place major emphasis on *I*

ACTIVITY CORRECTIONS APPLIED TO SOLUBILITY CALCULATIONS

If m_A = total molality for the CO₂-H₂O system, m_{A(CO2)} = m_{CO2(aq)} + m_{H2CO3} + m_{HCO3} + m_{CO3-2} m_{A(CO2)} = aCO2(aq)/(γCO2(aq))</sub> + aH_{2CO3}/(γH_{2CO3}) + aCO3-2/(γH_{2CO3}) + aCO3-2/(γCO3-2)
Sphalerite example:
ZnS in a NaCl-ZnCl₂(aq)-H₂S-H₂O sol'n at 250 °C & 50 bar
Possible species: Zn⁺², ZnOH⁺, ZnCl⁺, ZnCl₂(aq), ZnCl₃⁻, ZnCl₄⁻², H₂S, HS⁻, S⁻², NaCl(aq), NaOH(aq), Na⁺, Cl⁻, H⁺, OH⁻ & HCl(aq)
15 chem species, 31 independent equations

ACTIVITY CORRECTIONS APPLIED TO SOLUBILITY CALCULATIONS

- At *I* > 2-3.5 mol/kg, high sol'n density may lead to binary & ternary interactions; need different model
- High ionic strengths & Pitzer Model
 - includes "interaction parameters" involving aqueous species & major species in H_2O
 - few data yet available for trace species
 - useful over widest range of ionic strengths
- Note the overview and summary comparison (Fig 4.5) of different activity coefficient models as a function of *I*
- Example 4.5 shows applicably of Pitzer Model to computation of HCO3- activity in sea water

OVERVIEW OF ACTIVITY COEFFICIENT MODELS FOR IONS

- Algorithms that describe the change in γ_i with *I* all relate the log of γ_i to a function of I^{1/2}, with or without additional functions (See Fig 4.5)
- At *I* ≤ 0.02 mol/kg, the Debye-Hückel limiting law applies
- From 0.02 0.7 mol/kg, the Davies equation works well
- From 0.02 2 mol/kg, the TJ equation is reliable
- From 0.02 3.5 mol/kg, the SIT model works well
- From 0.02 6 mol/kg, the Pitzer model is applicable, is best for high *I*