GEOL 414/514

CHEMICAL WEATHERING

Chapter 7

LANGMUIR

GENERAL OBSERVATIONS

- 1. Most chemical weathering occurs in the vadose zone of soils
- 2. The rate of chemical weathering is usually incr'd if the rate of physical or mechanical weathering is incr'd
- 3. The rate of chemical weathering is proportional to the soil organic/biological activity, include abundance of vegetation
- 4. The chemical weathering rate of a given soil is proportional to the infiltration (percolation) rate of water

GENERAL OBSERVATIONS

- 5. The rate of chemical weathering inc with inc temp
- 6. Chemical weathering generally involves the attack of H_2O & assoc acidity, & atmos O_2 (oxid'n) on P.M.'s
- Compared with the parent rock, mineral products of weathering are usually more hydrated (as clays), have lower metal cation conc's relative to AI & Si (clays & qtz), are oxidized (Fe⁺³ oxyhydroxides), or are chem ppts such as carbonates or evaporites
- 8. Dissolved products of weathering include major cations & anions in natural waters & dissolved silica

GENERAL OBSERVATIONS

- Problem in determining detailed weathering reactions
- Need chemical analysis at different stages of weathering
- Difficult to know if different stages sampled had same original composition
- Also need reference mineral or element; one that weathers little
- Must make several key assumptions

COMMON WEATHERING PRODUCTS

TABLE 7–4 COMMON PRODUCTS OF CHEMICAL WEATHERING PROCESSES	TABLE 7-4	COMMON PRODUCTS OF CHEMICAL WEATHERING PROCESSES
--	-----------	--

Soluble constituents	Na ⁺ , Ca ²⁺ , K ⁺ , Mg ²⁺ , H ₄ SiO ₄ , HCO ₃ , SO ₄ ²⁻ , Cl ⁻
Residual primary minerals	Quartz, zircon, magnetite, ilmenite, rutile, garnet, sphene, tourmaline, monazite
New minerals	Kaolinite, montmorillonite, illite, chlorite, hematite, goethite, gibbsite, boehmite, diaspore, amorphous silica, pyrolusite
Organic compounds	Organic acids, humic substances, kerogen
	(from Brownlow)

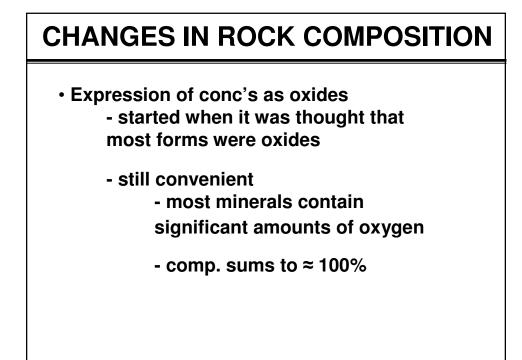

ROCK WEATHERING

Table 4-1 Analyses of quartz-feldspar-biotite gneiss and weathered material derived from it†

Column I gives the analysis of a sample of fresh rock, and columns II, III, and IV give analyses of weathered material. In general, the degree of weathering increases from II to IV, but there is no assurance that the original material was precisely the same or that IV represents a longer time of weathering than II or III

	Chemical compo	sition, weight pe	ercent	
	(I)	(11)	(111)	(IV)
SiO ₂	71.54	68.09	70.30	55.07
Al ₂ O ₃	14.62	17.31	18.34	26.14
Fe ₂ O ₃	0.69	3.86	1.55	3.72
FeO	1.64	0.36	0.22	2.53
MgO	0.77	0.46	0.21	0.33
CaO	2.08	0.06	0.10	0.16
Na ₂ O	3.84	0.12	0.09	0.05
K ₂ O	3.92	3.48	2.47	0.14
H ₂ O	0.32	5.61	5.88	10.39
Others	0.65	0.56	0.54	0.58
Total	100.07	99.91	99.70	100.11

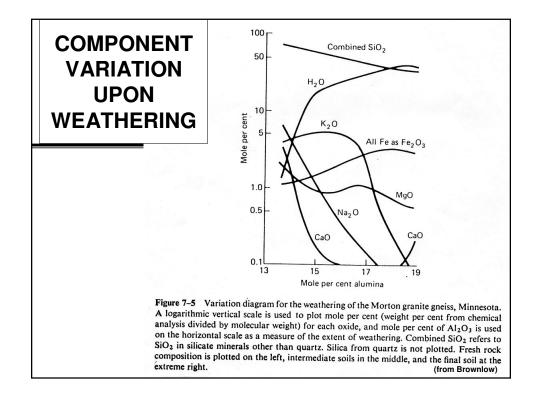
		(11)	(111)	(N A)
	(I)	(II)	(III)	(IV)
Appro	ximate mineral	composition, vol	ume percent	
Quartz	30	40	43 -	25
K-feldspar	19	18	13	1
Plagioclase	40	1	1	?
Biotite (+ chlorite)	7	Trace	Trace	0.2
Hornblende	1	None	None	Trace
Magnetite, ilmenite,				
secondary oxides	1.5	5	2	6
Kaolinite	None	36	40	66

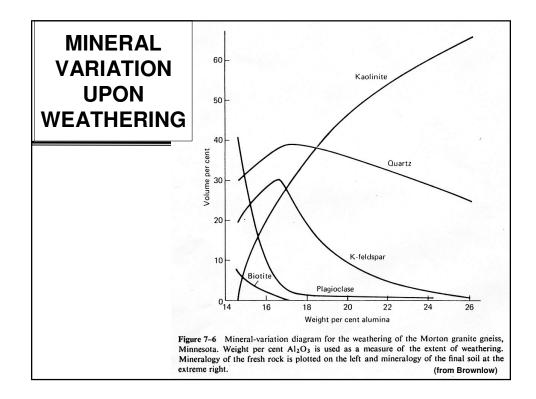
CHANGES IN ROCK COMPOSITION

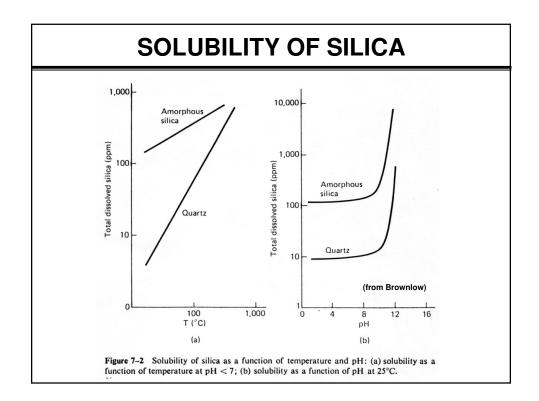
Use of AI as reference element:

- oxide is very insoluble

- Al₂O₃ shows greatest <u>apparent</u> increase in weathered materials


- of major elements, AI is <u>least</u> abundant in stream & ground waters
- but not absent from these waters


CALCULATION OF LOSSES & GAINS


The calculation involves the following steps, as illustrated in Table 4-2:

- 1. Recalculate analyses to 100.00 by distributing the analytical error (columns I and III).
- 2. Assume Al_2O_3 constant. During weathering, 100 g of fresh rock has decreased in weight so that Al_2O_3 has apparently increased from 14.61 to 18.40%. Hence the total weight has decreased in the ratio 14.61/18.40, or from 100 to 79.40 g. The amount of each constituent in the 79.40 g can be found by multiplying each number in column III by this same ratio. This gives the numbers in column A.
- 3. The decrease (or increase) in each constituent is found by subtracting the numbers in column A from those in column I (treating the latter as grams per 100 g rather than percent). This gives the numbers in column B.
- 4. The percentage decrease or increase of each constituent is computed by dividing the numbers in column B by those in column I, giving the numbers in column C.

WEATHERING Al as Al ₂ O ₃ is basis of	TABLE 13-3 Calculation of gains and losses during weathering Columns I and III, giving composition in weight percent, are repeated from Table 13-2, except that the analytical error in each has been distributed so that the totals are 100.00. Column A shows the calculated weight in grams of each oxide remaining from the weathering of 100 g of fresh rock, on the assumption of constant Al ₂ O ₃ . Column B shows the gains and losses of the different oxides in grams, and column C shows the same gains and losses in percentages of the original amounts.					
weathering	C.S.	(I)	(III)	(A)	(B)	(0)
3		(-)	()	(14)	(B)	(C)
calculations	SiO ₂	71.48	70.51	55.99	-15.49	-22
•	Al ₂ O ₃	71.48 14.61	70.51 18.40	55.99 14.61	-15.49 0	-22 0
•	$\frac{Al_2O_3}{Fe_2O_3}$	71.48 14.61 0.69	70.51 18.40 1.55	55.99 14.61 1.23	-15.49 0 +0.54	-22 0 +78
Ŭ	$\begin{array}{c} Al_2O_3\\ Fe_2O_3\\ FeO \end{array}$	71.48 14.61 0.69 1.64	70.51 18.40 1.55 0.22	55.99 14.61 1.23 0.17	-15.49 0 +0.54 -1.47	-22 0 +78 -90
Ŭ	Al ₂ O ₃ Fe ₂ O ₃ FeO MgO	71.48 14.61 0.69 1.64 0.77	70.51 18.40 1.55 0.22 0.21	55.99 14.61 1.23 0.17 0.17	-15.49 0 +0.54 -1.47 -0.60	-22 0 +78 -90 -78
Ŭ	$\begin{array}{c} Al_2O_3\\ \hline Fe_2O_3\\ FeO\\ MgO\\ CaO \end{array}$	71.48 14.61 0.69 1.64 0.77 2.08	70.51 18.40 1.55 0.22 0.21 0.10	55.99 14.61 1.23 0.17 0.17 0.08	$-15.49 \\ 0 \\ +0.54 \\ -1.47 \\ -0.60 \\ -2.00$	-22 0 +78 -90 -78 -96
Ŭ	Al ₂ O ₃ Fe ₂ O ₃ FeO MgO CaO Na ₂ O	71.48 14.61 0.69 1.64 0.77 2.08 3.84	70.51 18.40 1.55 0.22 0.21 0.10 0.09	55.99 14.61 1.23 0.17 0.17 0.08 0.07	$-15.49 \\ 0 \\ +0.54 \\ -1.47 \\ -0.60 \\ -2.00 \\ -3.77$	-22 0 +78 -90 -78 -96 -98
Ŭ	$\begin{array}{c} \underline{Al_2O_3}\\ \overline{Fe_2O_3}\\ \overline{FeO}\\ MgO\\ CaO\\ Na_2O\\ K_2O\\ \end{array}$	71.48 14.61 0.69 1.64 0.77 2.08 3.84 3.92	70.51 18.40 1.55 0.22 0.21 0.10 0.09 2.48	55.99 14.61 1.23 0.17 0.17 0.08 0.07 1.97	$\begin{array}{r} -15.49 \\ 0 \\ +0.54 \\ -1.47 \\ -0.60 \\ -2.00 \\ -3.77 \\ -1.95 \end{array}$	-22 0 +78 -90 -78 -96 -98 -50
Ŭ	Al ₂ O ₃ Fe ₂ O ₃ FeO MgO CaO Na ₂ O	71.48 14.61 0.69 1.64 0.77 2.08 3.84	70.51 18.40 1.55 0.22 0.21 0.10 0.09	55.99 14.61 1.23 0.17 0.17 0.08 0.07	$-15.49 \\ 0 \\ +0.54 \\ -1.47 \\ -0.60 \\ -2.00 \\ -3.77$	-22 0 +78 -90 -78 -96

AGENTS OF CHEMICAL WEATHERING

- Agents: Moisture (H₂O) O₂ CO₂ Organic acids • Types of reactions: • Solution NaCl + H₂O \rightarrow Na⁺ + Cl⁻ + H₂O • Hydration
 - $CaSO_4 + 2H_2O \rightarrow CaSO_4 \cdot 2H_2O$

CHEMICAL WEATHERING

Types of reactions, cont:

- Carbonate weathering key is CO₃⁻² + H⁺ ⇒ HCO₃⁻² (stable)
- Oxidation
 - Fe and Mn compounds
 - Other sulfides
 - most decomposition reactions occur in steps - many not yet clearly understood

Oxidation of pyrite:

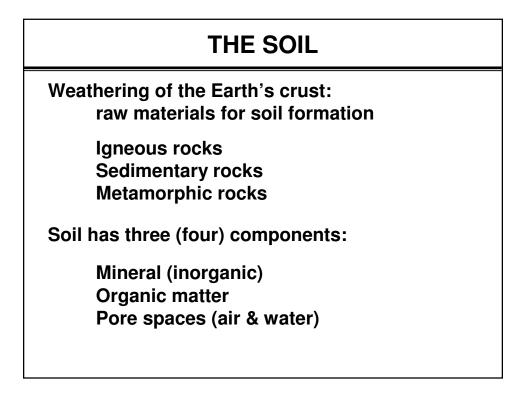
Oxidation of S:

 $2\text{FeS}_2 + 7\text{O}_2 + 2\text{H}_2\text{O} \rightarrow 2\text{FeSO}_4 + 2\text{H}_2\text{SO}_4$

Oxidation of Fe:

$$4FeSO_4 + O_2 + 2H_2SO_4 \rightarrow 2Fe(SO_4)_3 + 2H_2O$$

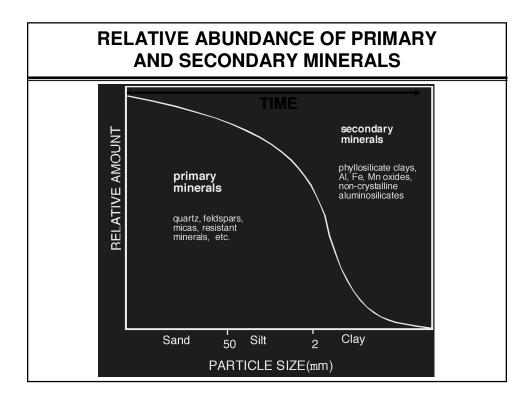
Hydrolysis of Fe⁺³:


 $Fe(SO_4)_3 + 6H_2O \rightarrow 2Fe(OH)_{3(s)} + 3H_2SO_4$

CHEMICAL WEATHERING - 3

- Hydrolysis (of silicates)
- Most silicates weather by hydrolysis
- $Mg_2SiO_4 + H_2CO_3 \rightarrow 2Mg^{+2} + 4HCO_3^{-2} + H_4SiO_4$
- Silicic acid is weaker than carbonic acid and is very weakly ionized
- Weathering scheme is very complex due to the presence of several different cations in silicates

CHEMICAL WEATHERING - 4

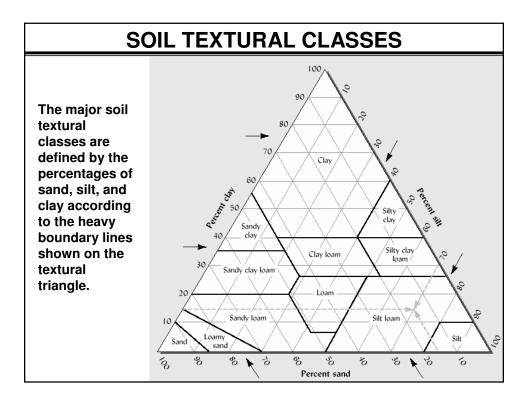

- Alumino-silicates ⇔ ^{weathering} ⇒ clay minerals
- Hydrolysis of silicates increases basicity of system - OH⁻ or HCO₃⁻ ions produced
- Constraint of pH: (keeps pH ≈ 9.0)
- H_2O + SiO₂ (qtz) + OH⁻ \rightarrow $H_3SiO_4^-$ K=10^{0.4}
- H_4SiO_4 (aq) + $OH^- \rightarrow H_3SiO_4^-$ + H_2O K=10^{4.2}

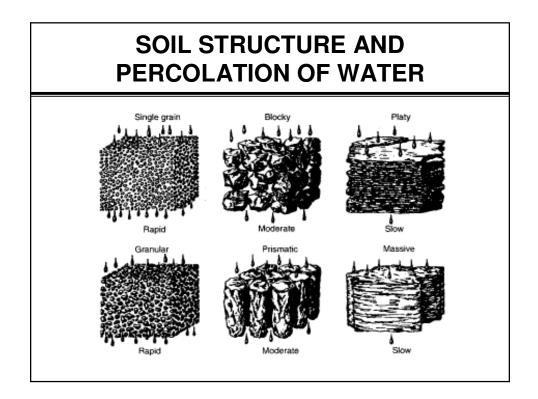
- Sand (coarse particles):
 50 to 2000 micrometers (μm) diameter
- Silt (medium sized particles):
 2 to 50 μm diameter
- Clay (fine particles):
 < 2 μm diameter

SOIL COMPOSITION Organic Component:

- Living soil organisms
 Invertebrates
 Bacteria & Fungi
 Important function as decomposers
- Plant roots
 Major portion of soil biomass
- Decomposing organic matter (OM) Food source for soil organisms
- Humus (highly decomposed, colloidal, OM) Most chemically active organic component

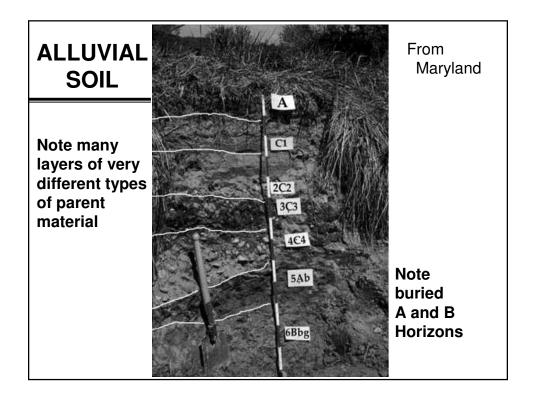
SOIL COMPOSITION Pore Spaces:

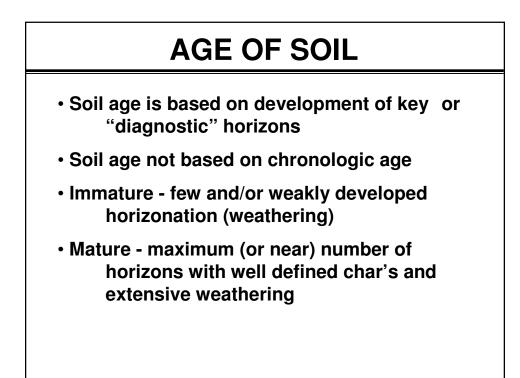

- Approximately 50% of soil volume
- Air or water depending upon conditions
- Higher conc of CO₂, H₂O vapor that atmos air
- Importance of O₂ diffusion to roots
- Clay soils: Small pores hold water tightly Air movement is limited
- Sandy Soils: Large pores, rapid water drainage; little remains Free movement of air, gasses


SOIL COMPOSITION: Soil Water

- Saturation:
 - flooding rain, irrigation
- Field capacity:
 - moisture content when water has drained away due to gravity forces
 - clay soils hold more water than sandy soils
- Permanent wilting point:
 - soil is so dry plants cannot remove remaining water
 - no water movement in soil at this point

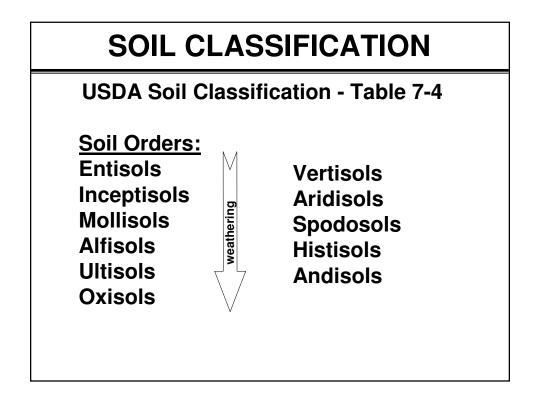
- Soil texture and clay minerals
- Soil structure
- Soil water
- Soil atmosphere
- Soil pH
- Salinity

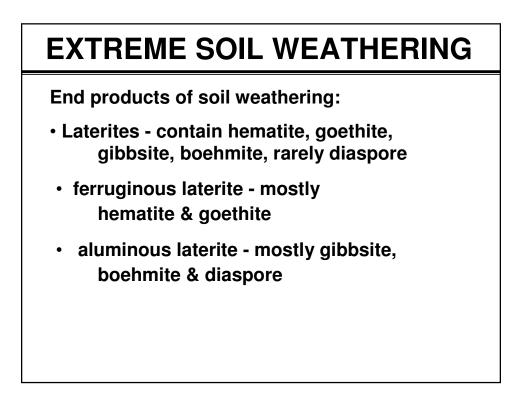

IMPORTANT PHYSICO-CHEMICAL PROPERTIES

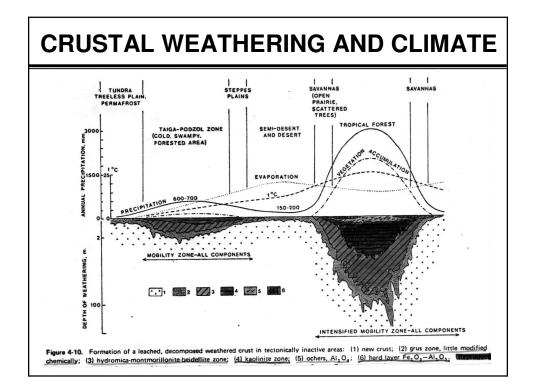

- Cation sorption and exchange
- Cation replacement order
- Cation adsorption vs desorption
- Ion exchange equation
- Anion adsorption
- Water adsorption
- Soil pH acid or alkaline affects ion exchange and soil reactions

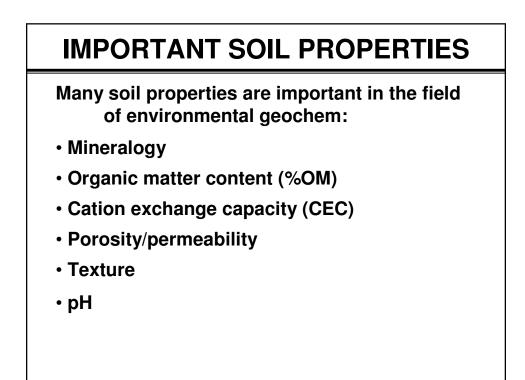
FACTORS INFLUENCING SOIL FORMATION

- 1. Parent materials (geologic or organic precursors to the soil
- 2. Climate (primarily precipitation & temperature)
- 3. Biota (living organisms, especially native vegetation, microbes, soil animals & humans
- 4. Topography (slope, aspect & landscape position)
- 5. Time (the period of time since the parent materials became exposed to soil formation factors)

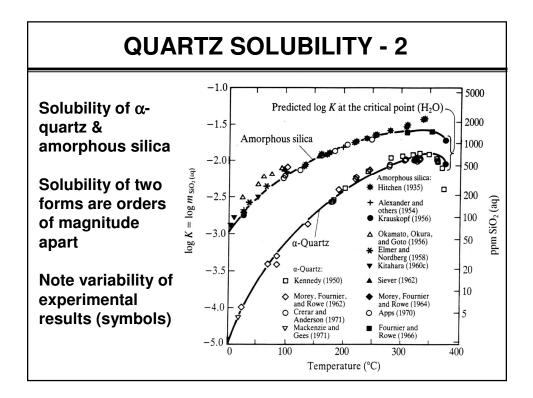

PRIMARY SOIL HORIZONS			
A Horizon Organic rich Highest organism activity			
E Horizon Zone of leaching, eluviation			
B Horizon Weathered, Accumulation of Clays, oxides			
C Horizon Parent Material; May be multiple layers			
R Horizon Bedrock In Hampton Roads: 2000 ft deep			

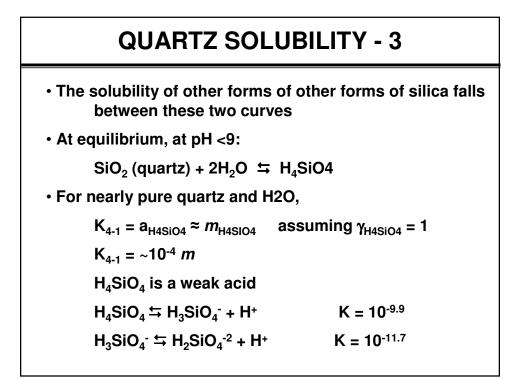





SOIL CLASSIFICATION

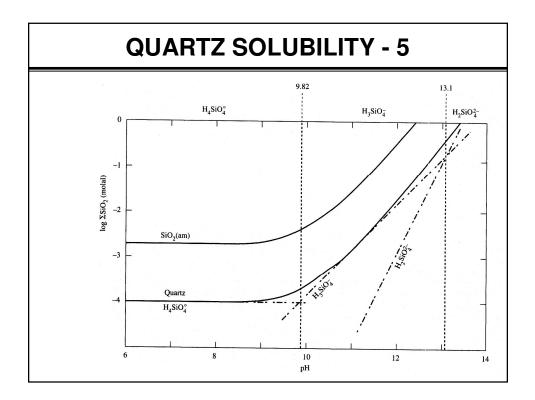
- Pedocal high amounts of CaCO₃ and/or CaSO₄ in profile; occur in lowrainfall areas; high soil pH
- Pedalfer high amounts of Fe & Al compounds in profile; extensive profile leaching; low soil pH; > 25 in. annual precip'n

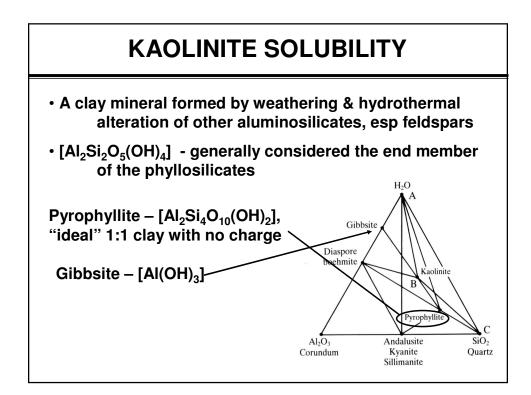


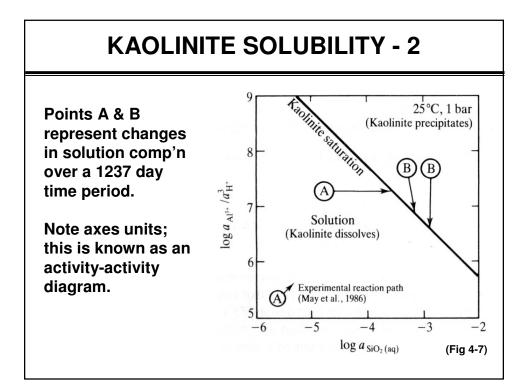


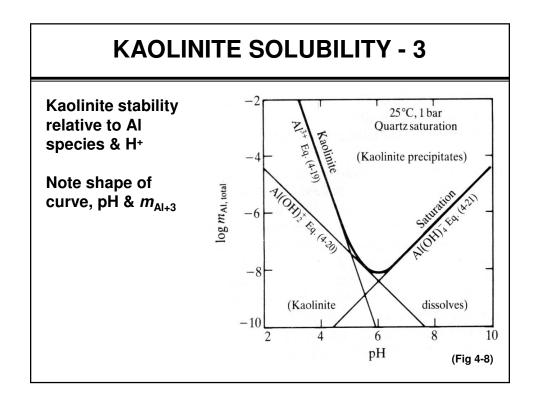
• Silica and the silicates comprise ~90% of earth's crust • SiO₂ (silica): quartz, amethyst, agate, opal

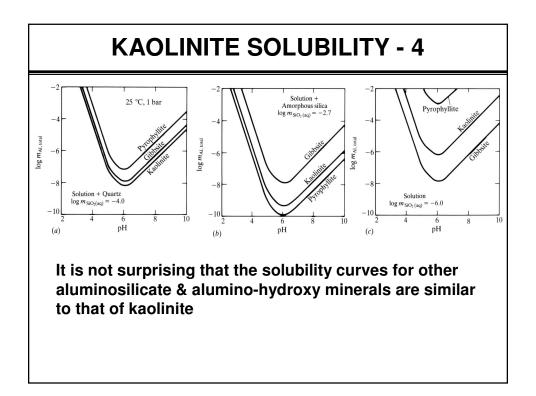
- Different polymorphs of silica: α -quartz, β -quartz, tridymite, cristobalite, stishovite and coesite plus amorphous forms
- Chert is an impure form of microcrystalline α -quartz, often described as chalcedony
- Opal is amorphous silica containing water
- Many studies have been conducted on the aqueous transport of silica
- α -quartz is a very common form and we'll examine prop's




QUARTZ SOLUBILITY - 4


• For total conc of aqueous silica in solution:


 $m_{\text{SiO2(aq)total}} = m_{\text{H4SiO4}} + m_{\text{H3SiO4-}} + m_{\text{H2SiO4-2}}$


- $m_{\text{SiO2(aq)total}} = K_{(4-1)} + K_{(4-1)}K_{(4-3)} / m_{\text{H}_{+}} + K_{(4-1)}K_{(4-3)}K_{(4-4)} / m_{\text{H}_{+}}^2$
- At $m_{H_+} = < 10$ (pH > 9), the two right-hand terms of Eq 4-6 (above) become important
- Note the change in solubility as a function of pH (Fig 7-7)

