Earlier we studied common ion effect on decreasing the solubility

\[\text{CaCO}_3 \rightleftharpoons \text{Ca}^{+2} + \text{CO}_3^{-2} \]

• Add Ca\(^{+2}\) or CO\(_3^{-2}\) and decrease solubility

• Add other electrolyte and CaCO\(_3\) solubility increases due to interaction of other electrolytes and H\(_2\)O and a shielding effect

• The Ca\(^{++}\) might form a Cl\(^-\) complex and become shielded from reaction with CO\(_3^{-2}\)

• Overall concentration of electrolytic solutions is very important in describing reactions that take place.
ACTIVITY & ACTIVITY COEFFICIENTS-1

- Instead of simple molality, the ionic strength is used and is described as:
 \[I = \frac{1}{2} \sum (m_i z_i^2) \]
- Where \(m_i \) is the concentration of the ion, \(i \)
- \(z_i \) is the charge of ion \(i \)
- Examples:
 - 1m NaCl: \(I = \frac{1}{2} (1*1^2 + 1*1^2) = 1 \)
 - 1m CaCl₂: \(I = \frac{1}{2} (1*2^2 + 2*1^2) = \frac{1}{2} (1*4 + 2*1) = 3 \)
- \(I \), in comparison to \(\sum \) of molal conc’s, emphasizes the effect of higher charges of multivalent ions
- \(I \) gives a good measure of the effect of electrolytes on solubility

ACTIVITY & ACTIVITY COEFFICIENTS-2

- Activity, \(a \)
 - the effective concentration of a solute
 - the extrapolated solubility at zero ionic strength; about equivalent to the solubility in D.I. H₂O
- At infinite dilution, \(a = m \)
- As the conc. increases, \(m \) becomes greater than \(a \), where
 \[a = \gamma m \quad \gamma = \text{activity coefficient} \]
- For CaCO₃:
 \[a_{\text{CaCO}_3} = \gamma_{\text{CaCO}_3} m_{\text{CaCO}_3} \]
 \[a_{\text{Ca}^{++}} = \gamma_{\text{Ca}^{++}} m_{\text{Ca}^{++}} \quad a_{\text{CO}_3^{-2}} = \gamma_{\text{CO}_3^{-2}} m_{\text{CO}_3^{-2}} \]
- In dilute (\(I < 0.001 m \)) solutions, \(\gamma \approx 1 \) and \(a \approx c \)
ACTIVITY & ACTIVITY COEFFICIENTS-3

Mean ion-activity coefficients

\[K_{2\text{SO}_4(c)} = 2\text{K}^+ + \text{SO}_4^{2-} \]

- For which we obtain

\[K_{sp} = (\gamma_{\text{K}^2})(\gamma_{\text{SO}_4})(m\text{K}^+)^2 (m\text{SO}_4^{-2}) \]

- Cannot measure individual ion activities, just total effect on \(K_{sp} \)

\[\gamma_{\pm \text{K}_2\text{SO}_4} = [(\gamma_{\text{K}^2})(\gamma_{\text{SO}_4})]^{1/3} \]

\[K_{sp} = \gamma_{\pm \text{K}_2\text{SO}_4}^3 (m\text{K}^+)^2 (m\text{SO}_4^{-2}) \]

- So, mean ion-activity coefficient:

\[\gamma_{\pm} = [(\gamma_{+}^n)(\gamma_{-}^n)]^{1/n} \]

ACTIVITY & ACTIVITY COEFFICIENTS-4

- For more precise calculations, the Debye-Hückel theory yields the expression:

\[\log \gamma_i = \frac{-A \ z_i^2 \ \sqrt{I}}{1 + B \ a_i \ \sqrt{I}} \]

- Where

 - \(A \) is a constant depending on \(T \), density & the dielectric constant of the solvent (H\(_2\)O), \(\approx 0.51 \) in H\(_2\)O at 25 \(^\circ \)C
 - \(B \) is a constant related to the \(T \) & density of H\(_2\)O
 - \(a \) is the effective diameter of the ion (Å)
 - see text for explanation of these terms
ACTIVITY & ACTIVITY COEFFICIENTS-5

- A simplified version is sometimes useful at small values of I:

$$\log \gamma = -A z^2 I^{1/2}$$

- Extension of the Debye-Hückel by Davis gives:

$$\log \gamma = -A z^2 \left(\frac{\sqrt{I}}{1 + \sqrt{I}} - 0.2I \right)$$

- Note γ as a function of I & z in Fig 4.2, page 128 in text

ACTIVITY & ACTIVITY COEFFICIENTS-6

CaCO$_3$ example in text:

- For CaCO$_3$ in 0.001m NaCl, the K_{sp} is increased by a factor of 1.15 over K_{sp} at infinite dilution

- Solubility of CaCO$_3$ in 0.5m NaCl is increased >4X that in a dilute solution & the K_{sp} – concentration product – is about 200X the activity product

- This example emphasizes the importance of I on solid phase solubilities
CONVENTIONS REGARDING SOLUBILITIES

- Activities are formally defined as dimensionless numbers.
- Equilibrium constants expressed in terms of activities are true constants (are independent of composition).
- In dilute solutions, $a \approx m$, but in concentrated solutions differences may be > 1 order of magnitude.
- Activities of pure solids & pure liquids = 1, by definition.
- Activity of H_2O in dilute solutions ≈ 1.
- Unionized solutes (H_4SiO_4, $SiO_2(aq)$) have $\gamma \approx 1$.
- Estimates of γ place major emphasis on I.

ACTIVITY CORRECTIONS APPLIED TO SOLUBILITY CALCULATIONS

- If m_A = total molality for the CO_2-H_2O system,

 $$m_{A(CO2)} = m_{CO2(aq)} + m_{H2CO3} + m_{HCO3-} + m_{CO3-2}$$

 $$m_{A(CO2)} = \frac{a_{CO2(aq)}}{\gamma_{CO2(aq)}} + \frac{a_{H2CO3}}{\gamma_{H2CO3}} + \frac{a_{HCO3-}}{\gamma_{HCO3-}} + \frac{a_{CO3-2}}{\gamma_{CO3-2}}$$

- Sphalerite example:
 - ZnS in a NaCl-ZnCl$_2(aq)$-H_2S-H_2O sol’n at 250 °C & 50 bar
 - Possible species: Zn^{2+}, $ZnOH^+$, $ZnCl^+$, $ZnCl_2(aq)$, $ZnCl_3^-$, $ZnCl_4^{2-}$, H_2S, HS^-, S^{2-}, $NaCl(aq)$, $NaOH(aq)$, Na^+, Cl^-, H^+, OH^- & $HCl(aq)$
 - 15 chem species, 31 independent equations
ACTIVITY CORRECTIONS APPLIED TO SOLUBILITY CALCULATIONS

- At $I > 2.3$ mol/kg, high sol'n density may lead to binary & ternary interactions; need different model

- High ionic strengths & Pitzer Model
 - includes “interaction parameters” involving aqueous species & major species in H$_2$O
 - few data yet available for trace species
 - useful over widest range of ionic strengths

- Note the overview and summary comparison (Fig 4.5) of different activity coefficient models as a function of I

- Example 4.5 shows applicability of Pitzer Model to computation of HCO$_3$- activity in sea water

OVERVIEW OF ACTIVITY COEFFICIENT MODELS FOR IONS

- Algorithms that describe the change in γ_i with I all relate the log of γ_i to a function of $I^{1/2}$, with or without additional functions (See Fig 4.5)

- At $I \leq 0.02$ mol/kg, the Debye-Hückel limiting law applies

- From 0.02 - 0.7 mol/kg, the Davies equation works well

- From 0.02 - 2 mol/kg, the TJ equation is reliable

- From 0.02 - 3.5 mol/kg, the SIT model works well

- From 0.02 - 6 mol/kg, the Pitzer model is applicable, is best for high I