GEOL 414/514

GENERAL CONTROLS ON NATURAL WATER CHEMISTRY

Chapter 8

LANGMUIR

HYDROLOGIC CYCLE, RESIDENT TIME & WATER-ROCK RATIO

 The hydrologic cycle involves the movement of water between reservoirs

• The residence time (t_R) in each reservoir is defined as:

 $t_R = \frac{\text{amount of water in reservoir (g)}}{\text{flux into reservoir (g/time)}}$

Reservoir	<i>t_R</i> (years)
ocean	3550
atmosphere	11 days
groundwater	1700

CONTROLS ON THE COMPOSITION OF SUBSURFACE WATERS

Composition of subsurface waters is a function of:

- 1. Composition of groundwater recharge
- 2. Petrologic & mineralogic composition of subsurface rocks small amounts of soluble minerals have significant influence
- 3. Hydrologic properties of rocks flow velocities see Table 8.1

Note examples in text; we'll examine the F concentrations in the Middle Potomac Aquifer in SE VA

GENERAL COMPOSITION OF PRECIPITATION

- Major constituents of rainfall are Ca⁺², Mg⁺², Na⁺, K⁺, NH₄⁺, H⁺, Cl⁻, NO₃⁻, SO₄⁻², sometimes HCO₃⁻
- See Figs 8.6 & 8.7 for isoconcentration contours for Na⁺, Cl⁻, SO₄⁻² & NO₃⁻ in contiguous USA ppt'n
- Globally, one-half of SO₄-² is derived from combustion of fossil fuels & 1/2 from natural sources
- Anthropogenic sources responsible for 90% atmos SO_4^{-2} deposition in eastern N. America
- USA emissions of $SO_2 \& NO_x$ are decreasing, slowly; may also be declining in Europe
- Global emissions of SO₂ are significantly increasing

ACID PRECIPITATION

- · Acid rain, snow, fog; rain most prevalent
- Rain more acid than pH 5.7 from reactions of gases SO₂, NO₂, NO (NO_x) & to a lesser extent, HCl
- Forms in rain: H+, SO₄-², NO₃-, Cl⁻
- Initial rainfall is most acid, short rainfall events deposit higher H⁺ concentrations
- Hopewell, VA, 1985, rainfall pH = 3.2, short rainfall event
- Causes serious damage to stone buildings, monuments, metal structures, soils, surface waters
- Rainfall pH has been slowly increasing over the past several years but still is <4.5 over much of the eastern US

TABLE 8.8 Median values of pH and TDS and of major (>1 mg/L) constituents in surface waters and groundwaters Major Constituents		
HCO ₃	58	200
<u>Ca²⁺</u>	15	50
Cl-	7.8	20
K+	2.3	3
Mg ²⁺	4.1	7
Na ⁺	6.3	30
SO ₄ ²	3.7	30
$SiO_2(aq)$	14	16
pH		7.4
TDS	120	350

_ _ _

WATER QUALITY VS QUANTITY

- Water quality & quantity are inherently interdependent
- Often we may need to reconstruct the amounts of two
 or more waters that have mixed to create another
- Mixing is described by mass-balance equation:

$$\mathbf{C}_m \mathbf{V}_m = \mathbf{C}_1 \mathbf{V}_1 + \mathbf{C}_2 \mathbf{V}_2$$

• Since $V_m = V_1 + V_2$, V_m may be eliminated to give:

$$R_{V} = \frac{V_{1}}{V_{2}} = \frac{(C_{2} - C_{m})}{(C_{m} - C_{1})}$$

 R_V & vol ratios can be determined from the chem anal of a single conservative (Cl⁻, Br⁻) species in all three waters

WATER QUALITY VS QUANTITY

- Changes in flow rate or discharge of stream or GW are usually accompanied by changes in water quality
- Influence on streams may switch between GW and runoff depending on rainfall
- There are usually dilution effects for dissolved constituents and increased conc's for elements assoc'd with sediments with increased flow
- For overland flow & interflow causing dilution:

 $\log C_m = \log C_1 Q_1 - \log Q_m$

 With constant baseflow discharge & composition, this is eq'n of straight line w/ slope = -1 & intercept = log C₁Q₁ (see Figs 8.16 & 8.17)

IMPORTANCE OF DEFINING BACKGROUND WATER QUALITY

- Many surface & GWs contain natural conc's that exceed the EPAs drinking water standards
- Major question often is how to determine natural (BG) levels
 - how do we assure ourselves that a given location is truly unaffected by human influences?
 - how do we determine that elevated conc's are due to natural causes?
 - often difficult in populated areas
 - for large sample sets can use cumulative frequency plots or frequency distribution plots to ID different "populations"