GEOL 414/514

ACIDS AND BASES

Chapter 5

LANGMUIR

SIGNIFICANCE \& MEASUREMENT OF pH

$$
\begin{gathered}
\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{H}^{+}+\mathrm{OH}^{-} \\
\mathrm{K}_{w}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{H}_{2} \mathrm{O}\right]}=10^{-14.00}
\end{gathered}
$$

$$
\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]
$$

Most reactions involve or are controlled by pH :

1. Aqueous acid-base equilibria (hydrolysis, polymeriz'n
2. Adsorption, $\mathrm{H}^{+} \& \mathrm{OH}^{-}$compete with other ions
3. Formation of metal-ligand complexes $\left(\mathrm{H}^{+} \& \mathrm{OH}\right.$ compet' n)
4. Oxidation-reduction rea'ns (H^{+}again)
5. Solubility \& rate of mineral dissolution

SIGNIFICANCE \& MEASUREMENT OF pH

- Ultimate reference for pH \& Eh measurements is H_{2} electrode - bubble H_{2} over Pt electrode

$$
\frac{1}{2} \mathrm{H}_{2}(\mathrm{~g})=\mathrm{H}^{+}+e^{-}
$$

$\mathrm{E}=\mathrm{E}^{\circ}-\mathrm{RT} / \mathrm{nF} \ln \left[\mathrm{H}^{+}\right] /\left[\mathrm{P}_{\mathrm{H} 2}\right]^{1 / 2}$
$=\mathrm{E}^{\circ}-2.303 \mathrm{RT} / \mathrm{nf} \log \left[\mathrm{H}^{+}\right] /\left[\mathrm{P}_{\mathrm{H} 2}\right]^{1 / 2}$

- Cannot conveniently use the H_{2} for routine measurements; use a glass electrode (pH) with a reference electrode - usually a $\mathrm{Ag}-\mathrm{AgCl}$ or $\mathrm{Hg}-\mathrm{Hg}_{2} \mathrm{Cl}_{2}$ cell. Using a buffer solution, pH determinations are made

SIGNIFICANCE \& MEASUREMENT OF pH

- The pH of the unknown is obtained from:

$$
\mathrm{pH}_{x}=\mathrm{pH}_{b}+\frac{\left(\mathrm{E}_{x}-\mathrm{E}_{b}\right)}{1.984 \times 10^{-4} \mathrm{~T}}
$$

- The electrodes measure voltages which the pH meter converts and displays as pH units
- The most important function of the reference electrode is to provide known and stable reference voltage
- There is a liquid junction potential due to the nature of the reference electrode - may be important in solutions of very low I

GLASS (pH) AND REFERENCE

 ELECTRODES

ACIDS AND BASES

CHEMICAL DEFINITIONS

- Acid: has sour taste; liberates $\mathrm{H}^{+}\left(\mathrm{H}_{3} \mathrm{O}^{+}\right.$in solution)
- a substance which contains hydrogen which gives free H^{+}when dissolved in water
$\mathrm{HCl}+\mathrm{H}_{2} \mathrm{O} \leftrightarrows \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{Cl}^{-}$
- Base: water solution has soapy feel; has bitter taste
- a substance containing the OH group that yields OH^{-}on dissolving in water
- Alkali: generally means a soluble strong base
- Alkaline (basic): a solution containing appreciable OH^{-} or capable of forming such a solution

ACIDS AND BASES - 2

GEOLOGIC USAGE

- The terms acid, base \& alkali have wide and varied meanings in geology
- Many oxides of nonmetals dissolve in $\mathrm{H}_{2} \mathrm{O}$ to form acids
- Term "acid oxide" used for nonmetallic oxide regardless of solubility $\left(\mathrm{SiO}_{2}\right.$ \& rocks with high $\left.\% \mathrm{SiO}_{2}\right)$
- Term "basic oxide" used for any metal oxide
- Text (\& this course) uses strict chemical definitions
- Quartz-rich rock is felsic or silic
- So-called basic rocks are mafic
- Rocks rich in Na or K are called alkalic or alkaline

ACIDS AND BASES - 3

THE pH

- Neutralization reactions

$$
\mathrm{HCl}+\mathrm{NaOH} \rightarrow \mathrm{HOH}+\mathrm{NaCl}
$$

- More strictly:

$$
\mathrm{H}^{+}+\mathrm{Cl}^{-}+\mathrm{Na}^{+}+\mathrm{OH}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{Na}^{+}+\mathrm{Cl}^{-}
$$

- More simply, since $\mathrm{Na}^{+} \& \mathrm{Cl}^{-}$are unaffected:

$$
\mathrm{OH}^{-}+\mathrm{H}^{+} \rightarrow \mathrm{H}_{2} \mathrm{O}
$$

- Dissociation of $\mathrm{H}_{2} \mathrm{O}: \mathrm{H}_{2} \mathrm{O} \leftrightarrows \mathrm{H}^{+}+\mathrm{OH}^{-}$

$$
\mathrm{K}_{\mathrm{H} 2 \mathrm{O}}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]=10^{-14}
$$

- The product, $\left[\mathrm{H}^{+}\right][\mathrm{OH}-]$, is constant for ALL $\mathrm{H}_{2} \mathrm{O}$ solutions

ACIDS AND BASES - 4

DISSOCIATION CONSTANTS OF WEAK ACIDS

- Strong acids: complete ionization in dilute solutions; $\mathrm{HCl}, \mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{HNO}_{3}$
- Weak acids: only slight ionization; $\mathrm{H}_{2} \mathrm{CO}_{3}$

$$
\mathrm{H}_{2} \mathrm{CO}_{3} \leftrightarrows \mathrm{H}^{+}+\mathrm{HCO}_{3}^{-}
$$

and

$$
\mathrm{HCO}_{3}^{-} \leftrightarrows \mathrm{H}^{+}+\mathrm{CO}_{3}^{-2}
$$

$$
\begin{array}{ll}
\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{HCO}_{3}^{-}\right]}{\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]}=\mathrm{K}_{1}=10^{-6.4}=4.2 \times 10^{-7} & \begin{array}{l}
\text { These are } \\
\text { dissociation }
\end{array} \\
{\left[\mathrm{H}^{+}\right]\left[\mathrm{CO}_{3}^{-2}\right]} & \text { constants }
\end{array}
$$

ACIDS AND BASES - 5

DISSOCIATION CONSTANTS OF WEAK ACIDS

- Calculate pH of $0.01 \mathrm{~m} \mathrm{H}_{2} \mathrm{CO}_{3}$
- 0.01 m refers to the total carbonate conc

$$
\left[\mathrm{CO}_{3}\right]_{\text {total }}=\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]+\left[\mathrm{HCO}_{3}^{-}\right]+\left[\mathrm{CO}_{3}^{-2}\right]
$$

- Set up an equation to express electrical neutrality:

$$
\left[\mathrm{H}^{+}\right]=\left[\mathrm{OH}^{-}\right]+\left[\mathrm{HCO}_{3}^{-}\right]+2\left[\mathrm{CO}_{3}^{-2}\right]
$$

- The coefficient of 2 before $\left[\mathrm{CO}_{3}{ }^{-2}\right]$ is necessary because each mol of a divalent ion is equivalent to $\mathbf{2}$ mols of negative charge
- Also remember $\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]=10^{-14}$
- Now have 5 equations and 5 unknowns: ready to solve?

ACIDS AND BASES - 6

DISSOCIATION CONSTANTS OF WEAK ACIDS

- Calculate pH of $0.01 \mathrm{~m} \mathrm{H}_{2} \mathrm{CO}_{3}$, con't
- We will make some assumptions to simplify the cal' n :
$1 \mathrm{a}-\mathrm{K}_{2}$ of $\mathrm{H}_{2} \mathrm{CO}_{3}<10,000 \times \mathrm{K}_{1}$
$1 \mathrm{~b}-\mathrm{CO}_{3}{ }^{-2}$ arises only from $2^{\text {nd }}$ ionization of $\mathrm{H}_{2} \mathrm{CO}_{3}$ so $\left[\mathrm{CO}_{3}{ }^{-2}\right]$ should be small in relation to $\mathrm{H}_{2} \mathrm{CO}_{3}$ and $\mathrm{HCO}_{3}{ }^{-}$
$2-\left[\mathrm{OH}^{-}\right] \ll\left[\mathrm{H}^{+}\right]$(there is an acidic solution)
therefore, set $\left[\mathrm{H}^{+}\right]=\left[\mathrm{HCO}_{3}\right]$
reduce K_{1} Eq'n to $\left[\mathrm{H}^{+}\right]^{2} /\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]$
reduce $\left[\mathrm{CO}_{3}\right]_{\text {total }} \mathrm{Eq}$ 'n to $\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]+\left[\mathrm{H}^{+}\right]=0.01$

ACIDS AND BASES - 7

- Assumption 3: $\mathrm{H}_{2} \mathrm{CO}_{3}$ is a weak acid, the H^{+}from the ionization of $\mathrm{H}_{2} \mathrm{CO}_{3}$ is small in comparison to the amount of $\mathrm{H}_{2} \mathrm{CO}_{3}$
using Eq'n 15:
$\left[\mathrm{H}^{+}\right]^{2}=0.01 * 10-6.4$
$\left[\mathrm{H}^{+}\right]=10^{-4.2} \mathrm{~m}$
$\mathrm{pH}=4.2$
- To test assumptions:

$$
\begin{aligned}
& {\left[\mathrm{HCO}_{3}^{-}\right]=\left[\mathrm{H}^{+}\right]=10^{-4.2} \mathrm{~m}} \\
& {\left[\mathrm{OH}^{-}\right]=\left[10^{-14}\right] /\left[\mathrm{H}^{+}\right]=10^{-9.8}} \\
& {\left[\mathrm{CO}_{3}^{-2}\right]=10^{-10.3}\left[\mathrm{HCO}_{3}^{-}\right] /\left[\mathrm{H}^{+}\right]=10^{-10.3}}
\end{aligned}
$$

EXAMPLE: $\mathrm{CO}_{2} \mathbf{I N ~}_{\mathbf{H}} \mathbf{O}$

- The example of $\mathrm{H}_{2}, \mathrm{Cl}_{2}$ \& HCl involved a single phase, or homogeneous system
- A heterogeneous system, involving substances in different states, is geologically common

$$
\underset{\text { air }}{\mathrm{CO}_{2}} \leftrightarrows \underset{\text { water }}{ } \mathrm{CO}_{2}
$$

- Then:

$$
\underset{\text { water }}{\mathrm{CO}_{2}}+\mathrm{H}_{2} \mathrm{O} \text { water } \leftrightarrows \mathrm{H}_{2} \mathrm{CO}_{3}
$$

$$
K=\frac{\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]}{\left[\mathrm{CO}_{2}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]}
$$

- The equilibrium will respond to increased $\mathrm{P}_{\mathrm{CO} 2}\left(\right.$ add $\left.\mathrm{CO}_{2}\right)$, decreased $P_{\text {co2 }}$ (heat, create vacuum)

EXAMPLE: $\mathrm{CO}_{2} \mathrm{IN} \mathrm{H}_{2} \mathrm{O}$

- Solubility of $\mathrm{CO}_{2}=0.76 \mathrm{~L} / \mathrm{L} \mathrm{H}_{2} \mathrm{O}$ at $\mathrm{t}=25^{\circ} \mathrm{C}, \mathrm{P}_{\mathrm{CO} 2}=1 \mathrm{bar}$
- 0.75 L CO ${ }_{2} ; 0.76 \mathrm{~L} / 24.5 \mathrm{~L} / \mathrm{mole}=0.31$ moles CO_{2}
- [Notice that $\mathrm{H}_{2} \mathrm{O}=1000 / 18.016=55.5 \mathrm{~m}$]
- For CO_{2} above: $\mathrm{K}=\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right] /\left[\mathrm{CO}_{2}\right]=0.031 / 1=.031 \approx 10^{-1.5}$
- How much $\mathrm{H}_{2} \mathrm{CO}_{3}$ in water exposed to ordinary air?
- Air contains $0.03 \% \mathrm{CO}$ by volume; volume fraction = 0.0003 \& partial pressure $=0.00003$ bar

$$
\begin{aligned}
& \mathrm{K}=0.031=\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right] / 0.0003 \\
& {\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]=0.031 \times 0.0003=10^{-1.5} \times 10^{-3.5}=10^{-5} \mathrm{~m}}
\end{aligned}
$$

EXAMPLE: CO_{2} IN $\mathrm{H}_{2} \mathrm{O}$

- What is pH of rainwater, assuming that acidity is only from CO_{2} at $\mathrm{Patm}_{\text {a }}$?

$$
\mathrm{H}_{2} \mathrm{CO}_{3} \leftrightarrows \mathrm{H}^{+}+\mathrm{HCO}_{3}^{-}
$$

- Assume that the second K_{d} is not important

$$
\mathrm{K}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{HCO}_{3}^{-}\right]}{\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]}
$$

$4.7 \times 10^{-7}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{HCO}_{3}^{-}\right]}{2.04 \times 10^{-5}} \quad\left[\mathrm{H}^{+}\right]=\left[\mathrm{HCO}_{3}^{-}\right]$
$\left(4.7 \times 10^{-7}\right) *\left(2.04 \times 10^{-5}\right)=\left[\mathrm{H}^{+}\right]^{2}$
$\left[\mathrm{H}^{+}\right]^{2}=8.57 \times 10-12$
$\left[\mathrm{H}^{+}\right]=2.92 \times 10-6$
$\mathrm{pH}=5.53$

CARBONATE SPECIES IN SOLUTIONS

ESTIMATING IONIC CONCENTRATIONS

- It is very often desirable to determine the ionic conc and ion distribution in natural systems
- We can use dissociation and hydrolyses equations, and associated K_{eq}, to determine the major, minor and dominant species
- See the example of $\mathrm{H}_{2} \mathrm{CO}_{3}$ in the text
- When $\mathrm{pH}<6.4$ then $\mathrm{H}_{2} \mathrm{CO}_{3}$ dominates
- When $\mathrm{pH}=6.4-10.3$ then $\mathrm{HCO}_{3}{ }^{-}$dominates
- When $\mathrm{pH}>10.3$ then $\mathrm{CO}_{3}{ }^{-2}$ dominates
- The above is true for these pH ranges regardless of concentrations in solution \& whether or not any other solutes are present

WEAK ACIDS - 1

General Equation for a weak acid:
$\mathrm{H}_{\mathrm{n}} \mathrm{A} \leftrightarrows \mathrm{H}^{+}+\mathrm{H}_{\mathrm{n}-1} \mathrm{~A}^{-}$
$\left[H^{+}\right]=\left(\Sigma A^{*} K_{1}\right)^{1 / 2}$
K_{2} is generally $10^{4}-10^{6}<K_{1}$
Must use caution, must be sure that $K_{2}<10^{4} K_{1}$
A. If K_{1} is 10^{-1} to 10^{-2}, then acid is moderately weak, NOT a weak acid and generalization does not hold
B. In some cases ionization of $\mathrm{H}_{2} \mathrm{O}$ might give a pH lower than a very weak acid
C. Use pH of $\mathrm{H}_{2} \mathrm{O}$ in equilibrium with CO_{2} in air (5.7) as a lower limit for calculation for weak acid - below this point, pH is controlled by substance in $\mathrm{H}_{2} \mathrm{O}$

WEAK ACIDS - 2

Dissociation Constants of Hydroxides

- Strong bases ionize completely (as do strong acids)
$\mathrm{KOH}, \mathrm{NaOH}, \mathrm{NH}_{4} \mathrm{OH}$
- Most other hydroxides of interest in Geology are only slightly soluble \& do not follow the analogy of weak acids
- Example:
$\mathrm{Fe}(\mathrm{OH})_{3} \leftrightarrows \mathrm{Fe}^{+3}+3 \mathrm{OH}^{-}$

$$
\mathrm{K}_{\mathrm{T}}=\left[\mathrm{Fe}^{+3}\right][\mathrm{OH}]^{3}
$$

$\mathrm{Fe}(\mathrm{OH})_{3} \leftrightarrows \mathrm{Fe}(\mathrm{OH})_{2}{ }^{+}+\mathrm{OH}^{-}$

$$
\mathrm{K}_{1}=\left[\mathrm{Fe}(\mathrm{OH})_{2}{ }^{+}\right]\left[\mathrm{OH}^{-}\right]=10^{-16}
$$

$\mathrm{Fe}(\mathrm{OH})_{2}{ }^{+} \leftrightarrows \mathrm{Fe}(\mathrm{OH})^{+2}+\mathrm{OH}^{-}$

$$
\mathrm{K}_{2}=\left[\mathrm{Fe}(\mathrm{OH})^{+2}\right]\left[\mathrm{OH}^{-}\right] /\left[\mathrm{Fe}(\mathrm{OH})_{2}^{+}\right]=10^{-9.4}
$$

WEAK ACIDS - 3

$\mathrm{FeOH}^{+2} \leftrightarrows \mathrm{Fe}^{+3}+\mathrm{OH}^{-}$

$$
\begin{gathered}
\mathrm{K}_{3}=\left[\mathrm{Fe}^{+3}\right]\left[\mathrm{OH}^{-}\right]=10^{-11.7} \\
\mathrm{Fe}(\mathrm{OH})_{3}+\mathrm{OH}^{-} \leftrightarrows \mathrm{Fe}(\mathrm{OH})_{4}^{-} \\
\mathrm{K}_{\mathrm{A}}=\left[\mathrm{Fe}(\mathrm{OH})_{4}^{-}\right]\left[\mathrm{OH}^{-}\right] \\
\mathrm{Fe}(\mathrm{OH})_{3} \leftrightarrows \mathrm{Fe}(\mathrm{OH})_{3}^{\circ} \\
\mathrm{K}_{\mathrm{aq}}=\left[\mathrm{Fe}(\mathrm{OH})_{3}^{\circ}\right]=10^{-7.0}
\end{gathered}
$$

- In a natural system, there may also be $\mathrm{Fe}(\mathrm{OH})_{2}$ present; ionization and speciation of this form would also have to be considered

HUMIC AND FULVIC ACIDS

- Soil humic substances ($60-80 \%$ SOM):
fulvic acid - low M.W., sol in acid or base humic acid - med M.W., sol in base, insol acid humin - highest M.W., insol in acid or base
- Soil nonhumic substances: carbohydrates, proteins, peptides, amino acids, fats, waxes
- Humic substances are acidic, dark-colored, partially aromatic, M.W.'s range from 100's -1000's g FW-1
- Aquatic humic substances: - polyelectrolytic acids that can be isolated from water by sorption onto XAD or weak-base exch resin;
- M.W., $500-5000 \mathrm{~g} / \mathrm{mol}$
- humic \& fulvic acids

FTIR SPECTRA OF HUMIC \& FULVIC ACIDS

Fig. 7. Initial FTIR spectra of Dismal Swamp humic and fulvic acids.
Isolated using XAD resin, humic \& fulvic sep'd with resins

CONTROLS ON pH OF NATURAL

 WATERS

ACIDITY \&
 ALKALINITY DETERMINATION

Titration curve on same scale with carbonate species figure

EXAMPLE TITRATION CURVES

BUFFERS

- Buffers resist change in pH when either an acid or a base is added to them
- Seawater is a good buffer, generally maintains a pH from 8.1 to 8.3
- In lab, we will compare the buffering action of seawater to that of other aqueous solutions
- Examine a system of $0.01 \mathrm{~m} \mathrm{H}_{2} \mathrm{CO}_{3} \& 0.01 \mathrm{~m} \mathrm{NaHCO}$:
- Important species, $\mathrm{HCO}_{3}^{-} \& \mathrm{H}_{2} \mathrm{CO}_{3}$ are both $=0.01 \mathrm{~m}$, $\mathrm{pH}=6.4$, or
$\cdot\left[\mathrm{H}^{+}\right]=\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right] /\left[\mathrm{HCO}_{3}^{-}\right] * \mathrm{~K}_{1}=0.01 / 0.01 * \mathrm{~K}_{1}$ $\mathrm{K}_{1}=10^{-6.4} \mathrm{~m}$

BUFFERS - 1

$\mathrm{H}_{2} \mathrm{CO}_{3} \& \mathrm{NaHCO}_{3}$ example continued:

1. Add acid: $\quad \mathrm{H}^{+}+\mathrm{HCO}_{3}{ }^{-} \rightarrow \mathrm{H}_{2} \mathrm{CO}_{3}$

- the ratio of $\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]$: $\left[\mathrm{HCO}_{3}{ }^{-}\right]$changes which does change the $\left[\mathrm{H}^{+}\right]$but not very much unless the ratio is greatly changed;
- change ratio from 1 to $2, \mathrm{pH}$ changes from 6.4 to 6.1
- Add base: $\mathrm{OH}^{-}+\mathrm{H}_{2} \mathrm{CO}_{3} \rightarrow \mathrm{HCO}_{3}{ }^{-}+\mathrm{H}_{2} \mathrm{O}$
- change ratio in opposite direction, pH changes from 6.4 to 6.7

BUFFERS - 3

- Generally, a buffer consists of approximately equal amounts of a weak acid and a salt of the acid. The pH maintained is determined by the K_{d} of the acid.
- Mixtures of bases and corresponding cations are also efficient buffers
- Carbonates:
$\mathrm{CaCO}_{3}+\mathrm{H}^{+} \leftrightarrows \mathrm{Ca}^{+2}+\mathrm{HCO}_{3}{ }^{-}$
or

$$
\mathrm{Ca}^{+2}+\mathrm{HCO}_{3}^{-}+\mathrm{OH}^{-} \leftrightarrows \mathrm{CaCO}_{3}+\mathrm{H}_{2} \mathrm{O}
$$

- The $\mathrm{HCO}_{3}{ }^{-}$plays an important role in buffering:

$$
\begin{aligned}
& \mathrm{HCO}_{3}^{-}+\mathrm{H}^{+} \rightarrow \mathrm{H}_{2} \mathrm{CO}_{3} \\
& \mathrm{HCO}_{3}^{-}+\mathrm{OH}^{-} \rightarrow \mathrm{CO}_{3}^{-2}+\mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

BUFFERS - 4

- For sea water:
add H^{+}:
$\mathrm{H}^{+}+\mathrm{CO}_{3}{ }^{-2} \rightarrow \mathrm{HCO}_{3}{ }^{-}$
$\mathrm{H}^{+}+\mathrm{HCO}_{3}{ }^{-} \rightarrow \mathrm{H}_{2} \mathrm{CO}_{3}$
add OH^{-}:
$\mathrm{OH}^{-}+\mathrm{HCO}_{3}{ }^{-} \rightarrow \mathrm{CO}_{3}{ }^{-2}+\mathrm{H}_{2} \mathrm{O}$
$\mathrm{OH}^{-}+\mathrm{H}_{2} \mathrm{CO}_{3} \rightarrow \mathrm{HCO}_{3}{ }^{-}+\mathrm{H}_{2} \mathrm{O}$
and

$$
\mathrm{Ca}^{++}+\mathrm{HCO}_{3}^{-}+\mathrm{OH}^{-} \rightarrow \mathrm{CaCO}_{3}+\mathrm{H}_{2} \mathrm{O}
$$

ELECTROLYTE SOLUTIONS \& ION-ION ASSOCIATIONS

- In electrolytic solutions, some ions \& molecules form combinations, called complexes. Many of these are commonly referred to as ion pairs.
- They behave as a unit and are treated as a thermodynamic entity.

Chloride complexes

- Formation is common with many types of cations, especially transition metals, over a wide range of geochemical conditions
$\mathrm{CdCl}^{+}, \mathrm{PbCl}^{+}, \mathrm{ZnCl}^{+}, \mathrm{ZnCl}_{3}{ }^{-}$
Ion sorption, mobility, volatility affected

