GEOL 414/514

CARBONATE CHEMISTRY

Chapter 6

LANGMUIR

SOLUBILITY OF CALCITE

• CaCO₃ in nature: calcite & aragonite

• Reaction with strong acid: $CaCO_3 + 2H^+ \rightarrow Ca^{+2} + H_2O + CO_2$

- Reaction with weak acid: $CaCO_3 + H^+ \rightarrow Ca^{+2} + HCO_3^{-1}$
- Solubility depends on partial pressure of CO₂

 $H_2O(I) + CO_2(g) \leftrightarrows H_2CO_3(aq)$

SOLUBILITY OF CALCITE - 4

Natural Processes Affecting CaCO₃ Solubility

- Temperature:
 - increase temp, decrease solubility of CaCO₃, some other carbonates & sulfates
 - what happens to solubility of CO₂ when temps increase?
 - increase temp, decrease solubility of CO₂, CaCO₃
- Pressure:
 - increase P, increase solubility of calcite (slightly)
 - in deep ocean, P increases solubility about 2X

CALCIUM CARBONATE: SOLUBILITY CALCULATIONS

- Calcium carbonate solubility is strongly influenced by the presence & availability of CO₂. Other influencing reactions may also be important.
- There are five cases or sets of conditions that cover many situations of geologic interest; most other situations can be stipulated as combinations or permutations of these five
- Case 1. Reactions involved when pure calcite is placed in pure water with negligible gas phase present - used to determine the solubility of calcite – it is of little geologic utility

CALCIUM CARBONATE: SOLUBILITY CALCULATIONS - 2

- Case 2. The reaction of calcite in pure water but with the system open to CO₂; i.e., in contact with a reservoir, the atmosphere, of fixed P_{CO2} of considerable geologic importance; this represents reactions in rivers, lakes, streams & other "dilute" natural waters open to the atmosphere where pH is controlled entirely by the carbonate equilibria
- Case 3. Equilibrium relations in a system with a fixed quantity of dissolved carbonate species, but with pH arbitrarily fixed; i.e., controlled by other reactions in the system
 - some situations of ground water
 - surface waters with other sources of H⁺

CALCIUM CARBONATE: SOLUBILITY CALCULATIONS - 3

Case 4. Equilibrium in a system connected to an external reservoir of fixed P_{CO2} , but with pH arbitrarily determined

- of considerable geologic interest
- need to determine P_{CO2} , pH, [Ca⁺²] in equilib with calcite; try to determine controlling substance
- can also use for hypothetical (model) calculations
- Case 5. Equilibrium resulting from addition (exposure) of $CaCO_3$ to a system originally open to a CO_2 reservoir, but closed to that reservoir before addition of $CaCO_3$
 - rain water in equilibrium with atmos sinks into the ground, through unreactive soil/rock before contacting calcite

CALCIUM CARBONATE: SOLUBILITY CALCULATIONS - 4

- Variables needed for solution of carbonate equilibrium
- For all systems mentioned, there is a maximum of 7 variables, at dT = 0 and dP = 0

 $\mathbf{a}_{CO2} = \mathbf{P}_{CO2}; \mathbf{a}_{H2CO3}; \mathbf{a}_{HCO3-}; \mathbf{a}_{CO3-2}; \mathbf{a}_{H+}; \mathbf{a}_{OH-}; \mathbf{a}_{Ca+2}$

Note: activity = [x]

 $[Ca^{+2}][CO_3^{-2}] / [CaCO_3] = K_{CaCO_3} = 10^{-8.3}$

 $[H^+][HCO_3^-] / [H_2CO_3] = K_{H2CO3} = 10^{-6.4}$

 $[H^+][CO_3^{-2}] / [HCO_3^{-1}] = K_{HCO3^{-1}} = 10^{-10.3}$

 $[H^+][OH^-] / [H_2O] = K_{H2O} = 10^{-14}$

 $[H_2CO_3] / P_{CO2} = K_{CO2} = 10^{-1.47}$

CALCIUM CARBONATE: SOLUBILITY CALCULATIONS - 5

Solubility of CaCO₃

 $CaCO_3 \leftrightarrows Ca^{+2} + CO_3^{-2}$

- From Table A1.2: $K = [Ca^{+2}][CO_3^{-2}]/[CaCO_3] = 10^{-8.35} = 4.5 \times 10^{-9}$
- Solubility = $(4.5 \times 10^{-9})^{1/2} = 6.8 \times 10^{-5} m$ (??)
- When CO₃⁻² is present, hydrolysis occurs this will affect pH & solubility

 $CaCO_3 + H_2O \rightarrow Ca^{+2} + OH^- + HCO_3^-$

• Question: what will be the effect of the hydrolysis on the solubility of CaCO₃?

CALCIUM CARBONATE: SOLUBILITY CALCULATIONS - 6

Solubility of CaCO₃, continued

- K₍₃₋₆₎ = [Ca⁺²] + [OH⁻] [HCO₃⁻]
- $K = [Ca^{+2}] + [CO_3^{-2}] + [OH^{-}] [H^{+}] * ([HCO_3^{-}]/[H^{+}][CO_3^{-2}]$
- K = $10^{-8.3} \times 10^{-14} \times 1/10^{-10.3} = 10^{-12}$
- In pure H₂O, where γ's are ≈ unity, Ca⁺², OH⁻ & HCO₃⁻ should be formed in equal amounts (Eq 3-6), so

 $m_{\text{Ca+2}} = m_{\text{OH-}} = m_{\text{HCO3-}}$ and

 $m_{\text{Ca+2}} = (10^{-12})^{1/3} = 10^{-4} m$

• pH should = 10; However:

CALCIUM CARBONATE: SOLUBILITY CALCULATIONS - 7

Solubility of CaCO₃, continued

- At high pH, the HCO₃⁻ is dissociated
- From Fig. 5-3, p. 156, [CO₃⁻²] / [HCO₃⁻] ≈ 0.5
- The 3 ions are not present in equal conc's & more $CaCO_3$ must dissolve to maintain the ion product at 10^{-12}
- If [CO₃-²] / [HCO₃-] ≈ 0.5, then conc's of HCO₃- and OHshould be ≈ ²/₃conc Ca⁺², so

 $m_{\text{Ca+2}} = \frac{3}{2} m_{\text{OH-}} = \frac{3}{2} m_{\text{HCO3-}}$

• From Eq 3-8, *m*Ca⁺² = (9/4*10⁻¹²)^{1/3} = 1.3 * 10⁻⁴ *m*

(orig est = 6.8*10⁻⁵*m*)

• OH slightly lowered and pH = 9.9

CALCITE AND ARAGONITE

 K_{sp} calcite = $10^{-8.35} = 4.5 \times 10^{-9}$

 K_{sp} aragonite = $10^{-8.22} = 6.0 \times 10^{-9}$

- When aragonite is dissolved and an equilibrium is established between solid & solution (saturated), the K_{sp} , (product ion conc) is larger than the K_{sp} for calcite
- Q why does calcite not precipitate (it doesn't)
- Calcite should precipitate; aragonite continue to dissolve and re-precipitate as calcite until the aragonite is gone - This does not happen (??)
- Aragonite is unstable with respect to calcite under ordinary conditions (thermodynamically speaking)

CALCITE AND ARAGONITE

- Aragonite is a high pressure form; pressures not found under surface conditions
- Question: why does aragonite form under surface conditions?
 - solution is slightly supersaturated with respect to calcite, perhaps there are no nuclei present for calcite precipitation
 - presence of Sr⁺² & Mg⁺² favor aragonite
 - some animals precipitate aragonite; some calcite; some precipitate both
- Over geologic time aragonite alters to calcite

SUPERSATURATION

- Supersaturated solutions can exist for long periods of time – calcite-aragonite example
- Supersaturated conditions are not uncommon
- Presence of submicron particles (higher solubility than well-crystallized phases used for K_{sp}
- Nucleation of precipitate seems to be a (the) key issue
- Common to find very high levels of supersaturation of waters with respect to calcite
- One key is rate of reactions
- Non-equilibrium processes have been cited as influencing factors but do not make good "geochemical sense"

EFFECT OF GRAIN SIZE ON SOLUBILITY

- Very tiny grains (mμ) show a greater solubility than do large crystals (apparent solubility)
- Only true for these extremely small particles
- May be the cause of supersaturation in nature
- Precipitation begins with formation of very small crystals, which are replaced by larger particles
- Solubility is a thermodynamic entity and is independent of grain size
- Rate of solubility is more of a function of grain size

EFFECT OF ION ASSOCIATION ON SOLUBILITY

· Formation of complexes might enhance solubilities

 $Ca^{+2} + CO_3^{-2} - CaCO_3^{\circ}(aq)$

 $K = a_{CaCO3(aq)} / a_{Ca+2} + a_{CO3-2} = 10^{3.2}$

- As long as the a_{CO3-2} remains <10^{-3.2}, most of the calcium remains as Ca⁺².
- CaCO₃^{\circ}(aq) is rarely important in enhancing CaCO₃ sol.
- Formation of other complexes may be important in enhancing CaCO₃ solubility: CaHCO₃⁺, CaCl⁺, CaOH⁺ & CaSO₄^o(aq).
- CaSO₄^o(aq) is the most stable & may inc seawater sol by about 10%

EFFECT OF ORGANISMS ON SOLUBILITY

- Organisms appear to be able to precipitate CaSO₄ only from waters near saturation
- No evidence that organisms can precipitate carbonate at concs' far below saturation
- They prevent supersaturation, perhaps lower equilib sol slightly but do not greatly influence solubility
- Some organisms use precipitation reactions to provide energy for life processes (catalyze reaction)
- Incidental effects of life-processes:
 - water plants use CO₂, reduces H₂CO₃ (& H⁺): ppt'n
 - organic decay: cause alkaline conditions ppt'n
 - cause acidic conditions solubil.

PRECIPITATION OF CaCO₃ IN SEAWATER

- Seawater is a very complex solution (Table 6-7)
- Activity product for CaCO₃ in seawater is

 $a_{Ca+2}a_{CO3-2} = 10^{-2.7} * 10^{-5.1} = 10^{-7.6} = 1.6 * 10^{-8}$

This is ~5X greater than K_{sp} for calcite, and ~3X greater than K_{sp} for aragonite

- May precipitate as aragonite or calcite; through biotic or abiotic processes
- Diagenetic processes alter aragonite to calcite, increase crystal size, deposit calcite in veins, etc.

OTHER SIMPLE CARBONATES

 $MCO_3 + H_2CO_3 \leftrightarrows M^{+2} + 2HCO_3^{-1}$

Where M⁺² = Fe⁺², Sr⁺², Mn⁺², etc.

- Equilibrium and solubility considerations are the same as for calcite
- Replacement of one carbonate by another is often observed in metamorphic & sedimentary rocks and in hydrothermal veins

 $CaCO_3 + Fe^{+2} \leftrightarrows Ca^{+2} + FeCO_3$

 $\mathsf{K} = [\mathsf{Ca}^{+2}] / [\mathsf{Fe}^{+2}] = [\mathsf{Ca}^{+2}][\mathsf{CO}_3^{-2}] / [\mathsf{Fe}^{+2}][\mathsf{CO}_3^{-2}] = 225$

 If Fe⁺² conc > 1/225 Ca⁺², siderite replaces calcite: rarely the case (later we will discuss effect of redox conditions on presence of Fe⁺²)

THE DOLOMITE PROBLEM - 2

Dolomite solubility

How would we measure and verify dolomite solubility?

 It is difficult to obtain the K_{sp}; can measure the ion conc that forms upon dissolution but cannot reprecipitate to verify as with other minerals

K_{sp} = [Ca⁺²][Mg⁺²][CO₃⁻²] ≈ 10⁻¹⁷ to 10⁻¹⁹

 $CaCO_3 + Mg^{+2} + 2HCO_3^{-} \leftrightarrows CaMg(CO_3)_2 + H_2CO_3$

 $2CaCO_3 Mg^{+2} \leftrightarrows CaMg(CO_3)_2 + Ca^{+2}$

· There are two possibilities of dissolution types

THE DOLOMITE PROBLEM - 3

Dolomite dissolution:

Process at ordinary temperatures:

 $CaMg(CO_3)_2 \leftrightarrows Ca^{+2} + Mg^{+2} + 2CO_3^{-2}$ (congruent dissolution)

- Dolomite seems to form relatively soon after deposition of the original sediment – entire beds replaced but adjacent beds of calcium carbonate
- Study Fig 3-5 in text gives phase relationships between calcite – dolomite – magnesite